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ABSTRACT We demonstrate that an assembly-independent and spike-in facilitated
metagenomic quantification approach can be used to screen and quantify over
2,000 genes simultaneously, while delivering absolute gene concentrations compara-
ble to those for quantitative PCR (qPCR). DNA extracted from dairy manure slurry,
digestate, and compost was spiked with genomic DNA from a marine bacterium and
sequenced using the Illumina HiSeq4000. We compared gene copy concentrations,
in gene copies per mass of sample, of five antimicrobial resistance genes (ARGs)
generated with (i) our quantitative metagenomic approach, (ii) targeted qPCR, and
(iii) a hybrid quantification approach involving metagenomics and qPCR-based 16S
rRNA gene quantification. Although qPCR achieved lower quantification limits, the
metagenomic method avoided biases caused by primer specificity inherent to qPCR-
based methods and was able to detect orders of magnitude more genes than is pos-
sible with qPCR assays. We used the approach to simultaneously quantify ARGs in
the Comprehensive Antimicrobial Resistance Database (CARD). We observed that the
total abundance of tetracycline resistance genes was consistent across different stages
of manure treatment on three farms, but different samples were dominated by differ-
ent tetracycline resistance gene families.

IMPORTANCE qPCR and metagenomics are central molecular techniques that have
offered insights into biological processes for decades, from monitoring spatial and
temporal gene dynamics to tracking ARGs or pathogens. Still needed is a tool that
can quantify thousands of relevant genes in a sample as gene copies per sample mass
or volume. We compare a quantitative metagenomic approach with traditional qPCR
approaches in the quantification of ARG targets in dairy manure samples. By leveraging
the benefits of nontargeted community genomics, we demonstrate high-throughput
absolute gene quantification of all known ARG sequences in environmental samples.
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Ahigh-throughput, quantitative, gene-level screening tool is needed for studying
dynamic, complex, and diverse microbial communities and the biological proc-

esses they perform. Quantitative PCR (qPCR) is widely used to measure the absolute
concentrations of short segments of nucleic acid sequences, which serve as proxies of
organisms or genes. This approach has been critical in a wide range of applications
including assessing the relative roles of different microorganisms in nitrification and
denitrification in wastewater treatment (1), the abundances of viruses in wastewater
following outbreaks (2), and the impact of antibiotic use on antimicrobial resistance
gene (ARG) abundances in livestock manure (3). However, qPCR is capable of targeting
only limited sequences at a time, and primer bias, sensitivity, and specificity can con-
found results (4, 5). These aspects of qPCR limit our ability to compare, between sam-
ples and studies, the composition of microorganisms and genes in their community
context.

Metagenomic sequencing has emerged as a powerful tool to study the structure
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and functional capacity of microbial communities. Metabolic gene databases, such as
the carbohydrate-active enzymes database (CAZy), have facilitated gene classification
from metagenomes for diverse applications ranging from evaluating the gut micro-
biome colonization in infants (6) to studying enrichment of cellulases in bioreactors for
bioenergy production (7). Virulence gene databases, such as the Virulence Factor
Database (VFDB), have enabled the development of metagenomic pathogen screening
tools applied in a variety of settings from food safety to wastewater (8, 9). Although
metagenomic analyses provide a comprehensive inventory of the genes and organ-
isms that are present in samples, the data are compositional, and results are typically
reported as relative abundances. As a result, studies that perform metagenomic sequenc-
ing alone cannot report absolute gene abundances, which are essential in many studies,
particularly those evaluating changes in a pathogen marker gene or ARG concentrations
through food, water, waste, and air treatment processes. Instead, metagenomic studies are
limited to reporting relative changes in community diversity or the enrichment of certain
genes between samples by normalizing to total sequence reads (10), 16S rRNA gene reads
(11), or single copy gene reads (12). In some cases, hybrid approaches convert relative
abundance data from metagenomic analyses to absolute abundances by relying on ancil-
lary analyses such as the number of cells measured by flow cytometry (13) or the number
of 16S rRNA genes measured by qPCR (14, 15). These additional analyses require method
optimization and can introduce biases. A more direct option for obtaining the absolute
abundance of genes from metagenomic data involves spiking nucleic acid internal stand-
ards into samples before extraction or sequencing (16).

Incorporating internal standard spike-ins, as commonly used in analytical chemistry,
can establish a ratio of metagenomic read abundance to gene copy concentration.
Internal standard protocols were first applied to sequencing methods in transcriptomic
experiments (RNA-seq) to quantify gene expression, identify protocol-dependent
biases, and compare method sensitivity and reproducibility (17). Since then, protocols
have been developed for 16S rRNA gene-amplicon (18) metagenome (19), and meta-
transcriptome (16) sequencing. Previous quantitative metagenomic spike-in studies
have performed metagenome assemblies and then mapped short metagenomic reads
to the assembled contigs (20). Such assembly-dependent methods are time-intensive
and can fail to assemble genomes that harbor ARGs, particularly those of viruses (21)
or plasmids and within genomic islands (22, 23), thus increasing false-negative detec-
tion rates. Additionally, assemblies can introduce bias toward highly abundant organ-
isms, which are more likely to be assembled correctly (24).

In this study, we applied an assembly-independent, spike-in metagenomic approach
for quantifying gene concentrations in environmental samples. We first quantified the re-
covery of the spike-in genes across different concentrations, %G1C contents, and gene
sizes. We then compared the spike-in quantitative metagenomic approach with tradi-
tional gene quantification by qPCR and with a hybrid, spike-independent metagenomic
method. Finally, we applied the approach to quantify ARG concentrations in dairy farm
samples and demonstrated the benefit of quantifying broader groups of genes than is
possible with targeted qPCR methods. Ultimately, we envision this high-throughput,
quantitative, gene-targeted method will improve exposure and risk assessment model-
ing, optimize treatment processes for water, waste, and air, enhance microbiome-driven
resource recovery or bioenergy production, and quantify the roles of microbes in host
health and global nutrient and carbon cycling.

RESULTS
Equation for assembly-independent, absolute gene quantification using spike-

in normalization. Genomic DNA of a marine bacterium, Marinobacter hydrocarbono-
clasticus (ATCC 700491) was spiked into DNA extracted from environmental samples to
determine the relationship between read counts and gene copy concentrations (see
Fig. S1 in the supplemental material). We used genomic DNA from M. hydrocarbono-
clasticus as our spike-in DNA because it is a marine microbe foreign to our samples. In
our study, DNA was spiked after extraction to ensure that differences between spike-in
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and sample DNA recoveries were limited to sequencing and read mapping biases only,
rather than to biases introduced during any prior sample processing steps. Prior to per-
forming the DNA extraction and spike-ins on the samples compared in this study, we
assessed extraction recoveries and bias across different manure matrices using a Gram-
positive bacterium and a Gram-negative bacterium (see Text S1 and Fig. S2 in the supple-
mental material). Mean recoveries of spike-in Gram-positive and Gram-negative organisms
ranged from 75 to 110% and did not differ significantly (P value=0.27; Fig. S2).

The average ratio of the known spike-in gene copy concentration to gene length-
normalized counts of mapped reads was calculated. This ratio was defined as the
spike-in normalization factor, h :

g ¼ 1
n

Xn

i

cs;i
zs;i=Ls;i

(1)

where n is the total number of genes in the M. hydrocarbonoclasticus genome, cs,i is the
known spike-in gene copy concentration for each gene i in the M. hydrocarbonoclasti-
cus genome (gene copies/microliter DNA extract) and

zs;i
Ls;i

is the length-normalized read
count (reads/base pair) for gene i. In this approach, we assume the relationships
between gene copy concentrations and length-normalized read counts are consistent
between the target genes and spike-in genes. We confirmed the gene recovery was ro-
bust across gene lengths and %G1C contents and different spike-in gene abundances
by observing read mapping rates using different tools and settings (Text S2, Fig. S3,
and Fig. S4).

By multiplying h by the target gene’s length-normalized read counts (ztLt , reads/base
pair), we can predict the unknown concentration of our target gene (ĉt , gene copies/
volume of DNA extract):

ĉt ¼ g
zt
Lt

� �
(2)

However, we ultimately aimed to determine the number of copies of the target
gene per mass or volume of sample. For this, the target gene concentration was multi-
plied by the volume eluted during DNA extraction (Veluted, in microliters) to obtain the
total copies of the target gene extracted, which was then divided by the mass (or vol-
ume) of the sample extracted:

copies; target
samplemass

¼ ĉt
Veluted

samplemass

� �
(3)

Here, it is assumed that spike-in genes are recovered at the same rate as the target
genes in the sample. The spike-in facilitated approach establishes a relationship
between read abundances and gene concentrations; we are therefore able to directly
compare gene abundances between samples without corrections for average genome
sizes or single copy gene concentrations.

Last, we found that the dynamic range of the relationship between gene concentra-
tion and read abundance spanned over 3 orders of magnitude and was consistent
over different sequencing depths by spiking aliquots of a sample with different con-
centrations of the internal standard (Fig. S4). We found that the limit of detection cor-
responded to about 3� 104 gene copies/mg sample (Text S2).

Agreement between sequencing- and spike-independent approaches validates
our method. We compared gene quantities measured with the spike-in quantitative
metagenomic approach to those measured with qPCR and a hybrid, spike-independ-
ent metagenomic quantification approach. We used six manure samples from different
farms and treatment stages (untreated, composted, or digested). Five target genes,
tetM, tetG, sul1, sul2, and ermB, were chosen because they have frequently been quanti-
fied in environmental samples and primer sets are available (25–29). In the quantitative
metagenomic approach, reads were assigned to ARGs in the Comprehensive Antimicrobial
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Resistance Database (CARD) using graphing resistance out of metagenomes or “GROOT”
(Fig. 1A) (30). Additionally, read abundances were assigned to resistance genes in the
MEGARes database using AMR11 (Fig. S5) (31).

In the hybrid, spike-independent metagenomic quantification approach, 16S rRNA
gene concentrations are measured in each sample using qPCR. Then, target read
counts are divided by 16S rRNA gene read counts (14, 15). This approach assumes that
the target gene/16S rRNA gene quotient is equivalent for metagenomic sequencing
and qPCR and is computed as follows:

target gene copies
samplemass

¼ zs;i
z16S rRNA

� �
16S rRNAgene copies

samplemass

� �

where zs,i is the number of reads mapping to the target gene, z16S rRNA is the number of
reads mapping to a 16S rRNA sequence, and the 16S rRNA gene copies/sample mass
ratio is determined by qPCR.

tetG was not detected using the metagenomic approach in any of the samples but
was detected with qPCR with abundances ranging from 1,000 to 2,400 copies/mg of
sample, corresponding to about 2,000 to 6,000 copies/ml extract. ermB was not
detected by the metagenomic approach in the farm A samples, but was detected in
the farm A untreated sample with qPCR at 900 copies/mg sample. In these samples,
we are approaching the method detection limit of the quantitative metagenomic
approach (;3� 104 gene copies/mg sample), but not that of qPCR (2 to 8 copies/mg
sample, see Text S2 and Table S1 in the supplemental material).

On average, qPCR quantities were 22% greater than those using the quantitative
metagenomic approach, with tetM as a visible outlier. Specifically, the spike-in quanti-
tative metagenomic approach predicted a fourfold-greater concentration of tetM than
qPCR in the farm C digester. This discrepancy between approaches for tetM could
result in major differences in study conclusions. For example, if the qPCR assay was
used to measure how tetM concentrations changed between the farm C untreated and
digester manures, one would observe a 95% decrease in tetM concentration. Using the
spike-in quantitative metagenomic approach, however, one would observe a 140%
higher concentration of tetM in the digester sample than the untreated sample
(Fig. 1A). These patterns were also observed with AMR11 using the MEGARes data-
base (Fig. S5).

FIG 1 Comparisons of the gene quantification approaches using GROOT for assigning reads to resistance genes. The dotted line is a
1:1 line that represents theoretical perfect correlation between approaches. (A) Spike-in quantified metagenomic absolute abundance
approach versus qPCR. (B) Spike-in quantified metagenomic absolute abundance approach versus spike-independent, 16S rRNA gene-
based metagenomic approach. ermB was not detected in the farm A samples by the quantitative metagenomic approach, but it was
detected in the farm A compost sample by qPCR. tetG was detected by qPCR in all samples, but not by the quantitative metagenome
approach.
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GROOT and AMR11 tools use different approaches to reduce ambiguous mapping
to resistance genes. Specifically, AMR11 employs the “ResistomeAnalyzer” algorithm
which removes sparse alignments at thresholds that can be set by the user. GROOT
uses variation graph representation of a user-specified database that stores shared
gene sequences as graphical nodes, reducing ambiguous mapping to homologous
gene regions. We therefore hypothesized that the incongruence observed for the
tetM gene was due to qPCR primers failing to capture the diverse tetM genes in the di-
gester manure sample. To test this hypothesis, we evaluated the read mapping pat-
terns to tetM and sul1 reference genes using Bowtie2 (32) and the Integrative Genome
Viewer software (33). We included sul1 in the analysis because it is a highly conserved
gene sequence; therefore, we expected mapped reads to perfectly match the reference
gene sequence. Six single nucleotide variants (SNVs) were observed in the reads map-
ping to the 19-bp tetM forward primer sequence. When the allele frequencies at the
primer binding sites were quantified (Table S2), 99% of tetM mapped reads from the
farm C digester had a mismatch at five of the six SNVs in the primer sequence. In
the other samples, between 60 and 80% of the mapped reads had a mismatch at the
same primer SNVs (Table S2). Incongruencies in primer binding sites and metagenomic
reads were not observed for the sul1 primer set. This analysis demonstrates that the
tetM primers likely did not capture the diversity of this gene. As a result, the tetM qPCR
assay underestimated tetM concentrations, especially in the farm C digester sample. In
other words, the spike-in quantitative metagenomic method resulted in more reliable
absolute tetM abundances than qPCR because it did not rely on primer design and a
priori knowledge of sequence diversity.

To further assess the reproducibility of the spike-in quantitative metagenomic
method, we compared the estimated absolute concentrations to a hybrid, spike-inde-
pendent, 16S rRNA gene-based quantitative metagenomic approach (Fig. 1B). The
spike-independent approach has been used previously for absolute quantification of
ARGs in a river system (14) and markers of opportunistic pathogens in a drinking water
distribution system (15). Percent differences between the hybrid, rRNA gene-based
approach and the spike-dependent quantitative approach are a function of the two
normalization factors, since the number of reads mapping to each target is the same
for each approach. The limits of detection are the same for these approaches since
they are both determined by read counts. Differences ranged from 13% to 21%
between the spike-independent and spike-dependent approach, except for the farm A
compost sample, which had a 4% difference (Fig. 1B).

Cross-validating our approach to sequencing-independent qPCR assays and a
hybrid, spike-independent metagenomic approach for the five ARG targets validated
that our method generates values comparable to established gene quantification tools.
Although the spike-in metagenomic approach had higher detection limits than qPCR,
it overcomes biases caused by primer specificity.

Spike-in metagenomic approach facilitates quantitative screening of diverse
gene families. In six dairy farm manure samples, the spike-in metagenomic approach
enabled the quantification of all genes in CARD. This is not feasible using traditional
qPCR since each gene would require a validated set of primers and standard curves.
Out of the 2,617 genes in CARD, 411 genes were detected in the six dairy manure sam-
ples using GROOT. The total number of different ARGs detected in each sample ranged
from 62 to 361.

To illustrate the diversity of genes that can be detected and quantified with a single
approach, we leveraged the “confers_resistance_to_antibiotic” relation in the CARD
ontology to extract genes within the tetracycline drug class. We then assessed the di-
versity and absolute abundance of these tetracycline resistance genes across broad
gene families in each sample (Fig. 2). Of the 93 tetracycline resistance genes matching
the “confers_resistance_to_antibiotic” ontology, 37 were detected in our samples with
genes detected from four of the seven resistance gene families (Fig. 2). Genes were not
detected from the small multidrug resistance antibiotic efflux pump, ATP-binding cas-
sette ribosomal protection protein, and ATP-binding cassette efflux pump families in
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the manure samples. Interestingly, the sums of all the tetracycline resistance gene con-
centrations in each sample were all within 1 order of magnitude, ranging from
3.8� 104 to 3� 105 copies per mg sample (Table 1). However, different resistance gene
families dominated the tetracycline resistance gene concentrations within different
sample groups. Tetracycline resistance ribosomal protection proteins were the most
abundant gene family, comprising 82 to 97% of the total tetracycline resistance genes
in all samples except the compost sample from farm A. In this sample, tetracycline
inactivation enzymes dominated the resistance profile, comprising 85% of the total

TABLE 1 Total abundance of tetracycline resistance genes, organized by CARD gene family, in six different dairy farm samplesa

AMR gene family

Total abundance of tetracycline resistance genes (copies/mg sample)

Farm A,
untreated

Farm A,
compost

Farm B,
untreated

Farm B,
digester

Farm C,
untreated

Farm C,
digester

Major facilitator superfamily (MFS)
antibiotic efflux pump

7.3� 103 4.5� 103 7.3� 103 1.7� 103 6.8� 103 9.1� 102

Resistance-nodulation-cell division
(RND) antibiotic efflux pump

1.2� 102 4.4� 102

Tetracycline-resistant ribosomal
protection protein

2.7� 105 1.3� 105 1.4� 105 1.2� 105 5.6� 104 1.2� 105

Tetracycline inactivation enzyme 1.6� 104 3.2� 104 7.3� 103 1.5� 103 5.1� 103 3.2� 103

Total gene abundance 3.03 105 3.83 104 1.53 105 1.33 105 6.83 104 1.23 105

aThe total gene abundance is shown in boldface type.

FIG 2 Absolute concentrations of all genes that confer resistance to tetracycline in six different dairy
farm samples. -, not detected (no reads mapping to target).

Crossette et al. ®

January/February 2021 Volume 12 Issue 1 e03173-20 mbio.asm.org 6

https://mbio.asm.org


tetracycline resistance gene concentrations (Fig. 2; Table 1). These data demonstrate
that no single ARG could have been selected to represent the total tetracycline resist-
ance abundances. For example, targeting just one or two tetracycline resistance genes
with qPCR would have inadequately assessed the impact of residual concentrations of
tetracyclines or how effective a manure treatment strategy had been at reducing the
quantity of resistance genes within a drug class.

Changes in spike-in-based absolute abundances and relative abundances
through treatment. Our samples comprised untreated and treated manure samples
from three dairy farms; two treated samples were collected from anaerobic digesters,
and one treated sample consisted of compost. Thus, this study provided an opportu-
nity to evaluate the degree to which between-sample relationships in gene levels com-
pared between the relative and absolute quantities.

The number of metagenomic reads mapping to a target gene is used to determine
both relative and absolute abundances of that gene in the sample. However, the nor-
malization parameter is different between approaches. The simplest normalization pa-
rameter is the library size, or total number of reads generated in a sequencing run,
though the approach poorly resolves log fold changes between samples (19). Another
normalization parameter is the total number of reads mapping to 16S rRNA or single
copy genes (34). These relative abundance approaches approximate the abundance of
reads relative to bacterial and archaeal biomass. In contrast, the normalization factor in
the absolute abundance spike-in approach derives from the relationship between
gene concentration and read abundance established by a spike-in standard. The nor-
malization parameter is the product of all terms in equation 3, save the number of
reads mapping to the target. Between-sample comparisons in ARG abundances quanti-
fied by both relative and absolute normalization demonstrated that different
approaches can predict conflicting directionality of change for genes for which the
change in abundance is small (Fig. 3). In the sample pairs from farms A, B, and C, there
were 42, 71, and 49 total genes detected in both samples, respectively. Between the
untreated and treated sample pairs on farms A, B, and C, conflict in the direction of the
change in abundance was observed in 3, 17, and 7 of those ARGs; specifically,
decreases in absolute abundance were observed, whereas increases in 16S rRNA gene-
normalized relative abundances were observed. The 1:1 correlation between observed
changes in absolute abundance and relative abundance demonstrates that both

FIG 3 Comparing relative versus absolute abundances of resistance genes between treated and untreated manure samples
detected with GROOT. Each point represents the log2 fold change in abundance of a gene between untreated and treated
samples. Red squares compare fold changes determined by relative abundances normalized by 16S rRNA gene reads to our fold
changes in absolute abundance using the spike-in quantitative metagenomic approach. Blue triangles compare fold changes in
relative abundance normalized by library size to fold changes in absolute abundances. If a point falls in quadrant II (quadrants
labeled in farm A plot), a positive log2 fold change was observed with relative abundance and a negative log2 fold change was
observed with absolute abundance.
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approaches are functions of the reads recruited per target sequence. The intercept
depends on the normalization parameter values for each sample. Plotting log fold
changes in absolute gene abundances versus the library size-normalized relative abun-
dances (Fig. 3, blue triangles) resulted in a y intercept greater than that of the absolute
abundances versus the rRNA gene read normalized abundances (Fig. 3, red squares). A
greater intercept means more ARGs fell within the quadrant II for the library size nor-
malization approach; therefore, more ARGs were observed to increase in relative abun-
dances while decreasing in absolute abundance. For those examples where the direc-
tion of the log2 fold change disagreed between relative and absolute abundances
approaches, all changes were less than fourfold. When observed between-sample dif-
ferences in abundance are small (log2 fold change of ,2), distinguishing between
abundance increases and decreases becomes noisier and more challenging to resolve.

DISCUSSION

We demonstrated that assembly-independent, gene-targeted metagenome quanti-
fication with a genomic spike-in internal standard resulted in absolute gene quantities
for thousands of genes simultaneously and at levels comparable to those obtained
with qPCR and a spike-independent hybrid metagenomic approach. The spike-in
approach circumvents the low-throughput and primer design challenges of qPCR and
the bias-prone ancillary molecular methods required for hybrid approaches. Our
approach requires only a spike-in internal DNA standard and a relevant gene database,
such as CARD, CAZy, or a custom gene set of interest.

Previous quantitative sequencing studies have spiked DNA into samples prior to
extraction (18, 20), into samples after cell lysis (35), and into nucleic acid extracts (19).
Cellular internal standard spike-ins enable estimation of recovery from cell lysis to
sequencing. However, each organism has a unique cellular morphology and suscepti-
bility to lysis, so one or a handful of cellular spike-ins may not reflect extraction effi-
ciencies for the diverse organisms in a sample (36). We spiked in M. hydrocarbonoclasti-
cus genomic DNA into the DNA extracted from environmental samples prior to
sequencing to directly observe spike-in recovery in the absence of these complex
biases and compared extraction efficiently in separate experiments (see Text S1 in the
supplemental material). We note that the same nucleic acid extraction efficiency issues
are present with any gene quantification method.

The number of documented and catalogued genes will continue to grow as new
samples are sequenced, as isolation and culturing of environmental strains reveal more
diversity, and as organisms evolve. qPCR primers are designed for gene targets using
the gene sequences available in a database at a specific point in time. The primers are
often applied in future studies. Consequently, without constant primer redesign and
evaluation, qPCR quantification methods lag behind novel gene diversity discovery.
Spike-in metagenomic quantification, on the other hand, can provide absolute quanti-
fication comparable to qPCR while using the most up-to-date gene databases.
Furthermore, archived metagenomes can be reanalyzed to quantify newly discovered
genes as databases expand.

The number of genes that can be measured simultaneously in a sample using
spike-in metagenomic quantification is limited by database completeness. In our study,
we were able to simultaneously screen the 2,617 genes in CARD. qPCR assays, on the
other hand, are limited by the number of targets they can include. ARG studies that
employ qPCR, for example, commonly target between 5 and 20 genes per sample (26,
37–39). Although qPCR arrays have increased the throughput of qPCR and provided
valuable insights on ARG profiles (28, 40), qPCR arrays without standard curves do not
deliver absolute concentrations, are subject to the same primer specificity limitations
as traditional qPCR, and are similarly limited by available knowledge on ARGs at the
time of qPCR array design.

Determining detection limits and establishing detection ranges are critical for all
quantitative methods. Here, spiking at different internal standard concentrations
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revealed that the linear range of detection spanned at least 3 orders of magnitude
(Text S2). Spiking a standard corresponding to 0.1% of the total DNA in our sample
revealed that we were reaching limits of detection for several genes at the order of
104 gene copies/mg sample. The single genome spike-in used in this study meant
that nearly all internal standard genes were present at the same gene copy concen-
tration in a single sample. Staggered spike-in standards, which contain different
sequences over a range of concentrations within one spike-in, can better character-
ize the quantification range in individual samples (18, 19, 35). Limits of detection,
which are trumped by qPCR assays, are a primary limitation of this quantitative
approach.

Our spike-in genome presented nonspecific mapping in regions of the M. hydrocar-
bonoclasticus genome that were homologous to genes of interest in the sample. For
example, a gene in the M. hydrocarbonoclasticus genome shared 75% homology with
an efflux pump-encoding gene in CARD. Interestingly, M. hydrocarbonoclasticus also
shared .70% homology with three genes in the bovine genome. Synthetic DNA inter-
nal standards, as opposed to genomic standards, can eliminate nonspecific mapping
(19). Similarly, assigning metagenomic reads to target genes of interest within data-
bases can also result in false-positive and false-negative assignments. We emphasize
that our approach is intended for high-throughput screening and is not appropriate
for exploring and quantifying potential novel resistance genotypes that are not yet
represented in databases. Other tools that leverage machine learning and functional
metagenomics (41) or build models for specific genes (42) would be more appropriate
in these applications.

This assembly-independent, spike-in-facilitated gene quantification is a fast, effec-
tive, and nontargeted approach to quantify known genes from microbial communities.
This approach will be valuable when qPCR throughput and primer design limit the
conclusions that can be drawn and when quantifying genes at low abundances is
not required. The approach is especially useful in ARG research, where absolute
quantification of diverse genes is imperative for evaluating technologies to reduce
ARG abundances and informing models focused on antimicrobial resistance risk
assessment.

MATERIALS ANDMETHODS
Sample collection. One-hour composite samples were collected in June 2016 from dairy manure at

three farms in New York following a protocol described previously (28). Samples included an untreated
manure sample from blend pits at each farm and a posttreatment sample, either anaerobic digester
effluent or compost. Samples were aliquoted into 15-ml centrifuge tubes, frozen at 280°C, and shipped
overnight on dry ice to the University of Michigan.

DNA extraction, internal standard spike-in, and sequencing. DNA was extracted from approxi-
mately 250mg (wet weight) of each sample in duplicate reactions using the QiaAMP PowerFecal kit
(Qiagen, Germantown, MD). Extracted DNA was eluted in 100 ml of elution buffer following the kit’s pro-
tocol. Duplicate extractions were pooled. DNA concentrations were measured with a Qubit 2.0 fluorome-
ter. The pooled DNA extracts were spiked with genomic DNA from M. hydrocarbonoclasticus (ATCC strain
700491D5, GenBank accession no. CP000514), obtained from ATCC (Manassas, VA) at 1% total DNA by
mass. M. hydrocarbonoclasticus was resuspended following ATCC recommendations in molecular grade
water, and the concentration was confirmed using the Nanodrop1000 instrument. This marine bacte-
rium was selected due to its typical bacterial genome size (4,326,849 bp) and GC content (57%) and
because it was unlikely to be present in manure samples. All six pooled and spiked DNA samples
were sequenced with paired-end, Illumina (HiSeq4000) technology at the University of Michigan
DNA Sequencing Core using PCR-free library preparation with a read length of 250 bp and an insert
size of 450 bp. Total post-quality control (QC) reads per sample ranged from 5.1 � 108 to 6.3� 108.
To establish the linear quantification range of genes, replicates of one of the samples were spiked
with different ratios of internal standard DNA to total community DNA (0.1%, 1%, and 10%, by
mass).

Bioinformatic approaches. Reads were trimmed and checked for quality with BBDuk from the
BBTools Package (43). The Comprehensive Antibiotic Resistance Gene Database (CARD) (44), the M.
hydrocarbonoclasticus gene multifasta files from NCBI, 16S rRNA gene-specific small subunit (SSU) SILVA
database (45), and the bovine genome (46) were downloaded on 20 December 2019, 24 October 24
2018, 24 May 2019, and 2 November 2018, respectively. Read mapping approaches were first evaluated
by comparing observed to expected recoveries of M. hydrocarbonoclasticus genes. Specifically, Bowtie2
(32) (version 2.3.4.3) was run with default parameters, and kallisto (46) (version 0.46.0) was run with the
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“- -single overhang” setting which counts reads only partially mapping to the end of reads and the bias
correction setting “- -bias” that can reduce the bias from larger reference genes where the effects of
overhanging reads are less impactful. These tools were selected because they represent two common
algorithms for fast short-read mapping, pseudoalignment, and Borrows-Wheeler transform-based read
assignments. Read assignments were performed with both paired reads and unpaired reads. Average re-
covery across read lengths was assessed by clustering genes into 20 bins using quantile binning with
the Hmisc package in R. One-way analysis of variance (ANOVA) was performed in R to compare distribu-
tion of average spike-in gene recoveries. After validating read mapping performance with the M. hydro-
carbonoclasticus genes, kallisto in an unpaired mode with the “- -single overhang” and “- -bias” setting
was selected to map reads to CARD and 16S rRNA gene-specific small subunit (SSU) SILVA database.
Reads were mapped to the bovine genome with bbmap from the BBTools Package in the paired setting
to assess host contamination. IGV software (version 2.7.2) was used to visualize read pile-ups to assess
nucleotide variants at primer binding sites.

Two additional tools were used to assign reads to ARGs: (i) AMR gene-specific read assignment tools
for antimicrobial resistance genes, AMR11 (31) and GROOT (30). Both tools apply unique approaches to
reduce nonspecific mapping of reads to ARGs. GROOT was run with default parameters using CARD2020
as a reference except that the 50% reporting threshold was used. AMR11 (version 2.0.0) was performed
using the singularity container with the MEGARes database as a reference and default parameters
(- -threshold 80 - -min 1 - -max 100 - -samples 5 - -skip 5).

qPCR primer selection and design. ARG targets were chosen based on initial metagenomic results
to capture a range of ARG concentrations. The ARG primer sets were selected based on their use for
measuring ARGs in environmental samples (25, 47–49). The primer sets were verified for specificity using
NCBI Primer-BLAST and archaea, virus, viroid, and eukaryote databases. Details of the qPCR assays,
including primer sequences and annealing temperatures are provided in Table S1 in the supplemental
material. qPCRs were carried out on an Eppendorf MasterCyler ep realplex (2) using Fast EvaGreen fast
master mix (Biotium, Fremont, CA). The 20-ml reactions were performed following the manufacturer's
recommendations, with 0.4 mM forward and reverse primers, 0.625mg/ml of Ultrapure bovine serum al-
bumin (BSA) (Invitrogen), and 2 ml of diluted DNA extracts. Plates were centrifuged for 2 min at 500 rpm
at 4°C before thermocycling. Unpooled sample DNA extracts, with total DNA concentrations ranging
from 20 to 50 ng/ml, were diluted 10-fold and 100-fold to detect inhibition from the sample matrix.
Inhibition was not observed, and the gene concentrations from both dilutions were averaged. Two
technical replicates were performed per diluted sample, and two no-template controls were
included on each plate. No template controls were always negative. After amplification, melt curves
were performed to confirm the specificity of the reactions. The template for the standard curve con-
sisted of Gblock Fragments (IDT, Skokie, Illinois) with the inserted target sequences taken from a
sequence from CARD or NCBI if the primers did not hit the CARD reference gene (Table S1). The
qPCR assay limit of detection and limit of quantification were evaluated for each of the ARGs
(Table S1) following the European Network of GMO Laboratory Guidelines (50).

Data availability. Raw sequence data were deposited to the NCBI BioProject database under
BioProject identifier (ID) PRJNA675135 (https://www.ncbi.nlm.nih.gov/bioproject/675135).
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