
Cognitive work analysis is useful to develop displays 
for complex situations, but it has not been well explored 
in providing support for human-automation coordination. 
To fill this gap, we propose a degree of automation (DOA) 
layering approach, demonstrated by modeling an auto-
mated financial trading domain, with a goal of supporting 
interface design in this domain. The abstraction hierarchy 
and the decision ladder each adopted an additional layer, 
mapping functions allocated to the trader and to the auto-
mation. In addition to the mapping, we marked the four 
stages of automation on the decision ladder to provide 
guidance on representing the function allocation at the 
task level. Next, we compared the DOA layering approach 
to how automation was represented in the cognitive work 
analysis literature. We found that a DOA-layered decision 
ladder, which included well-developed knowledge of the 
stages and levels of automation, can be suited to mod-
ern automated systems with different DOAs. This study 
suggests that the DOA layering approach has important 
implications for designing automation displays and decid-
ing stages and levels of automation and may be a useful 
approach for modeling adaptive automation.

Keywords: cognitive work analysis, human-automation 
interaction, degree of automation, stages and levels of 
automation, automated financial trading, abstraction 
hierarchy, decision ladder

Introduction
Automated systems are becoming more per-

vasive, and the degree of automation (DOA) 
that is possible has been increasing. Recently, 
there has been a growing interest in artificially 

intelligent automation (Sheridan, 2017). The 
IBM Watson computer that defeated a human 
chess champion and self-driving cars are two 
examples suggested by Sheridan (2017). These 
two examples are highly automated systems 
powered by sophisticated machine learning 
algorithms (Sheridan, 2017). At a high DOA 
(i.e., later stages and higher levels within stages; 
Wickens, Li, Santamaria, Sebok, & Sarter, 
2010), task dynamics are represented by auto-
mated features, but humans still take a super-
visory role by initiating parameter changes that 
drive the control of the system. For example, 
financial trading algorithm designers specify the 
goals, knowledge, and criteria to the develop-
ment process. After the automated systems are 
implemented, users must sometimes regain full 
control when unexpected automation failures 
or environmental disturbances occur (e.g., the 
driver must manually reduce speed when a 
self-driving car enters a road construction zone 
that is undocumented in the navigation sys-
tem). Therefore, for highly automated systems 
with all stages and levels of automation (Para-
suraman, Sheridan, & Wickens, 2000), there is 
clearly a need for occasional human interven-
tion (Sheridan, 2017). Understanding where 
and how humans will interact with automation 
remains a challenge.

Two approaches for keeping humans in the 
loop have been to manipulate the DOA to either 
avoid high DOA situations or provide adaptive 
automation when users are in varying DOA con-
texts. These approaches are derived from the auto-
mation trade-off (e.g., Bainbridge, 1983; Sarter & 
Woods, 1995). There might be a third approach. A 
recent meta-analysis suggested that effective, or 
“ecological,” displays may modify or even reverse 
the automation trade-off, which means that a 
higher DOA could improve routine and failure 
performances (Onnasch, Wickens, Li, & Manzey, 
2014). Though preliminary, this suggestion has 
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shown that designing better displays for auto-
mated systems can be a useful approach. We 
argue, though, that to design effective displays or 
to choose an appropriate DOA, one should first 
develop models of the cognitive work that the user 
will experience in different DOA contexts. These 
models can begin to show the functions that the 
user must take over in cases where the automation 
must be ended. Furthermore, these models could 
be used to help to derive the design requirements 
for displays that can help users work with higher 
levels of automation, without losing situation 
awareness.

Consistent with this idea, Kaber, Riley, Tan, 
and Endsley (2001) suggested that automated 
system displays must highlight the transition 
between system states and inform operators of 
the allocation of control responsibilities. This 
suggestion aligns with the goal of the ecological 
interface design approach, of making control 
opportunities visible to retain skill and aware-
ness (e.g., Borst, Flach, & Ellerbroek, 2015; 
Furukawa & Parasuraman, 2003; Kaber et al., 
2001). Borst et al. (2015) recently advanced the 
understanding of ecological interface design 
applied to automated systems, suggesting that 
ecological displays should coordinate with the 
increasing DOA by providing more information 
to support human-automation coordination. 
However, stronger approaches are needed to 
help determine what that information should be.

In this paper, we propose an approach to 
transform knowledge from the “stages and lev-
els of automation” model to design requirements 
that could promote human-automation coordina-
tion. By integrating the “stages and levels of auto-
mation” model into an analysis, we can discover 
important properties of human-automation inter-
action that could be represented in better designs. 
Since cognitive work analysis (CWA) has shown 
success in determining requirements for com-
plex systems, it makes sense to explore how 
CWA could be used more effectively to generate 
design requirements for automated systems. In 
this paper, we demonstrate our approach in an 
automated financial trading domain. Financial 
systems present a fertile domain to explore 
human decision making, with complex dynam-
ics and increasingly pervasive automation. 
There have been some but not many human  

factors studies on financial systems in general 
(e.g., behavior and performance modeling: 
Achonu & Jamieson, 2003; McAndrew & Gore, 
2013; systemic safety: Sundström & Hollnagel, 
2011; incident analysis: Leaver & Reader, 2016), 
but none specifically analyzed automated trad-
ing. Studying automated trading presents many 
potential research opportunities. First, applying 
CWA to automated trading expands the applica-
tion of CWA to a complex market-based domain 
that operates on different principles from physi-
cal systems (e.g., process control). Second, 
studying automated trading presents an opportu-
nity to address the automation trade-off in a 
financial domain. In financial markets, the 
majority number of transactions are now com-
pleted with automation technologies, mostly 
through sophisticated trading algorithms (Iati, 
2009). While trading algorithms improve the 
human ability to utilize small profitable oppor-
tunities (e.g., a small trading window may only 
last seconds or milliseconds), traders may 
encounter attentional failures while interacting 
with the trading algorithms or intentionally 
abuse them. An example of attentional failures 
in financial trading is a slip or lapse (e.g., Leaver 
& Reader, 2016), and an example of abuse of 
automation is “spoofing”—illegally profiting 
from market manipulation by generating fake 
supply or demand (e.g., N. D. Ill. v. Sarao, 2015). 
The last research opportunity lies in the great 
flexibility in developing trading algorithms. 
Traders may develop trading algorithms using 
all stages and levels of automation. Here we give 
two examples of trading algorithms with differ-
ent DOAs. The first example is high-frequency 
trading, with a rigid execution algorithm to trade 
in milliseconds. This algorithm typically has a 
high DOA that requires minimal human inter-
vention; therefore, it introduces a new risk of 
magnifying market value losses. For these rea-
sons, high-frequency trading systems have 
received increased regulatory pressure; for 
instance, traders who utilize high-frequency 
technologies are being closely monitored by the 
regulators (Fabozzi, Focardi, & Jonas, 2011). In 
certain cases, traders may be more inclined to 
move toward developing intermediate DOA 
algorithms or manual trading (Li, Burns, & Hu, 
2015). As another example, it has been reported 
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in the literature that traders using more advanced 
algorithms may completely outperform and profit 
from their competitors who are equipped with less 
advanced technologies. This is a phenomenon 
known as “quality arbitrage” (Davis, Kumiega, & 
Van Vliet, 2013). We summarize the research 
opportunities discussed so far: The complexities 
of automated financial trading suggest that human 
factors research in this area could contribute to 
new understandings of human decision making 
and improvements to financial trading software. 
An investigation on how traders interact with dif-
ferent DOA algorithms could improve the under-
standing of automated financial trading and auto-
mation in general.

The remaining part of this paper is organized 
as follows. We first introduce two automated 
financial trading scenarios: one for low DOA, 
the other for high DOA. After that, we propose a 
DOA layering approach, showing how CWA 
can be used to model these scenarios by extend-
ing the work domain analysis (WDA) and con-
trol task analysis (ConTA) to account for DOA. 
As part of this work, we discuss the difference in 
the proposed DOA layering approach and how 
automation was represented in the CWA litera-
ture. We then discuss the implications of using 
the DOA layering approach—implications for 
display design and implications for automation 
design. Finally, we discuss that a future applica-
tion for the DOA layering approach would be to 
represent function allocation that changes dur-
ing DOA shifts, for modeling adaptive automa-
tion.

Automated Financial  
Trading Scenarios

Two financial trading scenarios are used for 
this analysis—basket trading and trend follow-
ing trading. The two trading systems differ in 
their DOAs and were mainly inspired by the 
knowledge obtained from a literature review 
(e.g., Chan, 2009) and a discussion with subject-
domain experts.

Low DOA Scenario: Basket Trading
Basket trading systems are popular in the 

institutional trader community. To use a basket 
trading system, the trader first configures a 

“data analysis and order generation” algorithm 
to create a shortlist of financial products for 
trade. The trader then executes the algorithm to 
generate a basket of orders. On the completion 
of all orders in the basket, the trader may adjust 
his or her portfolio holdings without altering the 
portfolio allocation. As part of the purpose of 
basket trading, the basket of orders should be 
executed simultaneously, though price move-
ments of the financial products are quick. The 
basket of orders must go through a trading plat-
form to reach the market exchange. Either the 
trading platform is provided by the trader’s bro-
kerage firms (e.g., Interactive Brokers), or it is 
broker-neutral software (e.g., Bloomberg Termi-
nal). Chan (2009) described the basket trading 
system as typically running “only a few times a 
day in order to generate one or a few waves of 
orders.” This description showed that the basket 
trading system is a low DOA semiautomated 
system. The asynchronous nature of basket trad-
ing (e.g., collecting data and generating orders) 
is related to information analysis and decision 
making. In normal conditions, the order execu-
tion is synchronous with the financial market. 
In other cases, if it is not possible to execute all 
orders synchronously (e.g., in a volatile market), 
the basket trading system could fail. The trader 
may also make a wrong decision on the propor-
tions of the financial product in the basket.

High DOA Scenario: Trend  
Following Trading

Trend following trading systems are real-
time trading systems, typically based on a 
sophisticated technical analysis (e.g., mov-
ing average: Ellis & Parbery, 2005; Bollinger 
Bands: Bollinger, 2001). Our automated finan-
cial trading experts described a hypothetical 
trend-following system: A trading system uses 
a “scalping” algorithm based on a moving aver-
age technical analysis, seeking to make profit-
able trades based on arbitrage of small price 
gaps. The algorithm typically goes through a 
number of trade iterations. Once a trade itera-
tion is completed, another iteration will begin 
automatically, limited only by a total number of 
iterations defined by the trader. The algorithm 
has distinct buy-and-sell logic. For example, the 
algorithm would wait to confirm a buying signal 
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that the 50-day simple moving average (SMA) 
crosses above the 200-day SMA on the day 
candles and that the relative strength index in an 
oversold territory is <30. Once a buying signal 
is identified, the algorithm would place multiple 
buying orders in 10 iterations to the market, 
buying a random quantity between 400 and 
800 shares in each iteration. To use a scalping 
algorithm, the trading platform must perform 
real-time data collection, automatic decision 
making, and rapid order placing. The scalp-
ing algorithm is perfect for exploiting a small 
market opportunity repeatedly without manu-
ally relaunching the trading system. The trader 
typically evaluates the performance of the trend-
following system using a set of measures, such 
as Sharpe ratio, total profit or loss, and commis-
sions. The trader has authority over monitoring 
every trade made by the scalping algorithm, but 
the monitoring is not required. The trader would 
typically intervene when the trading system 
achieves expected revenue or when the scalp-
ing algorithm needs a performance upgrade. 
However, the trader may override the autono-
mous operation, if an algorithm bug or market 
disturbance occurs or by canceling or modifying 
an order, closing a position (e.g., selling off), or 
stopping the entire trading system. According to 
Chan’s (2009) description, the trend-following 
system has a high DOA.

Using the WDA to Model 
Automation

We model these two automated financial 
trading scenarios using WDA. We first build 
a base abstraction hierarchy (AH) from the 
domain and then propose a DOA layering 
approach for representing the DOA.

Base AH
We propose that a base AH be developed as 

is typically done in CWA. The base AH should 
include the usual five levels of abstraction, as in 
the original AH approach of Rasmussen (1986) 
and Vicente (1999). The scope of the base AH 
is limited to the system under control by the 
user or the automation and does not include the 
automation. Once developed, the base AH can 
serve as a template for mapping the influence of 
automation on the domain.

We developed a base AH to represent the 
financial trading domain, using the two auto-
mated financial trading scenarios. Since the 
descriptions of the scenarios are generally task 
specific, we reviewed the scenarios with our 
subject-domain experts and distilled the scenar-
ios into domain functions (e.g., the functions of 
buying and selling in both scenarios). Later, the 
domain functions were organized to fit the five 
levels of abstraction, excluding DOA-specific 
functions (e.g., the basket of orders in the low 
DOA scenario and the moving average technical 
analysis in the high DOA scenario).

As a result, the base AH shows that the flow 
of securities is largely about buying and selling 
and is governed by principles such as the law of 
supply and demand and the flow of capital. In 
the next paragraphs, the base AH is described in 
detail, with numbers corresponding to labels in 
Figure 1.

1. Functional purpose.  Functional purpose 
shows the purposes of trading. Financial activi-
ties have a commonly accepted goal, which is to 
make a profit. At the same time, financial activi-
ties receive regulatory constraints, such as mar-
ket principles and laws. The regulatory 
constraints shall ensure that traders and automa-
tion are seeking to profit in legal ways.

2. Abstract function.  Abstract function 
defines principles, priorities, and values to fol-
low in achieving the functional purpose. We 
identified two groups of abstract functions: 
financial decision-making principles and mar-
ket constraints. Financial decision-making prin-
ciples include the law of supply and demand, a 
law governing financial activities at the most 
fundamental level, as named in Adam Smith’s 
1776 book The Wealth of Nations. We identified 
a priority that, to balance gains and losses, 
acknowledging that the ideal balance point of 
gains and losses would interact with the profit 
goal as well as the acceptable risk level. For 
example, a trader may aim to maintain a diver-
sified portfolio to protect oneself against the 
risk of volatility, while other traders may seek 
higher profits at greater risk. Financial products 
must be traded ethically according to the values 
of the trading system. Otherwise, there could be 
ethical problems, such as the market crash 
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(Davis et al., 2013). In the second set of abstract 
functions, market constraints, we have repre-
sented the flow of capital, market information, 
and laws and regulation. The flow of capital 
influences trading in that no trader can trade 
beyond one’s authorized capital limit, and capi-
tal must flow among market participants to keep 
the market liquid. Market information must also 
flow to enable decisions, following a certain 
protocol. For example, introduced in 1992, the 
Financial Information eXchange protocol is the 
de facto electronic communication standard 
protocol. The Financial Information eXchange 
protocol regulates the information flow in a 
financial market, exchanging real-time trading 
data related to securities, orders, and trades 
between traders and brokers (Hu & Watt, 2014). 
Furthermore, the markets are subject to regula-
tions and policies that may influence individual 
trades, securities, and market behavior as a 
whole.

3. Generalized function.  At the generalized 
function level, we identified four main pro-
cesses: (1) to buy, resulting in position gains of 
a portfolio; (2) to sell, resulting in position 
losses of a portfolio; (3) to obtain market 

information such as quotes and order books; 
and (4) to develop successful trading 
strategies.

4. Physical function.  The physical function 
level shows physical components, including (1) 
exchange, a computerized auction market (e.g., 
New York Stock Exchange; traders and automa-
tion may have access to multiple exchanges, 
allowing them to execute arbitrage strategies 
across exchanges); (2) buyer and (3) seller (who 
can be traders or automation representing a 
trade client); (4) securities, identifying which 
financial products are being traded (multiasset 
trading platforms use multiple securities at the 
same time); (5) order, showing instructions of a 
trading action (a bid order represents increasing 
a position; an ask order decreases a position); 
(6) account and (7) position, showing a trader’s 
capacity in the form of cash and assets; and (8) 
intermediaries, which are normally brokers 
offering services to a number of trade clients 
and market exchanges.

5. Physical form.  The bottom level, physical 
form, shows the operational conditions, or attri-
butes. There are five categories: (1) cost, includ-
ing variable and fixed costs to trade; (2) time, 

Figure 1. Base abstraction hierarchy of financial trading.
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showing the life cycle of a trading strategy, 
market and order time, and latency; (3) state of 
the market and the position; (4) price, including 
market price, order price, and price of portfolio 
in a certain currency; and (5) volume, including 
market, order, and position volume in shares. 
Many of these attributes can be seen directly 
through the trading platform visualizations.

DOA Layering on the Base AH
We have modeled the financial trading 

domain as broad as possible, thereby represent-
ing both automated financial scenarios with 
the same base AH. A consistent base AH can 
be used as the common ground for portraying 
DOA-specific information that was excluded 
from the base AH.

Having completed this model, we propose the 
DOA layering approach, layering automation on 
the base AH. The key to this approach is to iden-
tify the responsibility of each function in the 
base AH. A function in the base AH can be rep-
resented as either a sole responsibility of a trader 
or automation or a shared responsibility. For 
simplicity, in the following examples of DOA 
layering, we represent functions that are solely 
allocated to the trader or the automation, exclud-
ing shared function allocations.

The function allocation was based on domain 
knowledge, with much of the knowledge coming 
from the literature review (e.g., Chan, 2009), eth-
nographic experience at a trading software com-
pany, and discussions with traders on staff at the 
company. The first author had been involved in 
an observational study at Quantica Trading Inc., 
an automated trading software company based in 
Kitchener, Canada. He was part of a multidisci-
plinary team, including staff traders, to redesign 
an automated trading platform. Details of this 
observational study were reported in a previous 
paper (Li et al., 2015). In certain cases, details 
that would be instrumental in determining the 
function allocation were not available in the lit-
erature. Particularly in this domain, details about 
a trading system are rarely publicized, as the 
finance industry is unique for its strict confiden-
tiality and protection of institutional clients. This 
unique characteristic of the finance industry also 
led to a significant limitation in being able to 
directly observe professional traders. To mitigate 

these concerns, we discussed with subject matter 
experts, staff traders, available at the company 
about function allocations that were missing in 
the two scenarios. For example, the high DOA 
scenario suggested that the functional purpose 
“to achieve a maximum rate of profitable reve-
nue” would be allocated to the automation. The 
functional purpose “to meet lawful and market 
constraints” was not described in the scenario lit-
erature, but discussions with the subject matter 
experts suggested that this function was best 
allocated to the trader.

As shown in Figures 2 and 3, functions of the 
base AH were assigned shades. Functions allo-
cated to the automation were shaded, and func-
tions allocated to the trader were not shaded.

Figure 2 shows the low DOA function alloca-
tion. We can see that the higher levels—namely, 
the functional purpose and the abstract func-
tion—are solely allocated to the trader. The 
trader is responsible for deciding the proportion 
of each financial product in the portfolio alloca-
tion. The lower levels—generalized function, 
physical function, and physical form—are allo-
cated to both the trader and the automation. The 
automation is not capable of controlling all 
aspects of trading, thereby requiring trader 
involvement.

In Figure 3, we present the high DOA func-
tion allocation. While the automation continues 
to share functions at the lower levels with the 
trader, it also plays a role in controlling func-
tions at the higher levels. For example, the scalp-
ing algorithm is responsible for ensuring the 
profitability of the trading system (functional 
purpose). The algorithm may realistically 
achieve this purpose by balancing gains and 
losses (abstract function), even as the trader 
exercises authority over other abstract functions 
(e.g., “ethics” and “laws, regulations, and poli-
cies”). To manage both generalized functions of 
buying and selling, the algorithm must accu-
rately choose entry and exit points into the mar-
ket. A broader base of information is being con-
sidered by the algorithm, such as the market 
price, the order price, and the latency of the 
order (physical functions and physical forms).

The DOA layer adds a new dimension to the 
base AH, showing how human and automation 
work collaboratively at a certain DOA. Functions 
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can be allocated to any actor of the work domain 
(human or automation). Shared allocations could 
also be included in the DOA layer, though the ana-

lyst may want to differentiate between shared allo-
cation approaches. The greater breadth of physical 
functions and associated attributes of the DOA 

Figure 2. Abstraction hierarchy of basket trading (low degree of automation).

Figure 3. Abstraction hierarchy of trend following trading (high degree of automation).
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layer can show where situation awareness losses 
might occur. Effective salient display of this infor-
mation and the operation of the functions being 
performed by the automation may inform more 
effective displays in this situation.

Using the CONTA to Model 
Automation

The WDA, as described in the previous sec-
tion, can map the function allocation of automa-
tion on domain structure, while the other phases 
of CWA can illustrate the behavior of the automa-
tion. In particular, the ConTA looks at how infor-
mation is processed, mapping those task stages on 
to the decision ladder (DL) and exploring various 
shortcuts that are possible in processing (McIlroy 
& Stanton, 2015; Vicente, 1999). In this sec-
tion, we propose utilizing the “stages and levels 
of automation” information while conducting a 
ConTA. We first discuss how to represent the four 
stages of automation on a base DL. This base DL 
is a template having the usual ladder structure and 
shortcuts as in an original DL. We then model 
four cases using a layering approach on the base 
DL. The four cases include two automated finan-
cial trading scenarios (the low DOA and high 
DOA), each in two situations (routine operations 
and unanticipated situations).

Representing Four Stages of 
Automation on the Base DL

We divided the DL into four regions and 
mapped the four stages of automation on to 
the ladder. Automation of four stages includes 
acquisition automation, analysis automation, 
decision automation, and action automation 
(Parasuraman et al., 2000).

We describe DL steps using Rasmussen’s ter-
minology (1974) and their affiliation with the 
four stages of automation, with list numbers cor-
responding to labels in Figure 4. The following 
points explain the justification for this mapping 
and connect DL and stages of automation con-
tents to financial trading examples. We correlate 
the DL steps to the five levels of abstraction of 
the base AH that we previously presented.

1. Activation.  The DL may start when trad-
ers are notified by environmental signals in the 
market (physical form: “market price”). If this 

DL step is automated, acquisition automation 
receives real-time quotes from the market 
(physical form: “market price”) when the mar-
ket is open and a reliable data connection is 
established.

2. Observe.  Traders observe alerts from the 
previous step (generalized function: “to plan trad-
ing strategies”) and reduce noise to form a set of 
observations (physical functions: “exchange,” 
“securities,” “account,” “position,” and “interme-
diary”), based on a subconscious mental model. If 
this step involves acquisition automation, it will 
become an automated data processing step based 
on a predefined rule. For example, an algorithm 
prioritizes stocks depending on their volatility 
(generalized function: “to plan trading strate-
gies”), then presents the priority list to the traders 
for further research.

3. Identify.  At this step, traders identify the 
underlying state of the trading system (abstract 
function: “flow model of capital”). For exam-
ple, traders may correlate the current state to a 
previously experienced state. In aviation and 
process control domains, trend displays are pro-
vided in analysis automation to help the opera-
tors make sense of the available information 
(Parasuraman et al., 2000). In financial trading, 
similar tools (e.g., trend line and moving aver-
age) are used to help traders identify market 
movements (abstract function: “flow model of 
market information”).

4. Interpret and evaluate.  Rasmussen (1974) 
pointed out that human decision making is a “very 
complex mental process that requires a high level 
of abstraction of the domain knowledge,” and 
expert operators may bypass this process if the 
system state is known. For example, a profes-
sional trader may find an association from the cur-
rent state to a certain chart pattern that leads to a 
trading opportunity (abstract function: “flow 
model of capital”). A novice or nontrader does not 
have an ability to bypass the interpretation and 
must actively look for possible options (two func-
tional purposes: “to achieve a maximum rate of 
profitable revenue” and “to meet lawful and mar-
ket constraints”). Similarly, decision automation is 
related to varying numbers of options to choose 
from, depending on the level of automation 
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(Parasuraman et al., 2000). For example, an ad hoc 
algorithm trades when a market indicator (e.g., 
price) meets certain criteria (functional purpose: 
“to achieve a maximum rate of profitable reve-
nue”). The algorithm uses “If x, then y, else z” con-
ditional logic; y and z are known states that can be 
mapped to decisions a and b separately. If the state 
is unknown (functional purpose: “to meet lawful 
and market constraints”), there will be no decision. 
In another example, a machine learning algorithm 
uses a higher level of decision automation and 
could be more artificially intelligent than the ad 
hoc algorithm. The machine learning algorithm 

can learn without being explicitly programmed 
with a conditional logic. It has more options to 
choose from than the ad hoc algorithm does (func-
tional purposes). This intelligent algorithm may 
even create new options by self-learning unidenti-
fied system states.

5. Define task, formulate procedures, and 
execute.  The right-hand side of the DL 
describes the execution process, and action 
automation describes the same. Manual trading 
and automated trading both require specific 
technological details of the trading system to 

Figure 4. Representing stages of automation on a decision ladder.
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complete the execution process. The process 
typically involves multiple steps—for example, 
to define the direction (generalized functions: 
“to buy,” “to sell”), to formulate the parameters 
(physical functions and physical forms), and to 
decide the destination (physical function: 
“exchange”).

Mapping the four stages of automation on a 
base DL provides guidance on representing the 
function allocation at the task level. “What is 
more automation” in each stage (Onnasch et al., 
2014) can now be represented by annotating the 
boxes (steps) in the corresponding DL region. 
Table 1 is a summary of function allocation as 
seen in the two automated financial trading sce-
narios that we have been considering. Functions 

in each stage are annotated with the names of 
DL steps.

DOA Layering on the Base DL
Similar to our way of representing DOA on 

the base AH, we used a DOA layering approach 
for the base DL. Likewise, functions allocated 
to the automation are shaded, and functions 
allocated to the user are not shaded. In Figure 
5 and 6, we use shaded boxes to represent 
information processes that are responsibilities 
of automation (e.g., trading algorithms). Boxes 
that are not shaded are human information- 
processing steps, assuming for simplicity that 
the operator is moving through all the steps of the 
DL. In this section, we present four cases—two 

Table 1: Function Allocation Mapped on the Four Stages of Automation

Scenario

Stage 1: Information 
acquisition

Stage 2: Information 
analysis

Stage 3: Decision  
selection Stage 4: Action

Basket trading (low DOA)
Partially automated. 

The trader manually 
downloads historical 
market data 
(activation). A MATLAB 
algorithm organized 
the data (observe).

Automated. The 
trading software 
retrieves fundamental 
information of the 
short-listed stocks 
(to buy or sell) from a 
database (identify).

Not automated. The 
trader decides all 
trades (interpret and 
evaluate).

Partially automated. The 
trader determines 
the parameters of 
the orders. Once 
submitted to the 
market exchange, the 
orders are proceeded 
automatically (define 
task, formulate 
procedures, and 
execute).

Trend following trading (high DOA)
Mostly automated. A 

real-time data feed 
streamlines data 
collection (activation). 
The trader typically 
monitors the market 
data but is not 
dependable in the 
data collection process 
(observe).

Automated. 
Sophisticated metrics 
are calculated in real 
time (identify).

Mostly automated. The 
trading algorithm 
interprets the situation 
by examine the metrics 
with a predetermined 
criterion. The trader 
may stop trading (e.g., 
“panic button”) but 
is unable to modify 
the criterion in real 
time (interpret and 
evaluate).

Automated. Orders 
are generated in 
milliseconds and 
executed by the 
market exchange 
(define task, formulate 
procedures, and 
execute).

Note. Decision ladder annotations are in bold. DOA = degree of automation.
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scenarios (low DOA and high DOA) and two 
situations (routine operation and unanticipated 
situation).

Low DOA scenario: The routine operation sit-
uation (Case 1).  We represent two cases of the 
low DOA scenario (basket trading): a routine 
operation DL in Figure 5 and a DL showing unan-
ticipated situations in Figure 6. We have looked at 
routine and unanticipated situations to show the 
challenges faced by the trader in intervening in the 
different automated financial trading scenarios. In 
each case, a “data analysis and order generation” 
algorithm is involved in the information acquisi-
tion and information analysis stages.

1.	 Goal state. The goal in basket trading is to hold 
many financial products in certain proportions. 
The basket of products must be bought or sold 
simultaneously so that price movements for each 
product do not alter the portfolio allocation. The 
basket of products can be stated as follows:

basket of products = ∑
i    
asset allocation

i
.

	 Since the proportion of each product is nor-
mally preset and required by the trader or the 
trading institution, the trader begins this rou-
tine operation DL with knowledge of a desired 
goal state.

Figure 5. Decision ladder of basket trading (low degree of automation, routine operation).
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2.	 Define task. Knowing the goal state, the trader 
then defines the task that needs to be accom-
plished in basket trading. For basket trading, this 
step involves the trader setting up the criteria 
for shortlisting products that will be traded and 
deciding what trading action will be conducted.

3.	 “Task to procedure” shortcut. An expert trader 
may take this shortcut step to transfer knowledge 
of the task to certain procedure activities, without 
considering all details of the basket purchase allo-
cation every time.

4.	 Formulate procedure. To generate a complete 
basket, the trader must consider position limit 
and other administrative or trading restrictions on 

each product of the basket. In the futures market, 
for example, position limit is the highest number 
of futures contracts that a trader may hold on the 
premise of deposit. In this case, the trader may 
fine-tune the basket purchase allocation that does 
not violate the regulations.

5.	 “Procedure to alert” shortcut. Instead of manu-
ally carrying out the task, the trader can take this 
shortcut step to transfer knowledge of the task to 
a certain data form that will be later used by the 
algorithm.

6.	 Activation. The trader must download and submit 
historical data from the market into the automa-
tion at the beginning of each trading day.

Figure 6. Decision ladder of basket trading (low degree of automation, unanticipated situation).
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  7.	 Alert. The resulting alert will indicate to the 
automation that data are ready for analysis. The 
data are combined with the desired proportion 
of each financial product and will be provided 
to the analyzing program.

  8.	 Observe. The algorithm contains a MATLAB 
script (Chan, 2009) to organize (e.g., sort, rank, 
index, and select) data according to predefined 
criteria into suitable formats. The resulting 
observations contain a shortlist of financial 
products. The resulting observations also 
involve orders that will indicate to the automa-
tion that data are ready for analysis.

  9.	 Identify. The algorithm generates a basket of 
orders that should lead toward a desired prod-
uct allocation portfolio.

10.	 Interpret. The basket of orders must be inter-
preted by the trader before being submitted to 
the market. In financial trading, many system 
states are unique and could change in a short 
period. At this step, the trader must undergo an 
interpretation of the consequences (Rasmussen, 
1974).

11.	 “Goal state to procedure” shortcut. The trader 
decides to submit all orders. The task and all the 
procedures have been determined by the trader 
and the algorithm.

12.	 Execute. The brokerage’s trading application 
(action implementation) submits the basket of 
orders to the market. The DL ends at this step.

Low DOA scenario: The unanticipated situa-
tion (Case 2).  The basket trading system can also 
be operated in an unanticipated mode if it is not 
possible to execute the basket trade on all prod-
ucts. As a consequence, it will be difficult to hold 
products in their correct proportions. Alterna-
tively, the trader could make a wrong choice on 
the financial products or their proportions in the 
basket. A violent price fluctuation of a single prod-
uct can nullify all the gains or expose the trader to 
losses. In this case, the basket trade cannot provide 
the trader protection against volatility. The unan-
ticipated mode is represented in Figure 6. At a low 
DOA, the algorithm does not contain a diagnosis 
feature; therefore, most of the decision making is 
completed by the trader.

1.	 Activation. The DL starts in automated information 
acquisition—that is, the brokerage trading software 

receives quotes from the market exchange via an 
electronic communication protocol (e.g., Financial 
Information eXchange). In an unanticipated situ-
ation, the resulting alerts contain quantitative data 
(e.g., unfilled order quantities) and the reason of 
order rejection (e.g., no financial product definition 
has been found for the purchase request).

2.	 Observe. The trader must observe the vari-
ables and compare them with their respective 
desired values to assess the fault. For example, 
the trader must try to probe the reason of order 
rejection.

3.	 Identify. The trader may identify the cause of the 
fault and whether the fault is fixable. For exam-
ple, if illiquidity is the principle problem and can-
not be mitigated in a short term, the trader may 
stop the attempt to rebalance the proportions of 
the products.

4.	 Interpret, evaluate, and reevaluate. The trader 
decides what action to take to manage the fault.

5.	 “System state to goal state” shortcut. A reoc-
curred situation provides knowledge that can 
accelerate the decision-making process.

6.	 Define task. The trader now defines the necessary 
task, depending on the type of the unanticipated 
situation, that can move the system to the correct 
state.

7.	 Formulate procedure. The trading platform takes 
over control from the trader. Procedures are for-
mulated according to the decision made by the 
trader. The trading platform may either continue 
to purchase financial products in the basket or 
hold on to the current portfolio.

8.	 Execute. The trading platform submits orders (e.g., 
buying orders or stop orders). The trader receives a 
confirmation message from the market exchange.

Essentially, in the unanticipated situa-
tion, with the low DOA, the trader must take 
over the observations and determination of 
system state, continuing to execute or not as 
required.

High DOA scenario: The routine operation 
situation (Case 3).  The high DOA scenario (trend 
following trading) is represented in Figure 7 (rou-
tine operation) and Figure 8 (unanticipated situa-
tion). In a routine operation mode, a scalping 
algorithm is first developed by an algorithm 
developer. At the beginning of each trading day, 
the trader first downloads data, strategizes with 



312	 December 2017 - Journal of Cognitive Engineering and Decision Making

other traders and clients, and then starts up various 
applications, including the scalping algorithm and 
the trading platform.

1.	 “Activation to set of observations” shortcut. 
A real-time data feed (information acquisition) 
receives quotes from the market.

2.	 Observe. Automation at this degree uses a prede-
termined trading shortlist; therefore, it does not 
filter the data. The trader may observe the real-
time data, but this step is optional, as it does not 
provide inputs for observations.

3.	 Identify. The quantitative trading algorithm 
(information analysis) calculates 50- and 
25-day SMA and the relative strength index for  

preselected stocks. Note that this is an automated 
process, as the variables being calculated, the cal-
culating methods, and the stocks were determined 
before this trading task started.

4.	 Interpret. For each listed stock, when the 50-day 
SMA crosses above the 200-day SMA and when 
the relative strength index in an oversold territory 
is <30, the quantitative trading algorithm (deci-
sion selection) interprets the situation as a buying 
signal. Automation at this DOA does not provide 
alternatives. It will not trade if there is no desig-
nated trading signal.

5.	 Define task. The scalping algorithm (action auto-
mation) determines a buying task when the buy-
ing signal occurs.

Figure 7. Decision ladder of trend following trading (high degree of automation, routine operation).
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6.	 Formulate procedure. The scalping algorithm 
(action automation) randomizes the size of each 
order (400 to 800 shares) and determines other 
order parameters.

7.	 Execute. The scalping algorithm (action automa-
tion) places 10 iterations of orders to market, then 
waits for a confirmation message from the market 
exchange.

High DOA scenario: The unanticipated situ-
ation (Case 4).  The “trend following trading” 
system may face a disturbance and be faced 

with an unanticipated situation. Possible distur-
bances are algorithm bugs (e.g., incorrect order 
quantity), event risk (e.g., political event), and 
illiquidity. Illiquidity happens during times of 
low volatility when market price swings in a 
small range. The lack of liquidity causes a slip-
page, a difference between “the intended price 
of a trade and the price at which the trade is 
really executed” (Investopedia, n.d.). A tremen-
dous loss of liquidity of many financial prod-
ucts, or systemic illiquidity, disturbs the entire 
market and fails most trading systems in it (e.g., 

Figure 8. Decision ladder of trend following trading (high degree of automation, unanticipated situation).
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the May 6, 2010, “Flash Crash,” Minotra & 
Burns, 2016; U.S. Commodity Futures Trading 
Commission & U.S. Securities & Exchange 
Commission, 2010). The scalping algorithm 
used in the “trend following trading” system 
being discussed requires a highly volatile mar-
ket to enter and exit a trade at will to get a good 
price for the order fill. During an unanticipated 
situation, the trader must intervene to take a 
diagnosis task to understand the situation and 
try to save the system from the disturbance. The 
diagnosis task is presented as follows.

1.	 Activation. Just as we discussed before for the 
case of basket trading in an unanticipated situa-
tion, the DL begins with receiving quotes from 
the market exchange. The brokerage trading soft-
ware summarizes market information that can 
contribute to the set of observations.

2.	 Observe. In an unanticipated situation, the trader 
must observe the collected data. The resulting 
observations indicate all evidence that a distur-
bance has happened. For example, to estimate 
the likelihood of a systemic liquidity risk, obser-
vations must be made on illiquidity in multiple 
stocks and market indexes.

3.	 Identify. The trader now identifies the current 
state of the trading system and confirms the type 
and magnitude of the disturbance. The resulting 
system state also involves knowledge of the con-
trol law of the trading strategies.

4.	 Interpret, evaluate, and reevaluate. To gener-
ate the knowledge of goal state, it is especially 
important to evaluate the current system state 
and justify the efficacy of goal state. This stage is 
extremely time-consuming and may include addi-
tional data-processing activities on top of the DL. 
For example, when a market crash is observed, 
traders must be very careful in setting up new 
trading strategies. The trader must decide whether 
an algorithm-placed order has been processed by 
the market exchange.

5.	 “System state to goal state” shortcut. Another 
constraint to generate a goal state is timing. With 
the same example of a market crash, sophisti-
cated trading strategies may provide robust mar-
ket disturbance tolerance (e.g., a certain market 
condition and trading status can trigger a precau-
tion trading execution), and some of the extreme 
market conditions can be considered in algorithm 

design. In this case, there is a state knowledge 
transfer from the current system state to the goal 
state. The transfer is illustrated as a leap from sys-
tem state to goal state.

6.	 Define task. Because the trading system has a 
high DOA, there are limited options to recover 
the system from hazardous conditions to compen-
sate for the disturbance. The trader may reconfig-
ure the current trading system to compensate for 
the disturbance (e.g., modifying an offset setting 
of the SMA crossover rule). In the case of an irre-
trievable disturbance, a stop-loss task is decided 
by the trader.

7.	 Formulate procedure. The scalping algorithm 
(action implementation automation) determines 
order parameters.

8.	 Execute. The brokerage trading software (action 
implementation automation) places new orders 
to the market and waits for a confirmation mes-
sage from the market exchange. For example, the 
scalping algorithm submits a stop order to the 
market exchange. A confirmation message is then 
received from the market exchange.

It becomes apparent that in the two high 
DOA cases—routine operation and unantici-
pated situation—the trader must interrupt the 
automation and assume a larger scope of con-
trol. Furthermore, because the automation is 
likely handling small fluctuations well, the 
problem at hand is likely more complex than 
usual—for example, a market liquidity change, 
as discussed. Compared with the low DOA 
cases, the opportunities to recover are more 
limited as more information-processing steps 
are allocated to the automation. The automation 
can result in rapid executions that can be chal-
lenging to interrupt.

Discussion
In this modeling exercise, we proposed a 

DOA layering approach for conducting two 
analyses—first the WDA and then the ConTA. 
For each analysis, we first built a base model 
(i.e., AH or DL), then mapped function alloca-
tion in an additional layer. The base model is 
similar in many respects to that of an original 
AH or DL consistent at any DOAs. Functions 
in the base model can be allocated to any actor 
(human or automation) and represented in the 
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DOA layer. Shared allocations could also be 
included in the DOA layer, though the analyst 
may want to differentiate between shared allo-
cation approaches. The DOA layer adds a new 
dimension to the base model, showing how 
human and automation work collaboratively at 
a certain DOA. The DOA layering approach can 
be used for representing function allocations at 
the domain level and the task level. First, the 
presented base AH example shows that the 
physical and functional structures are consistent 
in the basket trading system and the “trend fol-
lowing trading” system. The DOA layer sug-
gests that function allocations are different in 
the two trading systems, depending on the sys-
tem’s DOA. In the DL examples, we analyzed 
two tasks—routine operation and unanticipated 
situation—of the basket trading system and 
the “trend following trading” system. Second, 
the base DL as a template (Vicente, 1999) was 
augmented with four regions to show the four 
stages of automation. The DOA layer enriches 
the base DL with more features, such as auto-
mated information-processing steps, stages of 
knowledge, and shortcuts.

The following discussions focus on a com-
parison of the DOA layering approach and 
how automation was previously modeled with 
CWA, including what more design implica-
tions the DOA layering approach might have 
for designing support for automation than 
existing approaches. Last, we discuss implica-
tions of applying the DOA layering approach 
to adaptive automation.

Comparing the DOA Layering 
Approach With the Dual-Model 
Approach

In this section, we compare the DOA layer-
ing approach to how automation was repre-
sented in the CWA literature. In most cases, the 
CWA literature explicitly focusing on modeling 
automation has taken a dual-model approach, 
with one model showing nonautomated sys-
tems and a separate model showing automated 
components. We first introduce the dual-model 
approach and its origin, then conduct a compar-
ative analysis of the DOA layering approach and 
the dual-model approach. The objective of this 
analysis is not to draw a conclusion on which 
approach is superior to the other. Instead, we 

suggest that either approach has its own applica-
tion depending on the type of system and prob-
lem being modeled. The applicable occasions 
of the two approaches are discussed, suggesting 
when to develop the DOA layered model and 
when to develop the dual model.

Dual-model approach.  Typically, automa-
tion and function allocation requirements are 
explained in the social and organizational anal-
ysis of CWA, after the WDA and the ConTA are 
completed (Vicente, 1999). The dual model is a 
relatively new approach formally introduced by 
Mazaeva and Bisantz (2007), in a digital single-
lens reflex camera analysis study. Mazaeva and 
Bisantz suggested that automation should be 
explicitly modeled at the WDA and ConTA 
phases, through AH and DL tools. We found 
that the two aspects of the dual-model 
approach—the dual-model AH and the dual-
model DL—have somewhat different origins.

1.	 Dual-model AH. The original AH proposed by 
Rasmussen (1986) modeled automation as work 
domain components at the lower AH levels, 
which are physical function and physical form. It 
seems to be an appropriate modeling decision in 
the various examples of automated systems given 
by Rasmussen. These examples include a wash-
ing machine (pump and valve function, configu-
ration and weight, and size), manufacturing plant 
(physical functioning of equipment and machin-
ery), and computer system (electrical function 
of circuitry). Burns, Bisantz, and Roth (2004) 
suggested an extension to the original AH to rep-
resent automation with WDA. Burns et al. com-
paried decisions made on modeling naval sensor 
systems. They proposed that developing dual AH 
models, in which one AH represents the system 
being controlled and another AH represents the 
automation, may “help specify information needs 
for those responsible for automation monitoring 
and control.” Inspired by Burns and colleagues’ 
work, Mazaeva and Bisantz (2007) provided a 
detailed example of the dual-model AH, intro-
ducing a “camera AH” to show nonautomated 
camera components that are being controlled and 
a separate “automation AH” to show automated 
systems that allow for automated movement and 
exposure control of the camera’s components. 
Their dual models also represent interconnections 
between levels of the two AHs.
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2.	 Dual-model DL. To our knowledge, the first intro-
duction of the dual- or multiple-model approach 
is Rasmussen and Goodstein’s work (1987). It 
was pioneering work, using three DLs to repre-
sent cooperative decision making in a nuclear 
reactor control domain among different actors, 
including a human designer, an operator, and a 
computer. Each DL reveals a different subtask, 
and together they complete a control task (e.g., 
operator intervention during an accident). Simi-
larly, Mazaeva and Bisantz (2007) developed 
three DLs, representing interrelated control tasks 
distributed across the automation, the photogra-
pher, and the designer represented.

Occasions where the dual-model approach 
fits.  Table 2 briefly summarizes the differences 
between the dual-model approach and the DOA 
layering approach.

The dual-model approach is a successful first 
attempt to explicitly represent automation within 
a CWA model. To understand the applicability of 
the dual-model approach, note that Rasmussen 
and Goodstein’s approach (1987), the origin of 
the dual-model approach, was initially proposed 
for supporting supervisory control system 
design. Supervisory control is associated with an 
intermediate DOA (Sheridan & Verplank, 1978). 
The system boundary is clear for analyzing a 
supervisory control system, whereby the auto-
mation takes a task performer’s role in the closed 
inner loop, while the operator manipulates con-
trol parameters in an outer loop (Sheridan, 
2011). Similarly, Mazaeva and Bisantz’s (2007) 
AHs and DLs are exclusive representations of 
decision process allocation within the ongoing 
supervisory control. They looked at a digital 
single-lens reflex camera, a commercial product 
whose DOA has already been decided. In other 
words, the dual-model AHs and DLs are con-
strained by a certain DOA.

From Rasmussen’s (1986) example and 
Mazaeva and Bisantz’s (2007) example, we can 
see that the dual-model approach is an appropri-
ate approach to model with a fixed DOA and to 
analyze and understand existing automated sys-
tems. This finding echoes the work of Burns and 
colleagues (2004), who pointed out that the 
automation AH is “perhaps created later in the 

analysis, once the levels of automation have 
been specified.” In this case, guiding automation 
design is not the primary objectives of the analy-
sis. Instead, analysts may focus on addressing 
multiple control tasks and strategies to represent 
sophisticated interactions between human and 
automated behaviors, at a predetermined DOA. 
Since the dual-model approach develops a more 
explicit model of the workings of that automa-
tion, the dual-model approach is a good choice 
where operators must diagnose or fix the auto-
mation itself.

Occasions where the DOA layering approach 
fits.  There are certain occasions where the 
DOA layering approach fit better than the dual-
model approach.

1.	 Modeling systems with a variable DOA. Maza-
eva and Bisantz (2007) modeled a fixed DOA 
system; the dual models lack flexibility of ana-
lyzing domains of a variable DOA. Analysts 
using the dual-model approach may encounter a 
scalability issue while applying the dual-model 
approach to guide automation design in personal 
and property safety systems (e.g., aviation, pro-
cess control, finance) significantly more complex 
than a camera system. However, the automated 
financial trading system that we analyzed is an 
example of intelligent automated systems with a 
consistent physical structure and a variable DOA. 
The proposed DOA layering approach is a single-
model approach. In the presented AH examples, 
a consistent physical structure is shared between 
the human and the automation. Likewise, in the 
presented DL examples, the same control task is 
shared between the human and the automation. 
The DOA layered models have simplicity in how 
automation is modeled. Our approach may prove 
useful in representing more coordinated human-
automation interaction, by leaving more flex-
ibility in modeling multiple system modes (e.g., 
routine operation and unanticipated situations).

2.	 Incorporating “stages and levels of automation” 
model. CWA was built for understanding complex 
automated systems. Automated is an important 
aspect of sociotechnical systems (Vicente, 1999). 
A considerable interest has grown in the human 
factors community around the theme of how to 
model the DOA (e.g., Sheridan & Verplank, 1978; 
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Parasuraman et al., 2000). Among the previous 
examples discussing how to explicitly model 
automation in CWA, the “stages and levels of 
automation” model has not been well utilized in 
the CWA literature. The DOA layering approach 
takes the first step to fill this gap, by transforming 
DOA knowledge to CWA models. We found that 
ConTA could play an important role in describing 
how information-processing activities are allo-
cated to the user and the automation.

3.	 Supporting automation design. The DOA layer, 
layering on the base DL, is a supplement to the 
“stages and levels of automation” model. The DOA 
layering approach supplements the “broad-brush” 
description of levels of automation (Pritchett, Kim, 
& Feigh, 2014) by enabling two important features 
within DL, each demonstrating a shortcut between 
information-processing steps: (1) the leaps and 
shunts that an expert takes, in the case of human 
information processing; (2) the bypassing of a 
nonautomated step, in the case of automated infor-
mation processing. The former feature is inherent 
from the original DL and is still available to ana-
lysts using the DOA-layered approach. The latter 
feature describes alternative routes of informa-
tion processing, implying opportunities of human  
operators.

Implications for Design
The DOA layering approach makes unique 

contributions to automation design, not only 
designing automation displays but also deciding 
stages and levels of automation. We discussed two 
possible design implications: designing ecological 
automation displays with DOA and constraint-
based procedure supports and deciding stages and 

levels of automation. We used the presented AHs 
and DLs as examples.

Implication for display design: Designing 
ecological automation displays.  The ecological 
interface design approach requires user inter-
face designers to first conduct an information 
analysis to extract information from a com-
pleted AH (Burns & Hajdukiewicz, 2004). 
Next, this information should be organized as a 
list of variables for representational design, 
with constraints from the work domain.

The DOA layering approach allows user 
interface designers to capture variables from the 
base AH and constraints from the base AH and 
the DOA layer. For example, in the “trend fol-
lowing trading” AH, a functional purpose of the 
system is to achieve a maximum rate of revenue 
in trading. This function could be described by 
revenue run rate, a metric for predicting future 
financial performance based on the current 
financial information. The constraint of this 
metric is decided by the technical limitation of 
the trading system and can be found in the DOA 
layer. Allocating this functional purpose to auto-
mation means that the trading system is running 
in real-time in a day trading setting. Therefore, a 
short duration (milliseconds or seconds) of this 
metric must be calculated and monitored by the 
automation, as the trader is incapable of moni-
toring the rate of revenue in an extremely short 
duration. However, at the physical form level, 
variable and fixed cost functions are allocated to 
the trader. According to the base AH, the two 
types of costs are constrained by a certain cur-
rency type of the trading market. Other con-
straints are related to the trader only, not the 

Table 2: A Comparison of the Dual-Model Approach and the DOA Layering Approach

Dual-model approach DOA layering approach

Basic concepts Allocate user and automated system 
functions to separate AHs. Allocate 
user and automated procedures to 
separate DLs.

Allocate user and automated system 
functions to separate layers in the 
same AH. Allocate user and automated 
procedures to separate layers in the 
same DL.

Deliverables User model (AH and DL). Automation 
model (AH and DL).

Base model (AH and DL). User layer (AH 
and DL). Automation layer (AH and DL).

Note. DOA = degree of automation; AH = abstraction hierarchy; DL = decision ladder.
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automation. They are trader-specific informa-
tion, such as the trader’s personal financial sta-
tus, indicating that the trader is ultimately 
responsible for cost control in a “trend following 
trading” system.

More variables and constraints can be seen 
from the means-ends relationships on the base 
model, as well as the DOA layer overlaid. For 
example, “position” at the physical function 
level of the base AH connects to “market price,” 
“order price,” and “position price” at the physi-
cal form level, suggesting that market and port-
folio are two interrelated sides and an integrated 
market-portfolio display may support direct per-
ception of information from both sides. With a 
high DOA layer, such a relationship remains 
consistent, but “position” is allocated to the 
trader, and the price-related functions are allo-
cated to the automation. This allocation suggests 
that, in a trend-following system, although these 
price-related functions are represented on the 
display with appropriated constraints, the trader 
does not take control of these functions. There-
fore, additional visualizations may be provided 
to the trader to understand how automation pro-
cesses these functions.

Implication for automation design: Determin-
ing automation stages and levels.  Another impli-
cation of the DOA layering approach is that this 
approach could fit into the framework for automa-
tion design proposed by Parasuraman et al. (2000) 
to help determine automation stages and levels. 
The “stages of automation” model, an important 
“starting point for considering what types and lev-
els of automation should be implemented in a par-
ticular system,” provides “a simple guide for 
automation design.” The framework suggested 
that automation design should begin with identify-
ing what class of functions should be automated. 
The automation designers then apply evaluative 
criteria (e.g., automation reliability and situation 
awareness) and recommend “particular levels of 
automation for each of the four types of 
automation.”

We believe that fitting the DOA layering 
approach to an existing automation design frame-
work could supplement the “stages and levels of 
automation” model rather than replace it. We sug-
gest that automation designers may use the DOA 

layering approach at an early phase of automation 
design, before applying evaluative criteria, to help 
them determine what stages and levels of automa-
tion are appropriate for the system. The base DL 
represents the four functional domains on a DL, 
providing an easy start point for automation 
designers to develop a conceptual design estima-
tion. We hope trading algorithm developers may 
consult with the base DL in the future to decide 
which algorithm to use: an intelligent algorithm 
(i.e., decision automation) or an order-placing 
script (i.e., action automation). Automation 
designers must also justify the use of a certain 
stage of automation. At a subsequent stage of 
automation design, automation designers must 
decide what level of automation should be devel-
oped within each functional domain (Parasuraman 
et al., 2000). The DOA-layered DL provides richer 
information than the “stages and levels of automa-
tion” taxonomy. The DL shows not only what 
human or automation functions should be applied 
within each stage (shades) but also what aspects of 
human interactions with automated systems 
should be considered (shortcuts).

The DOA layering approach could help with 
understanding and design for modern, intelli-
gent automation. The DOA layering approach 
echoes a recent suggestion by Sheridan (2017), 
suggesting that modern automation is hierarchi-
cal in the same way as the human work compe-
tencies. If modern automation is hierarchical, 
then automation competencies can be modeled 
by the skill-rule-knowledge (SRK) taxonomy, 
the last phase of CWA, which has been used in 
the literature only to model human work compe-
tencies. Sheridan gave hints for identifying an 
SRK for automation: (1) skills of the automation 
are continuous actions triggered by the laws of 
physics (e.g., the spinning of steam turbine) but 
are conditioned through commands of an auto-
mated agent (e.g., a programmable logic con-
troller) or human agent (e.g., an operator); (2) 
supervisory control and artificial intelligence go 
beyond the traditional realm of classic feedback 
control and invoke the “rule” or “knowledge” 
level on the hierarchy of SRK. An “If x, then y, 
else z” logic forms a stored rule to invoke desig-
nated human activities (e.g., an action recom-
mendation system) or automation activities 
(e.g., action automation); (3) automation based 
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on the knowledge level is rare but becomes pos-
sible in machine learning–based systems, such 
as the IBM Watson computer.

The implication of the SRK for automation is 
that automation may use all stages and levels of 
information processing. By modeling the DOAs 
on the AH and DL, it can clearly be seen that in 
the higher DOA situation, functions at the higher 
AH levels (e.g., functional purpose and abstract 
function, in the high DOA AH) and information-
processing steps on top of the DL (e.g., interpret, 
in the high DOA, routine operation DL) are allo-
cated to the automation, which may present 
knowledge-based automation (cf., Rasmussen, 
1986). The interconnections of the presented AH 
and DL examples and SRK for automation sug-
gest a future extension of DOA layering, which 
layers function allocations in other phases of 
CWA to support automation design.

Implications for Modeling Adaptive 
Automation

The DOA layer on the DL may help the 
analyst model DOA shifts, shedding some light 
on how to model adaptive automation in the 
future. For example, Table 3 presents two cases 
of DOA shifts—a DOA increase case and a 
DOA decrease case—based on the high DOA 
scenario. The table shows that a DOA shift can 
occur at any DL step, as any DL step (box) 
can be shaded (i.e., functions reallocated to 
automation) or not shaded (i.e., functions real-
located to the human). However, DOA shifts 
can be frequent, as algorithm development is 
an extremely flexible process depending on 
traders’ expertise and preference. It is also an 
iterative process, with each iteration starts from 
developing, back testing, to live trading. At this 
stage, the DOA layering approach portrays the 
relationship between human and automation 
functions at a task level, and we hope that it 
grows into a potentially useful approach for 
modeling adaptive automation.

Conclusion
Information systems should support human-

automation coordination (e.g., either human or 
automation must seamlessly switch between 
responsibilities). CWA helps the development 

of “simple qualitative models” (Sheridan, 2017) 
that can be represented by graphical interfaces. 
An adoption of function allocation models, such 
as the “stages and levels of automation” model 
to CWA, could provide a new design opportu-
nity. Yet, this approach has been not well devel-
oped. We attempted to fill this gap by proposing 
a DOA layering approach, layering DOA on 
AH and DL to express domain- and task-level 
function allocations, respectively. This paper is 
an extension to two earlier versions in the Pro-
ceedings of the Human Factors and Ergonomics 
Society Annual Meeting (Li et al., 2015, 2016).

Automated financial trading, a domain rarely 
explored by the human factors community, 
served as an appropriate example in this model-
ing exercise. Automation in financial trading is 
versatile in terms of the various stages and levels 
of automation involved; the highly coupled rela-
tions among traders, infrastructure, and trading 
algorithms; and the unpredictable dynamics in 
the environment. Two scenarios of financial 
trading are provided in this paper, and each has a 
unique DOA. New models in the context of 
automated financial trading were developed 
with extended AHs and DLs with DOA layers. 
In each case, a base model was first created, fol-
lowed by mapping two scenarios (low DOA and 
high DOA) onto the base model. In particular, 
we correlated the “stages and levels of automa-
tion” model (Parasuraman et al., 2000) to the 
DL, whereby DL steps were organized into four 
stages. This paper is the first to propose a DOA 
layering approach and the first to comprehen-
sively use CWA and the “stages and levels of 
automation” model to model automated trading.

This paper provides useful insights to the 
debate of using a single- or dual-model approach 
to model automated systems. The DOA layering 
approach extended the flexibility of the single-
model approach by representing the DOA, and it 
echoes Sheridan’s (2017) recent homage to Ras-
mussen’s frameworks (e.g., AH) for their robust-
ness and applicability to behaviors of humans or 
highly intelligent automation. Future works 
include how to model adaptive automation with 
the template-layering approach. This paper also 
corroborates recent suggestions of Borst et al. 
(2015) on providing more automation status on 
ecological displays to support human-automation 
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Table 3: Example Reasons for DOA Shift per DL Step in Trend Following Trading

Reasons for DOA shift

DL processing steps (in financial 
trading terms) DOA increases DOA decreases

Activation by normality and 
abnormality in market or 
portfolio.

Automated signal detection is 
capable (e.g. timely tick data 
in shorter duration; Level II 
data); impulse control

Technology is unavailable due 
to high costs or lack of work 
competence, distrust in 
technology (e.g., concerns 
with latency of the data), and 
obsessive financial market 
monitoring.

Observe the dimensions of the 
issue.

High computing power is 
available for real-time pattern 
generation

Countervailing trading philosophy 
(e.g., fundamental analysis is 
favored over real-time technical 
analysis).

Identify the current state. High computing power is 
available for real-time pattern 
recognition; system state can 
be quantitatively modeled

Concerns with latency in pattern 
recognition (e.g., unavoidable 
delay in automated executing).

Interpret the ambiguity of 
historic and current states, 
as well as the consequences 
of future states; evaluate the 
current state with a goal from 
a higher level of abstraction.

Artificial intelligence advances; 
no or little ambiguity in the 
current status the current 
market condition is predicted; 
historic market data is 
accessible and understandable 
by the trading algorithm; 
prediction model is reliable

Automation is not capable 
to interpret or is believed 
misinterpreted the current 
status; market condition is 
abnormal; the current status 
is interpretable, but the 
consequences of future states 
are not acceptable (e.g., risk of 
spoofing, see N. D. Ill. v. Sarao, 
2015).

Define task in financial trading 
(e.g., buy or sell).

Indispensable in some high-
frequency trading systems 
(Chan, 2009); adequate 
knowledge of automated 
trading and high-performance 
programming.

Complexity and cost are not 
acceptable.

Formulate procedures; in 
another word, generate orders 
with appropriate arguments 
(e.g., order quantity, order 
price, and target financial 
product).

Indispensable in some high-
frequency trading systems.

 

Execute an order in the market. Indispensable in some high-
frequency trading systems.

Lack of knowledge in high-
performance programming but 
semiautomated alternative.

Note. DL annotations are in bold. DOA = degree of automation; DL = decision ladder.
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coordination. We will further examine the design 
implications in an experimental study.
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