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Abstract

Microarray comparative genomic hybridisation (aCGH) provides an estimate of the relative abundance of genomic DNA
(gDNA) taken from comparator and reference organisms by hybridisation to a microarray containing probes that represent
sequences from the reference organism. The experimental method is used in a number of biological applications, including
the detection of human chromosomal aberrations, and in comparative genomic analysis of bacterial strains, but
optimisation of the analysis is desirable in each problem domain. We present a method for analysis of bacterial aCGH data
that encodes spatial information from the reference genome in a hidden Markov model. This technique is the first such
method to be validated in comparisons of sequenced bacteria that diverge at the strain and at the genus level:
Pectobacterium atrosepticum SCRI1043 (Pba1043) and Dickeya dadantii 3937 (Dda3937); and Lactococcus lactis subsp. lactis
IL1403 and L. lactis subsp. cremoris MG1363. In all cases our method is found to outperform common and widely used aCGH
analysis methods that do not incorporate spatial information. This analysis is applied to comparisons between commercially
important plant pathogenic soft-rotting enterobacteria (SRE) Pba1043, P. atrosepticum SCRI1039, P. carotovorum 193, and
Dda3937. Our analysis indicates that it should not be assumed that hybridisation strength is a reliable proxy for sequence
identity in aCGH experiments, and robustly extends the applicability of aCGH to bacterial comparisons at the genus level.
Our results in the SRE further provide evidence for a dynamic, plastic ‘accessory’ genome, revealing major genomic islands
encoding gene products that provide insight into, and may play a direct role in determining, variation amongst the SRE in
terms of their environmental survival, host range and aetiology, such as phytotoxin synthesis, multidrug resistance, and
nitrogen fixation.
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Introduction

Microarray comparative genomic hybridisation (aCGH) provides

an estimate of the relative abundance of genomic DNA (gDNA)

taken from comparator and reference organisms by hybridisation to

a microarray containing probes that represent sequences from the

reference organism. This method has been used in a number of

biological applications, including the detection of human chromo-

somal aberrations [1,2]; comparisons of bacterial human pathogens

[3–10]; bacterial plant pathogens [11,12]; industrially-important

bacteria [13]; and comparative transcriptomics of Xenopus laevis [14].

Numerous algorithms and software packages have been applied

to the analysis of this aCGH data in prokaryotes. The majority of

these partition reference organism sequences into two mutually

exclusive classes: sequences that are ‘present’ and sequences that

are ‘absent or divergent’ in the comparator organism [e.g.

5,12,15,16]. Observed hybridisation data are, in each case,

assumed to be reliable proxies for these classes.

In this manuscript we describe and apply an improved method

for analysis of aCGH data from bacterial genome comparisons.

This method incorporates spatial information about CDS location

on the reference genome in a hidden Markov model (HMM). This

spatial information is expected to capture pertinent biological and

evolutionary information, such as operon structure, and regions of

lateral gene transfer. Our approach differs from previously

proposed, and widely-used, methods applied to bacterial aCGH,

such as GACK and MPP, that consider hybridisation intensities of

each reference probe as measurements that are independent of

their genomic location [15,16], and is thus more similar to

methods such as ArrayLeaRNA [17], which incorporates

predicted operon structure into interpretations of microarray

expression data, for a restricted set of organisms. We compare the

relative performance of our method to commonly used bacterial

aCGH analysis algorithms and software.

We demonstrate that several assumptions of common bacterial

aCGH analysis methods concerning the relationship between
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observed hybridisation scores and ratios and the presence or

absence of a reference CDS in the comparator organism do not

always hold strongly, and that this is particularly the case for more

distantly-related organisms. Our data in particular do not support

a distinction between ‘present’ and ‘absent or divergent’ classes of

sequence, but rather between those sequences in the reference

organism that do, and those that do not, have putative orthologues

in the comparator genome. We find that the HMM is a better

predictor of reference sequences that do not have a putative

orthologue in the comparator organism than the other methods

tested.

Spatial organisation of sequences on the reference genome has

previously been incorporated into methods applied to aCGH

analyses of copy number variation in human genomes. This has

been represented using HMM [18] and segmentation methods

[19]. Simple smoothing methods have also been used to identify

breakpoints in this data [20]. However, the problem domain of

human copy number aCGH (detecting copy number variation in a

known genome sequence) differs from the problem domain of

bacterial comparative genomic aCGH (identifying the presence or

absence of putative orthologues of known genes in a genome of

unknown sequence). To the best of our knowledge, this study

describes the first application of a method incorporating such

spatial information to aCGH for comparative genomics of

unsequenced bacteria, and the first demonstration of the

applicability of the technique as a whole across bacterial genera.

Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum (Pcc), and

Dickeya spp. are plant pathogenic soft-rotting enterobacteria (SRE)

that share a common ancestor. Despite their many similarities,

these commercially significant pathogens differ in their host range,

geographical distribution, aetiology and environmental persistence

[21]. The molecular origins of these differences are not well

understood, but this ecological flexibility is likely indicative of a

dynamic, plastic genome with ‘core’ and ‘accessory’ components.

There are currently two publicly available annotated genomes for

these organisms: Pba strain SCRI1043 (Pba1043) [22], and Dickeya

dadantii strain 3937 (Dda3937; https://asap.ahabs.wisc.edu/; v6b).

The availability of these sequences has rapidly advanced our

understanding of these organisms, but broader comparisons are

expected to deliver greater insight into the evolution and function

of the SRE.

The major common virulence factors of the SRE are plant cell

wall degrading enzymes (PCWDE) that degrade the plant cell wall

to release nutrients in a so-called ‘brute force’ attack [23–25]. Other

virulence factors include virulence-associated secretion systems,

siderophores, cell-surface polysaccharides and agglutinins [26,27].

By contrast, bacterial plant pathogens such as Pseudomonas spp.

are associated with a biotrophic ‘stealth’ interaction with the host.

These ‘stealth’ pathogens employ mechanisms such as the type III

secretion system (T3SS) to translocate effectors into host cells. The

effectors modulate the host plant’s biochemical responses,

implementing a wide array of strategies to circumvent host

immunity [28–31]. However, Pba1043, Dda3937, and other SREs

also encode a functioning T3SS and other gene products

associated with this ‘stealth’ interaction, indicating a more

complex relationship with their hosts than simple ‘brute-force’

necrotrophy [22,32–36]. Key factors with a confirmed role in

virulence include type IV and type VI secretion systems, and the

phytotoxin coronafacic acid (CFA), which is synthesised by the cfa

gene cluster [22,37]. Other factors associated with persistence in,

and adaptation to, the wider environment have been identified,

such as genes associated with opine uptake, biofilm formation,

antibiotic production, and nitrogen fixation [22].

In many bacteria, such genes associated with pathogenicity, and

other phenotypically-distinguishing characters, are frequently

associated with islands of horizontal gene transfer (HGT). This

gene complement is often variable between strains and species,

and is sometimes termed the ‘accessory genome’, in order to

distinguish it from the ‘core genome’ that provides functionality

presumed to be essential to all related organisms [5,9,22,38–40].

We expect that observed differences between the gene comple-

ments of SRE will reflect differences in their phenotypes, and

adaptations to their distinct environments, and that these

differences will be preferentially located in islands of genes in

their genomes. We use aCGH and apply our analysis method to

identify genomic islands in Pba1043 that do not have putative

orthologues in the unsequenced Pba strain SCRI1039 (Pba1039)

and Pcc strain SCRI193 (Pcc193), and in the sequenced Dda3937.

In this study, coding sequences (CDS) from Pba1043 that are

predicted by aCGH to be absent or divergent in Pba1039, Pcc193

or Dda3937 are of interest because they may potentially contribute

to Pba1043-specific phenotypes, including host interactions.

Pairwise comparisons between Pba1043 and these three organisms

span a range of evolutionary distances since their most recent

common ancestor with Pba1043, and represent variation at strain,

species and genus levels.

Our results for the SRE support a hypothesis that the genomes

of SRE continue to be modified by the acquisition of genomic

islands, and the model of an ‘accessory genome’ of niche-specific

functionality that is composed, at least in part, of horizontally-

acquired genomic islands. We identify major differences in the

CDS carried within the accessory genomes of SRE and, while

these recapitulate previous observations of major genomic islands

made using alternative approaches [22,38], we also find a number

of unexpected differences that provide insight into, and may play a

direct role in determining, variation amongst the SRE in terms of

their environmental survival, host range and aetiology.

Materials and Methods

Genome Sequences and Annotations
Annotated genome sequences were obtained from GenBank for

Pba1043 (accession: NC_004547), Lactococcus lactis subsp. lactis

Il1403 (accession: NC_002662), and L. lactis subsp. cremoris

MG1363 (accession: NC_009004). Equivalent data for Dda3937

was obtained from ASAP (https://asap.ahabs.wisc.edu/; v6b).

CDS annotations from these sources were not modified for this

study.

Author Summary

We describe the first use of a method for the analysis of
bacterial microarray comparative genomic hybridisation
(aCGH) that includes information about the spatial
organisation of genes in the reference bacterium. We
demonstrate that using this information improves predic-
tive performance over standard bacterial aCGH methods in
discriminating between genes from the reference organ-
ism that either do or do not have putative orthologues in
the comparator organism. Our approach produces good
results on more distantly related bacteria than can
successfully be analysed by the standard methods. We
apply our analysis to comparisons between four commer-
cially-significant plant pathogenic bacteria, and identify
several regions of the genome that are likely to contribute
to their ability to cause disease, and to proliferate in the
environment, generating hypotheses for future experi-
ments.

Microarray Comparative Genomic Hybridisation
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Identification of Putative Orthologues
Putative orthologues of bacterial CDS were identified using

reciprocal best hit (RBH) analyses. RBH were identified by using

each annotated CDS from the reference genome as the query in a

sequence search against the comparator genome, and vice versa. A

RBH was called when the best match to a query sequence had the

query sequence as its own best match in the reciprocal comparison

[see also 22,38]. For protein comparisons, FASTA 3.4t25 was

used, and BLASTN 2.2.11 was used for nucleotide comparisons.

Reciprocal best hits were interpreted as putative orthologues, and

converted to Boolean ‘present’ and ‘absent’ states for model

development and training. We would usually employ a threshold

for RBH of a minimum of 30% identity over a minimum of 80%

of the sequence length for protein comparisons. However, for this

analysis we relaxed both criteria completely, and considered the

best hit in each direction without such a filter. The division of

CDS into ‘present’/‘absent’ classes on the basis of RBH without

these thresholds corresponds to a strict classifier for allocating

CDS to the ‘absent’ class.

Under the usual circumstances in which we perform these

comparative analyses, we wish to exclude weak reciprocal matches

from the ‘present’ set in order to avoid inappropriate attribute

transfer or assignment. In those cases, we would implement this

filter to minimise misallocation of CDS to the ‘present/putative

orthologue’ class.

However, in the case of this aCGH analysis, as we note that

probes to reference organism sequences that have little or no

sequence identity to the comparator may still give very high

hybridisation strengths/ratios, we wish preferentially to avoid

misallocation of CDS to the ‘absent’ class. Therefore, we aim in

effect to give each reference sequence every possible opportunity

to be classified as ‘present’ as a putative orthologue in the

comparator on the basis of RBH. Any remaining reference CDS

that are classified as ‘absent’ - even though no restrictions are

made on the basis of sequence identity or match overlap – have no

reciprocal similarity by BLAST to any sequence in the

comparator.

Microarray Data: Acquisition
Genomic DNA was extracted from bacterial cell cultures

(,1010 cells) using the QIAGEN Genomic-tip 100/G (Qiagen)

as recommended and labelling was performed using modified

Bioprime DNA Labelling System (Invitrogen). Briefly, 2 mg gDNA

in 21 ml was added to 20 ml random primer reaction buffer mix

and denatured at boiling for 5 min prior to cooling on ice. To this,

5 ml modified 106 dNTP mix (1.2 mM each of dATP, dGTP,

dTTP; 0.6 mM dCTP; 10 mM Tris pH 8.0; 1 mM EDTA), 3 ml

of either Cy3 or Cy5 dCTP (1 mM) and 1 ml Klenow enzyme was

added and incubated for 16 h at 37uC. Labelled samples for each

array were combined (if applicable) and unincorporated dyes

removed using Qiaquick PCR Purification Kit (Qiagen) as

recommended, eluting twice with 1650 ml sterile water. Hybrid-

isations and washing were performed as recommended (Agilent

Protocol v5.5). Genomic DNA from Dda3937 was hybridised to a

Pba1043-specific microarray (ArrayExpress: E-TABM-600; man-

ufactured by Agilent, AMADID 012663) carrying 5219 unique

probes that represent 4450/4472 annotated CDS from the

Pba1043 genome [37,41]. Hybridisations were carried out in the

presence of Pba1043 reference gDNA, Pcc193 reference gDNA

and in the absence of a reference sample, and all hybridisations

were replicated three times. Scanning was performed with an

Agilent G2505B scanner using default settings and data extracted

using Agilent FE (AGFE) software v9.5.3.

Microarray Data: Processing
Raw hybridisation data was imported using MatLab (http://

www.mathworks.com) from AGFE format output (Pba1043 array),

and from GEO (Lactococcus comparison data, entries: GSM229601,

GSM229602, GSM229603, GSM229604) [13]. GEO entries

229602 and 229604 were found to have the labels for channel 1

and 2 inverted, and this was corrected in processing. Raw

hybridisation data was corrected for background signal, log-

transformed in base 2, then quantile-normalised. Median values

were calculated for replicate probes on each array, and then

between replicate arrays. Normalised hybridisation scores were

associated with a RBH result for each CDS.

Gaussian Mixture Models
Two-dimensional Gaussian mixture models were fitted in

MatLab to the paired hybridisation and RBH data using the

gmdistribution.fit function. The optimal number of fitted Gaus-

sians was estimated by the Bayesian Information Criterion (BIC),

considering a maximum of ten Gaussians.

Threshold Models
Threshold models were implemented such that each CDS with

a normalised array hybridisation score (or ratio) that fell below the

threshold was classified as ‘absent’; those with a normalised

hybridisation score above that value were classified as ‘present’.

These Boolean states were used for validation of threshold models,

and for training of HMMs. Threshold scores were taken at 100

evenly-spaced values between the lowest and highest observed

values of hybridisation score (or ratio) for data exploration, and at

all observed normalised threshold values (exhaustively to explore

all partitions of the data) for rigorous comparisons with alternative

models.

Hidden Markov Model (HMM) Construction
First-order hidden Markov models were trained using MatLab’s

hmmestimate function, given the Boolean ‘present’/‘absent’ states

derived from reciprocal best hit analysis ordered naturally along

the reference genome as a ground truth, and Boolean ‘present’/

‘absent’ states derived from the threshold models as observed

emission states. The derived models represent the presence or

absence of a putative orthologue in the comparator sequence as

hidden states, in conjunction with the observed hybridisation score

being above or below the corresponding normalised hybridisation

score threshold, as the emitted states. The resulting models were

used to obtain predicted hidden states from hybridisation data

using the Viterbi algorithm implemented in MatLab’s hmmviterbi

function, where input data were again ordered naturally according

to probe location on the reference genome.

HMMs used in this study were trained separately on the RBH

and hybridisation data for two comparisons: Pba1043 and

Dda3937; and Lactococcus lactis subspecies lactis IL1403 and cremoris

MG1363 [13].

GACK and MPP
The packages GACK and MPP were obtained from their home-

pages (http://falkow.stanford.edu/whatwedo/software/software.

html; http://cbr.jic.ac.uk/dicks/software/mpp/index.html), and

used as recommended in their documentation [15,16]. Array

hybridisation data was converted to the appropriate input format in

each case using Python scripts. GACK binary and trinary data used

in this study was obtained at %EPP cutoffs of 0%, 50%, and 100%,

with all other settings at default values. MPP data used in this study

was obtained with default settings.

Microarray Comparative Genomic Hybridisation
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Model Validation
All predictive models were validated against the ground truth of

reciprocal best hit results for Pba1043 vs Dda3937 or the two Lactococcus

strains, as appropriate. All model output was obtained as Boolean

‘present’/‘absent’ states, and validation statistics were obtained for

consistency tests using MatLab’s classperf function (http://www.

mathworks.com/access/helpdesk/help/toolbox/bioinfo/ref/classperf.

html). Predictions of the absence of a reference CDS in the comparator

organism were taken to be ‘positive’ for statistical classification

purposes. The optimal HMM and threshold models identified by the

validation process were used for subsequent predictions on Pba1039

and Pcc193 hybridisation data.

Identification of Regions of Divergent Genome
Composition

The software package alien_hunter was downloaded from

http://www.sanger.ac.uk/Software/analysis/alien_hunter/ and used

to identify regions of divergent genome composition, with recom-

mended settings. This application implements an interpolated variable

order motif method derived from the base composition of the

chromosome to detect regions of nucleotide bias, and a second-order

HMM for change-point detection [42].

Empirical Statistical Tests
Empirical statistical testing of the association of predicted

genomic islands with regions of divergent genome composition as

predicted by alien_hunter, and with regions of manually-

annotated HGT, was carried out using the following procedure,

implemented in a Python script.

The locations of genomic islands predicted by HMM, by

alien_hunter, and detailed in the NC_004547 annotation were

obtained. These were each considered to represent independent,

non-overlapping genomic regions. The location of each of the

alien_hunter and NC_004547 regions was shuffled one thousand

times, to produce two sets of non-overlapping arrangements of

each, representing a random distribution of the predicted islands.

A count of the number of HMM-predicted genomic islands that

overlapped with each of the shuffled sets was taken, as a measure

of the expected number of overlaps that would be obtained if the

islands were randomly placed on the genome. The observed count

overlap count of the HMM predictions with the alien_hunter and

annotated islands was tested for significance using a Z-statistic.

A similar procedure was followed for determining whether

individual genes were located preferentially within predicted

islands. In this case, the gene locations were taken as static, and

genomic island predictions shuffled as non-overlapping regions

1000 times. A Z-statistic was again used to calculate significance of

the count of genes observed to be coincident with predicted

genomic islands.

Results

Reciprocal Best Hit Analysis Indicates That Approximately
One Third of All Pba1043 CDS Are Absent in Dda3937

The genomes of Pba1043 and Dda3937 have been sequenced

and annotated [22] (https://asap.ahabs.wisc.edu/; v6b). CDS

were defined to be common to both bacteria if a putative

orthologue to a Pba1043 CDS could be found in the Dda3937

annotation. This was determined for each CDS at the amino acid

level by reciprocal best FASTA protein match, and at the

nucleotide level by reciprocal best BLASTN match [22]. Each

reciprocal best hit (RBH) result was considered to be a putative

orthologue (hereafter used interchangeably with ‘orthologue’) and,

as a direct and exhaustive sequence comparison, to be the best

estimate of the presence or absence of Pba1043 CDS in Dda3937

available for method validation. The results were used as both

reference and training data for aCGH analysis algorithms, in a

consistency test approach similar to that used in [4].

Of 4450 Pba1043 CDS represented by probes on the

microarray, 451 were found to have RBH to Dda3937 at both

nucleotide and amino acid sequence levels. In addition, 2369/

4450 Pba1043 CDS made RBH at the amino acid level only, and

7/4450 CDS only at the nucleotide level. For Pba1043 1623/4450

CDS therefore have no putative orthologue in Dda3937, and it

may be considered that approximately one third of the Pba1043

genome is not common with Dda3937 (Figure S1). Very few

Pba1043 CDS were found to be orthologous at the nucleotide, but

not the protein level (a pattern suggestive of positive selection);

however, many were orthologous at the protein, but not at the

nucleotide, level (suggestive of neutral drift). The ‘core’ of CDS

with both protein and nucleotide-level orthologues was found to

comprise only around 10% of the Pba1043 genome.

Array Hybridisation Intensities Have a Complex
Relationship with Sequence Identity for Pba1043 and
Dda3937 Orthologues

Genomic DNA from Dda3937 was hybridised to a Pba1043-

specific microarray in the presence, independently, of Pba1043

reference gDNA and Pcc193 reference gDNA, and also in the

absence of a reference sample. Three overlapping populations of

raw hybridisation strengths were observed in each experiment

(Figure 1). This pattern was similar to that observed in similar

experiments [12], and comprised: a strongly-binding population of

Pba1043 probes that bind to Dda3937 gDNA with hybridisation

strength comparable to their binding to Pba1043 gDNA; a weakly-

binding population of probes with lower hybridisation strength to

Dda3937 than to Pba1043 gDNA; and a population with either no

Figure 1. Probability density function curves of log-trans-
formed raw probe hybridisation intensities for the hybridisa-
tion of Dda3937 gDNA to a Pba1043 microarray. Curves are
plotted for hybridisation of Dda3937 gDNA in the absence of reference
gDNA (red), and cohybridised with Pba1043 reference gDNA (green), or
cohybridised with Pcc193 comparator gDNA (blue). Three major
populations of probe intensities are seen: strong hybridisation (intensity
peak at approximately 14 log units), weak hybridisation (peaks at 8–10
log units), and very weak to no hybridisation (less than 25 log units).
Three replicates are indicated for each experiment.
doi:10.1371/journal.pcbi.1000473.g001

Microarray Comparative Genomic Hybridisation
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detectable, or very weak, hybridisation to Dda3937 gDNA

(Figure 1).

This observation does not support the assumption commonly

made in aCGH analysis methods that there are two populations of

probes in a typical experiment: ‘present’ and ‘absent or divergent’

[e.g. 3,8,11,15,16]. Notably, there is no a priori indication that any

of the three observed populations in Figure 1 comprise ‘present’,

‘absent’ or ‘divergent’ sequences.

A linear, or at least monotonic, relationship between the

observed hybridisation score and the sequence identity of CDS in

the reference and comparator organisms has previously been

proposed or observed for aCGH experiments [13,43,44]. We did

not observe such a relationship. Our data indicated a complex

relationship between sequence identity and probe hybridisation

affinity (or log ratio), from which three major populations of

probes could readily be distinguished (Figure 2). Those probes

representing Pba1043 sequences that made RBH with greater than

30% amino acid sequence identity in Dda3937 were considered

here to be putative orthologues and therefore may only be classed

as either ‘present’ or ‘divergent’, according to the scheme

commonly used in aCGH analyses [e.g. 5,12,15,16]. The ‘absent’

sequence set in that scheme corresponds to Pba1043 CDS with no

putative orthologue in the comparator organism.

In the Pba1043:Dda3937 comparison, probes matching ortho-

logous sequences could be resolved into two distinct populations

on the basis of hybridisation strength using Gaussian mixture

models, but not on the basis of their sequence identities (Figure 2A).

In particular, the distribution of putative orthologues was bimodal

with respect to hybridisation score or ratio, but was unimodal with

respect to sequence identity. Sequence divergence was measured

in terms of sequence identity, and it was not possible to distinguish

between ‘present’ and ‘divergent’ orthologues using hybridisation

data. The commonly-used ‘absent or divergent’ classification is the

union of the sets of ‘absent’ and ‘divergent’ sequences; our data

does not support this distinction between ‘present’ and ‘absent or

divergent’ probe sets.

Those probes corresponding to Pba1043 CDS that were not

found to have putative orthologues in Dda3937 (i.e. that are

‘absent’) were observed to have hybridisation ratios that ranged

from no measurable hybridisation to very strong hybridisation,

and to take values on the full range of hybridisation ratios spanned

by both ‘present’ and ‘divergent’ CDS. The distribution of

hybridisation ratios for probes representing putative orthologues

overlapped to a great extent that of probes corresponding to CDS

with no orthologue (Figure 2B).

Similar results were obtained for nucleotide sequence compar-

isons, and for raw hybridisation scores (Figure S2). As can be seen

from Figure S2, the observed relationship between sequence

identity and hybridisation affinity is qualitatively almost identical

whether obtained using hybridisation intensity (univariate) data, or

hybridisation ratio (bivariate) data. The complexity of this

relationship is therefore not due to the use of a log-ratio summary

of the hybridisation signal.

Taken together, these results indicated that a distinction might

reasonably be drawn between ‘putatively orthologous’ and

‘putatively non-orthologous’ CDS on the basis of aCGH, but

not between ‘present’ and ‘absent or divergent’ CDS.

An Optimal HMM-Based Predictive Model Predicts Which
Pba1043 CDS Have No Orthologue in Dda3937 Better
Than an Optimal Threshold Model

Analytical models for aCGH based on a single threshold that

partitions CDS into ‘present’ and ‘absent or divergent’ classes have

previously been shown to perform acceptably well under some

Figure 2. Scatterplot of RBH sequence identity and CDS count
against hybridisation ratio. A) Scatterplot of putative orthologue
(RBH) protein sequence identity against log-transformed probe
hybridisation ratio for Dda3937 gDNA cohybridised with Pba1043
reference gDNA, for all probes. Sequences with no orthologue are
allocated zero sequence identity. Probe population density contours
derived from Gaussian mixture modelling are superimposed, and the
corresponding Gaussian mixture components are distinguished by
coloured points. Three major populations of probes are seen: a strongly
hybridising population centred at hybridisation ratio 0 and %ID 0.87; a
weakly-hybridising population at hybridisation ratio 23 and %ID 0.82;
and Pba1043 sequences that have no putative orthologue (red points
along the x-axis). Strongly- and weakly-hybridising probe sets each
cover a range of sequence identities from 30% to 100%, and the probes
representing sequences with no orthologues cover a range of
hybridisation ratios from 27 to 3. B) Bar plot of the count of CDS by
hybridisation ratio, where CDS are divided into two classes: those with a
putative orthologue (blue), and those without a putative orthologue
(red), as found by RBH analysis. Both classes of CDS span a similar range
of observed hybridisation ratios and overlap significantly. The set of
CDS with no putative orthologue includes the majority of CDS in the
lowest bin of hybridisation ratio.
doi:10.1371/journal.pcbi.1000473.g002

Microarray Comparative Genomic Hybridisation
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circumstances [e.g. 5,44–46]. However, while the data obtained in

this study did not support that particular interpretation of the

partitioning of sequences, a threshold approach may still

distinguish successfully between reference CDS that do and do

not have a putative orthologue in the comparator organism.

The influence of horizontal gene transfer has been in many

cases to introduce islands of genes whose collective function

distinguishes the recipient organism from its close relatives, as part

of the ‘accessory’ genome [5,9,22,38,39,47]. One notable

influence of HGT on the reference genome is to confer collocation

of transferred genes in that genome; such transferred genes may

additionally be expected not to have an orthologue in a given

comparator genome. In particular, it would be expected that,

where a reference genome CDS has been acquired by HGT of a

genomic island, it and its neighbours are less likely to have an

orthologue in a comparator genome than another CDS randomly

selected from the reference genome. Similarly, prokaryotic genes

are frequently collected into operons, collocated groups of

sequences that often work towards a common function. Loss of

function may thus entail loss of a collocated set of genes. We

implemented a HMM that exploits this anticipated collocation of

sequences on the reference genome, particularly if they have no

orthologue in the comparator, in the expectation that taking into

account this spatial bias would improve predictive performance in

the presence of data noise, and in marginal cases that are difficult

to resolve with only a single threshold-based predictor. Such cases

might include genes with an unexpected level of redundancy in the

comparator organism, such as those with variable copy number

due to representation on plasmids [5].

Threshold and HMM models (as defined in Materials and

Methods) were constructed for all hybridisation scores and ratios

observed in each array experiment, exhaustively enumerating all

such models that could be constructed from the data. All possible

outcomes of each method were thus obtained, facilitating general

claims concerning their performance on this data. In each

experiment, a threshold model could be obtained that performed

acceptably well when distinguishing between Pba1043 CDS that

do and do not have putative orthologues in Dda3937. However,

the optimally performing HMM outperformed the optimally

performing threshold model on measures of correct prediction rate

and specificity, in consistency tests for all such experiments

(Table 1).

It was observed that HMMs and threshold models constructed

from experiments involving reference gDNA performed significant-

ly better than those constructed from experiments where no

reference gDNA was used. Also, models built using log hybridisation

ratios performed better than those derived from single-channel raw

hybridisation scores (Table 1). Using log-transformed ratio data, the

threshold and HMM predictors predicted that similar total numbers

of CDS from Pba1043 did not have a putative orthologue in

Dda3937 (HMM: 1179; threshold: 1191; in silico analysis: 1630) but

differed in their classification of 372 (approximately 30%) of these

CDS. The predictions made by the two approaches differ

qualitatively, rather than quantitatively (Figure 3). The HMM

predictions appear to form larger contiguous islands of CDS on the

genome, while the threshold method predicts a greater number of

‘orphan’ CDS with no orthologue whose immediate neighbours are

predicted to have orthologues, and splits several large islands

(confirmed as single islands by in silico sequence comparison) into

several smaller fragments.

Additionally, the behaviour of each model is seen to differ as the

hybridisation ratio threshold varies from the minimum to

maximum observed value. Both models predict a mixture of

CDS with and without orthologues in the comparator at low

hybridisation ratios, but at high ratios the threshold model predicts

that all Pba1043 CDS are without an orthologue in Dda3937. At

high hybridisation ratio thresholds, the HMM assigns the majority

state for the data to all CDS (Figure S3). Also, ‘blocks’ of

contiguous sequences with no orthologue in the comparator persist

to higher hybridisation ratios, using the HMM approach.

HMM-Based Predictors Validated on Pba1043:Dda3937
and Lactococcus lactis aCGH Data Perform Better Than
GACK or MPP

Two packages for analysis of bacterial aCGH data are GACK

(perhaps the most widely-used such application) and MPP,

amongst a wide range of proposed alternative aCGH analysis

algorithms [10,15,16,48–52]. Nearly all of these methods make the

assumption that array probes partition into ‘present’ and ‘absent

or divergent’ classes, and that these classes are unimodal. It was

seen that this assumption is not met in the Pba1043:Dda3937

comparison but, as for the threshold-based classification, it is likely

that these applications are able to segregate CDS from Pba1043

that do have orthologues in Dda3937 from those that do not.

We applied GACK and MPP to the same log hybridisation ratio

data for the Pba1043:Dda3937 comparison that was most

informative for both the HMM and threshold methods above.

In GACK it is possible to modify the required stringency of the

prediction by varying a parameter representing ‘‘estimated

probability of presence’’ (EPP). This may be set at values ranging

from 0% - indicating an expectation of statistical ‘certainty’ that

CDS predicted to have no orthologue in the comparator organism

truly have no such orthologue - to 100% - indicating an

expectation of statistical ‘certainty’ that CDS predicted to have

an orthologue in Dda3937 truly do have such an orthologue.

GACK was applied with EPP values of 0%, 50% and 100%, in

binary prediction mode. With these settings, GACK predicted that

84 (0% EPP), 344 (50% EPP) or 595 (100% EPP) CDS from

Pba1043 have no putative orthologue in Dda3937 (Figure S4).

Table 1. Consistency test validation statistics for Pba1043:Dda3937 aCGH comparisons.

Prediction method Data used Reference gDNA Correct Positive Rate Sensitivity Specificity

Threshold hybridisation intensity None 0.6672 0.9592 0.1620

Threshold hybridisation intensity Pba1043 0.7587 0.8943 0.5239

Threshold log hybridisation ratio Pba1043 0.7715 0.8975 0.5534

HMM hybridisation intensity None 0.6952 0.9585 0.2399

HMM hybridisation intensity Pba1043 0.7715 0.9078 0.5355

HMM log hybridisation ratio Pba1043 0.7796 0.9060 0.5607

doi:10.1371/journal.pcbi.1000473.t001
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Figure 3. Predictions of putative orthology for aCGH comparisons. Predictions of putative orthology for the Pba1043:Dda3937 aCGH
comparison using log-transformed hybridisation ratios, for both threshold (left) and HMM (right) methods, compared to the locations of known
orthologues obtained by in silico comparison (centre). CDS are in genomic order from top to bottom of the figure, and black bars indicate CDS from
Pba1043 with no orthologue in Dda3937. For the in silico comparison, a brighter copper tone indicates greater sequence identity for that orthologue.
The threshold and HMM results are similar, and broadly consistent with each other and the in silico analysis. The two prediction methods differ
qualitatively in that the HMM method tends to predict larger contiguous islands of CDS with no orthologue than the threshold method, which
predicts a greater number of CDS ‘orphans’, as illustrated by the inset that expands the region surrounding HAI2. This region contains the coronafacic
acid synthesis cfa gene cluster. The RBH comparisons for this island indicate two putative orthologues in Pba1043 and Dda3937, effectively breaking
the island into three smaller islands. The threshold method identifies five larger contiguous putative shared CDS, dividing the island into six smaller
regions. The HMM method identifies the island as a single large contiguous region, with no breaks.
doi:10.1371/journal.pcbi.1000473.g003
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MPP with default settings predicted that no Pba1043 CDS were

without a putative orthologue in Dda3937 – the majority state - and

thereby achieved a correct prediction rate of 0.65. Although GACK

obtained a correct prediction rate of 0.75 at 100% EPP, its sensitivity

was very low and, unlike the threshold and HMM methods, neither

GACK nor MPP identified a substantial proportion of the 1630

Pba1043 CDS that do not have an orthologue in Dda3937.

Validation statistics for these analyses are shown in Table 2, and

indicate that the HMM outperformed both GACK and MPP on the

Pba1043:Dda3937 comparison in terms of sensitivity and total

number of correct predictions, although GACK obtained better

positive predictive rates at the expense of much reduced sensitivity.

It is possible that the less impressive performance of GACK and

MPP observed for the Pba1043:Dda3937 comparison was due to

the relatively large evolutionary distance between these organisms,

or to the particular array configuration used in these experiments

(see Discussion). Most aCGH studies have hitherto focused on

variation at the subspecies level, and this is the domain on which

GACK and MPP have previously been and, it was assumed, were

intended to be, applied [5,9,13,15,16]. In order to compare the

performance of the HMM to GACK and MPP on a comparison of

sequenced bacteria with a more recent common ancestor, data for

aCGH between Lactococcus lactis subspecies lactis IL1403 and

cremoris MG1363 [13], employing an alternative array platform,

was obtained from the GEO public repository. The HMM

approach again outperformed both GACK and MPP in terms of

sensitivity, correct positive rate, and positive predictive rate on this

comparison data (Table 2). Although GACK more closely

approximated the number of non-orthologous sequences in its

predictions, its false positive rate was found to be rather high.

Comparison of HMM-Based, GACK and MPP Model
Performance on Pba1043:Pcc193 and Pba1043:Pba1039
Data

Pcc193 and Pba1039 gDNA was hybridised to the Pba1043-

specific microarray, in separate experiments, using Pba1043 gDNA

as the reference in each. The distribution of log hybridisation

ratios was found to be approximately unimodal in both cases,

reflecting the relatively close evolutionary relationship between

these organisms (data not shown).

MPP, with default settings, was unable to fit curves to the

hybridisation data from the Pba1043:Pcc193 experiment, and so its

performance was not further assessed. The HMM trained on

Pba1043:Dda3937 comparison data predicted that 440 Pba1043

CDS have no orthologue in Pcc193. GACK predicted that between

1187 (EPP: 0%) and 1846 (EPP: 100%) Pba1043 CDS have no

orthologue in Pcc193. As noted earlier, in silico sequence compar-

isons indicated that 1643 Pba1043 CDS have no orthologue in

Dda3937, whose most recent common ancestor with Pba1043 is

more ancient than that of Pba1043 and Pcc193. It would therefore

be expected that more Pba1043 CDS would have orthologues in

Pcc193, than in Dda3937. This implies that the GACK prediction

for the Pcc193 comparison at 100% EPP is an overprediction. There

was also a large discrepancy between the prediction count from

HMM and the most conservative GACK prediction at 0% EPP, in

that GACK predicted nearly three times as many CDS to be

without an orthologue in Pcc193 than did the HMM.

The Pba1043:Pba1039 comparison experiment was a comparison

between reference and comparator organisms at the strain level. The

HMM built from the Pba1043:Dda3937 comparison data may be

inappropriate for analysis of more closely-related organisms, and so the

second HMM, trained separately on the Lactococcus comparison data,

was also tested. MPP predicted that 299 Pba1043 CDS have no orth-

ologue in Pba1039, and GACK predicted between 335 (EPP: 0%) and

637 (EPP: 100%) such CDS. The HMM built on the more divergent

Pba1039:Dda3937 comparison predicted 198, and the HMM built on

the more recently-diverged Lactococcus comparison predicted 255 such

CDS. The variation in prediction totals between the HMMs built on

the two distinct comparisons is not as great as the variation between the

HMM predictions and those made by GACK and MPP, and the

predictions made by the HMMs are each in close agreement, implying

that the HMM approach is reasonably robust to training set variation,

independent of the organism on which it was trained (Figure S5).

While no genome sequences were publicly available at the time of

submission to validate these particular predictions, some trends may

be inferred from this data. GACK appeared to predict a greater

number of CDS to be absent than did the HMM. This behaviour,

which potentially results in an increase in sensitivity at the expense

of specificity, has previously been reported by other groups [e.g. 5].

Qualitatively, both GACK and MPP predicted a greater proportion

Table 2. Statistics for validation of aCGH analytical methods on Pba1043:Dda3937 and Lactococcus comparisons.

Analysis Method Correct Prediction Rate Positive Prediction Rate Sensitivity Count

Pba1043:Dda3937 1630

HMM (Pba1043:Dda3937) 0.7796 0.7752 0.5607 1179

GACK (0% EPP) 0.6512 0.9642 0.0497 84

GACK (50% EPP) 0.7011 0.9360 0.1975 344

GACK (100%EPP) 0.7355 0.8807 0.3214 595

MPP (BPP) 0.6337 0.0000 0.0000 0

MPP (EPP) 0.6337 0.0000 0.0000 0

Lactococcus lactis 379

HMM (Lactococcus) 0.8404 0.7253 0.1741 91

GACK (0% EPP) 0.8210 0.0000 0.0000 0

GACK (50% EPP) 0.7616 0.2418 0.1557 244

GACK (100%EPP) 0.7616 0.2418 0.1557 244

MPP (BPP) 0.8220 1.0000 0.0053 2

MPP (EPP) 0.8210 0.5000 0.0053 4

doi:10.1371/journal.pcbi.1000473.t002
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of ‘orphan’ CDS, while the HMM favoured prediction of islands of

CDS with no orthologue in the comparator (Figure S5). This may

be a more biologically appropriate prediction mode.

We observed apparent overprediction, combined with reduced

sensitivity and diminished correct positive prediction rates for the

GACK and MPP methods, in comparison to the HMM approach.

We also found that variation in results between HMMs built on

alternative training sets is minor. Thus we proceeded to consider the

biological implications of aCGH results obtained for the Pectobacterium

and Dickeya species investigated, using only results obtained using the

HMM analysis model built from the Pba1043:Dda3937 comparison.

The HMM-Based Predictive Model Predicts Genomic
Islands in Pba1043 That Correspond to Putative
Pectobacterium atrosepticum-Specific and
Pectobacterium-Specific ‘Accessory’ Genomes

HMM analysis predicted 165 islands (1179 CDS) from Pba1043

to have no orthologues in Dda3937, 60 islands (440 CDS) to have

no orthologues in Pcc193, and 17 islands (198 CDS) to have no

orthologues in Pba1039. This method also identified 16 islands

(169 CDS) that were unique to Pba1043 only, and a further 40

islands (231 CDS) to be present only in Pba1043 and Pba1039. The

count of genomic islands and CDS with no orthologue in the

comparator diminished as the evolutionary distance from the last

common ancestor of Pba1043 to the comparator decreased. These

islands are illustrated in Figure 4 and Figure S6, and described in

detail in Tables S1, S2, S3, S4 and S5.

We considered those CDS that are present in Pba1043 but that

do not have orthologues in the most recently diverged organism in

this study: Pba1039, to reflect either recent acquisitions in Pba1043

or recent losses in Pba1039. These CDS are a putative Pba1043-

specific ‘accessory’ genome, and mostly comprise hypothetical

proteins and phage-related sequences, located in 17 islands on the

Pba1043 genome (Table S1; islands prefixed Pba1039I).

Fifty-six islands of Pba1043 CDS were predicted to be present

only in Pba1043, or to be common to both Pba strains, but not to

have orthologues in either Dda3937 or Pcc193. These are likely to

represent genes encoding functions that biochemically distinguish

Pba from its near evolutionary relatives. Such sequences included

CDS encoding coronafacic acid synthesis (cfa), phenazine antibiotic

synthesis (ehp), and various multidrug resistance genes. Several of

these CDS, in particular those for the synthesis of coronafacic acids

(CFA) have also previously been shown experimentally to contribute

to virulence in Pba1043 [22]. These CDS were predicted to be

components of the putative Pba-specific ‘accessory’ genome, and

some examples are summarised in Table 3. A substantial minority of

these CDS were annotated only as hypothetical proteins in their

public sequence database submissions (Table S2).

One-hundred and sixty-eight islands of Pba1043 CDS were

predicted to have orthologues in both Pcc193 and Pba1039 but not

in Dda3937, and thus represent a putative Pectobacterium-specific

accessory genome. These islands are expected to include genes

encoding functions that distinguish pectobacteria from Dickeya

spp., and were found to contain CDS encoding PCWDE (pel and

peh), a syringomycin-like NRPS (syr), siderophore biosynthesis (pvc)

and octopine transport (occ).

Sixteen of Seventeen Previously Annotated, Horizontally
Acquired Islands from Pba1043 Are Coincident with
Islands of CDS with No Predicted Orthologue in Pcc193
and/or Dda3937

Seventeen putative horizontally acquired islands (HAI1-HAI17)

were identified in manual curation of the Pba1043 genome on the

basis of evidence such as divergent base composition and the

presence of flanking insertion sequences [22]. Of these, all but

HAI1 coincided with at least one island identified by aCGH, and

most include genes with putative or demonstrated roles in

pathogenesis and niche adaptation [38] (Table 4).

Two of these islands, HAI1 (capsular polysaccharide biosyn-

thesis) and HAI15 (type I secretion) were predicted to be entirely

or substantially conserved in all organisms examined in this study.

If the shared presence of each of these two islands is the result of

horizontal gene transfer, then the most parsimonious inference is

that acquisition occurred in a common ancestor of all three

species, rather than as independent transfer events in each

organism.

Two HAIs were predicted to have substantial orthologues only

within the pectobacteria: the portion of HAI2 that is homologous

with the SPI-7 pathogenicity island (PAI) flanking the coronafacic

acid synthesis genes (the cfa genes themselves have no orthologues in

Pcc193), and HAI6, which encodes a syringomycin-like NRPS. A

parsimonious explanation for this distribution might be that these

islands were acquired after the divergence of Dickeya and

Pectobacterium spp. but before the divergence of Pcc and Pba species;

alternatively, there may have been loss of these islands in the Dickeya

lineage. However, the PAI itself has been observed in several

unrelated bacterial genomes, and found to contain multiple

alternative functional ‘payloads’ in those cases [53,54]. As the PAI

genes, but not their cfa ‘cargo’ were predicted to be present in

Pcc193, it may be that there has been independent acquisition of this

sequence in Pba and Pcc, carrying alternative payloads in each case.

This may be determined by sequencing of that region in Pcc193.

Similarly, five HAIs (HAI3, HAI5, HAI10, HAI11 and HAI12)

were found only in the two Pba strains either substantially, or in

their entirety (Table 4; Table S2). These are expected to have been

acquired after the divergence of Pba from Pcc. Amongst the gene

functions carried by these HAIs are lipopolysaccharide biosynthe-

sis (rfb) and phenazine antibiotic synthesis (ehp).

A further five HAIs (HAI4, HAI7, HAI9, HAI13, and HAI17)

appeared to be substantially or entirely unique to Pba1043, but

these almost exclusively encode for phage-related sequences, and

hypothetical proteins. These were presumably recently acquired,

subsequent to the divergence of strain SCRI1043 from strain

SCRI1039.

HAI14, which putatively encodes nitrogen fixation function, is

anomalous in that it was predicted to have a substantial number of

orthologues in both Pba strains, and in Dda3937, but to have far

fewer orthologues in Pcc193. The most parsimonious explanation

for this distribution is that the common ancestor of Dickeya and

Pectobacterium possessed this capability for nitrogen fixation, and

that this has been progressively lost in the Pcc193 lineage.

Alternatively, nitrogen-fixing ability may have been acquired

independently in both Dickeya and Pba lineages.

Predicted Pba1043-Specific Genomic Islands Are
Associated with Regions of Divergent Genome
Composition

The software package alien_hunter [42] was used to identify

regions of putative HGT in the Pba1043 chromosome. An

empirical statistical method was used to determine whether there

was a significant association between Pba1043 CDS without

predicted orthologues in each comparator species and regions of

putative HGT as predicted by alien_hunter.

In total, alien_hunter identified regions of putative HGT

overlapping 731 CDS in Pba1043. These included 118/173

CDS that were predicted by aCGH to be specific to Pba1043 (Z-

score 5.54; P,0.0001); 254/400 CDS predicted to be specific to
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Pba strains (Z-score: 9.08, P,0.0001); 256/440 Pba1043 CDS

predicted to have no orthologue in Pcc193 (Z-score: 8.47,

P,0.0001); and 463/1179 CDS predicted to be have no

orthologue in Dda3937 (Z-score: 9.03, P,0.0001). This indicates

a significant tendency for Pba1043 CDS that are predicted to have

no orthologue in one or more comparator organisms to be located

within the regions of divergent base composition predicted by

alien_hunter. This is consistent with the hypothesis that the

composition of the ‘accessory’ genome of Pba1043 is greatly

influenced by horizontal gene transfer.

A similar statistically significant association of predicted islands

of CDS in Pba1043 predicted to have no orthologue in at least one

comparator organism was observed with predicted regions of

putative HGT identified by alien_hunter. In total, 11/16 (Z-score:

3.86, P,0.0001) Pba1043-specific islands; 32/56 (Z-score: 6.29,

P,0.0001) Pba-specific islands; 32/60 (Z-score: 5.72, P,0.0001)

islands predicted to have no orthologue in Pcc193; and 50/165 (Z-

score: 2.39, P,0.01) islands predicted to have no orthologue in

Dda3937 were found to overlap with the regions of putative HGT

identified by alien_hunter.

Figure 4. Circular diagram of Pba1043, indicating predicted genomic islands. Circular diagram indicating, on the chromosome of Pba1043,
the locations of annotated horizontally-acquired islands (HAI); aCGH predictions of Pba1043 genomic islands that do not have orthologues in
Pba1039 (Pba1039I), Pcc193 (PccI), or Dda3937 (DdaI), or that are present only in Pba strains (PbaI); and predictions of divergent base composition
made by alien_hunter (labelled as IVOM). Chromosome features are coloured by functional classification. Predicted HAIs coincide with many of the
aCGH-predicted islands that themselves coincide with the predictions of divergent base composition made by alien_hunter. The DdaI islands are
numerous and distributed in clusters around the chromosome. Most islands not predicted to be found in Pcc193 are also not predicted to be found in
Dda3937. The diagram was constructed using GenomeDiagram [71].
doi:10.1371/journal.pcbi.1000473.g004
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It is particularly notable that nearly three-quarters of all

Pba1043-specific islands also overlapped at least one region of

divergent base composition predicted by alien_hunter. This is

consistent with the proposal that these islands have been acquired

through lateral gene transfer subsequent to divergence of Pba1043

and Pba1039 from their most recent common ancestor, suggesting

a dynamic genome plasticity that persists and distinguishes

between Pba strains [22].

Table 3. Predicted genomic islands of potential functional importance.

Island Locus tags Genomic location Putative phenotype, and representative genes

PbaI5 ECA0487-ECA0491 563151-567396 phosphonate metabolism (fom1, fom2, phnG)

PbaI7 ECA0600-ECA0610 659712-682903 coronafacic acid synthesis (cfa1-8B, cfl)

PbaI13 ECA1420-ECA1441 1611940-1636204 polysaccharide and O-antigen synthesis (rfb, nah)

PbaI14 ECA1477-ECA1481 1673637-1678411 transcriptional regulators

PbaI22 ECA2068-ECA2073 2355814-2362568 permease and transporter

PbaI27 ECA2294-ECA2295 2599459-2602654 glycosyl transferase

PbaI33 ECA2693-ECA2705 3028797-3040751 polyketide synthase, phenazine synthesis (ehpA-G, ehpR)

PbaI39 ECA2933-ECA2936 3278434-3281122 nitrogen fixation (nifQ)

PbaI41 ECA2972-ECA2982 3322878-3332514 multidrug efflux (emrE)

PbaI44 ECA3446-ECA3450 3865038-3872587 multidrug efflux (oprJ, mexBC, nfxB)

PbaI55 ECA4452-ECA4455 4993334-5000237 hemin storage (hms)

PectoI7 ECA0149-ECA0163 169392-186544 lipopolysaccharide synthesis (waa)

PectoI25-27 ECA0516-ECA0615 590843-689677 mobile element (SPI7-like)

PectoI50 ECA1089-ECA1107 1217226-1255583 cell wall enzymes (pel3, pehA), Type I secretion

PectoI61 ECA1485-ECA1490 1680732-1681461 syringomycin-like non-ribosomal peptide synthase (syrE)

PectoI82 ECA2111-ECA2118 2398202-2426503 type III effectors (dspE, hrpW), agglutinins (hecAB)

PectoI96 ECA2430-ECA2438 2744003-2745227 virulence regultors (rdgAB)

PectoI122 ECA3116-ECA3122 3478243-3490068 type I restriction

PectoI129 ECA3370-ECA3387 3786824-3801913 pyoverdine biosynthesis (pvc)

PectoI151 ECA4078-ECA4084 4546706-4554057 octopine transport (occQMP)

PectoI153 ECA4109-ECA4119 4579773-4594107 siderophore synthesis / receptor

doi:10.1371/journal.pcbi.1000473.t003

Table 4. Horizontally acquired islands (HAI) previously identified in Pba1043.

HAI Locus tags Pba1039 Islands Pcc193 Islands Dda3937 Islands Putative Phenotypes

HAI1 ECA0499-ECA0510 - - - Capsular polysaccharide biosynthesis

HAI2 ECA0516-ECA0614 - PccI6-PccI7 DdaI24 Polyketide phytotoxin cfa, SPI7

HAI3 ECA0665-ECA0678 - PccI8 DdaI27 Phage genes

HAI4 ECA1054-ECA1067 Pba1039I2-Pba1039I3 PccI12 DdaI44 Phage genes/integrases

HAI5 ECA1417-ECA1443 - PccI14 DdaI55 Exopolysaccharide and O-antigen biosynthesis (rfb, nah)

HAI6 ECA1446-ECA1488 - PccI15 DdaI56-DdaI58 Syringomycin-like NRPS (syrE)

HAI7 ECA1598-ECA1679 Pba1039I4-Pba1039I6 PccI18 DdaI62 Integrases, type IV secretion, arsenate resistance (ars)

HAI8 ECA2045-ECA2182 - PccI24-PccI28 DdaI76-DdaI84 Type III secretion (hrp), agglutinins (hecAB)

HAI9 ECA2598-ECA2637 Pba1039I10-Pba1039I11 PccI34-PccI35 DdaI100-DdaI101 P2 family prophage

HAI10 ECA2694-ECA2705 - PccI36 DdaI103 Phenazine antibiotic biosynthesis (ehp)

HAI11 ECA2750-ECA2759 - PccI37 DdaI104 Phage genes

HAI12 ECA2850-ECA2879 Pba1039I12 PccI38-PccI40 DdaI107-DdaI108 Hypothetical, putative type VI substrate (vgrG)

HAI13 ECA2889-ECA2921 Pba1039I13 PccI41 DdaI109 Putative integrated plasmid

HAI14 ECA2922-ECA3000 Pba1039I14 PccI42-PccI44 DdaI109-DdaI113 Nitrogen fixation (nif)

HAI15 ECA3262-ECA3270 - - DdaI122 Agglutination/adhesion (aggA)

HAI16 ECA3378-ECA3460 - PccI45-PccI48 DdaI124-DdaI128 Multidrug resistance (mex-opr-nfxB)

HAI17 ECA3695-ECA3742 Pba1039I15 PccI49-PccI51 DdaI137-DdaI140 Prophage

doi:10.1371/journal.pcbi.1000473.t004
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Several Predicted Genomic Islands Are Enhanced for CDS
with Reciprocal Best Hits in Plant-Associated Bacteria, But
Not in Animal-Pathogenic Enterobacteria

Each CDS in the Pba1043 chromosome was classified according

to whether a putative protein orthologue was found in completely

sequenced plant-associated bacteria (PAB), or in completely

sequenced animal-pathogenic enterobacteria (APE) [38]. Those

CDS that have at least one such orthologue in PAB, but none in

APE were considered potentially to encode a biochemical function

that is useful to a plant-associated lifestyle, but likely not to an

animal-associated lifestyle. A similar inference may be drawn for

CDS for which the Pba1043 sequence shares significantly greater

identity with its most similar PAB orthologue than it does with the

APE orthologue. As Pba1043 shares a more recent common

ancestor with APE such as Yersinia spp. and E. coli strains, such a

distribution of orthologous sequences may also imply acquisition

by HGT.

An empirical statistical test was performed to determine whether

genomic islands in Pba1043 identified by aCGH were enhanced

for such CDS. A significant enhancement was seen for 6/56 Pba-

specific islands, 6/60 islands with no orthologue in Pcc193, and 9/

165 islands with no orthologue in Dda3937 (all tests Z-score.3.0;

P,0.001; Table S6). These islands may therefore represent

functions that are not only likely to have been acquired by lateral

gene transfer, but may also be specific to a plant-associated, and

not a generalist or animal-associated, lifestyle. Islands identified in

this way include PbaI7, which contains genes that encode for

coronafacic acid synthesis, and also a number of hypothetical

proteins (see Discussion).

This partitioning of sequences between ‘core’ and ‘accessory’

regions of the bacterial genome, such that variable regions are

enhanced for strain- or niche-specific functions has also been

observed for other pathogenic bacteria, including P. syringae [9,39],

and appears to be a common strategy for the evolution of these

organisms.

Discussion

Array CGH Does Not Necessarily Distinguish between
‘Present’ and ‘Absent or Divergent’ Sequences in a
Comparator Organism

Microarray comparative genomic hybridisation (aCGH) is a

valuable technique for rapidly, and relatively inexpensively,

obtaining comparative genomic data for bacterial strains in a

high-throughput manner. However, aCGH has inherent limitations

that restrict the applicability of the method, and the information

that can be obtained. Foremost is that an aCGH experiment is only

able to identify which reference probe sequences do or do not

hybridise well to gDNA from a comparator organism. In particular,

aCGH is unable positively to identify sequences that are present in

the comparator gDNA but that are absent from the reference or

otherwise unrepresented in the probe set. Thus aCGH is unable to

reflect sequences that are unique to the comparator organism. This

may be overcome to some degree by the use of arrays that contain

probes not only to the reference organism, but also to other related

organisms, as proposed in [5]. Here, the wider the scope of the

probes beyond the reference organism alone, the greater is the

theoretical coverage of sequences that may be present in the

comparator, but not in the reference organism. However, sequences

that are unique to the comparator still cannot be disclosed by this

approach unless they are present on the array.

It is commonly assumed that aCGH cannot distinguish between

sequences that are absent in the comparator gDNA, and those that

are merely sufficiently divergent that they cannot hybridise to the

array probe set [5,8, etc]. However, to some degree these

classifications are indistinguishable, as the statement that a

sequence is ‘absent’ in a comparator can be equivalent to the

statement that there no significant sequence similarity. The use of

‘divergent’ as a classifier is ambiguous and potentially misleading

in these circumstances. It is also commonly assumed that the

assessment of ‘absence or divergence’ reflects overall sequence

similarity, and that a relationship between hybridisation and

sequence similarity holds for intermediate levels of sequence

identity, such that intermediate hybridisation strengths reflect an

intermediate degree of sequence identity [13]. An important

observation made in [44] was that, even for closely-related

sequenced strains of Camplylobacter jejuni, the log ratio of each probe

was not sufficient to make a positive prediction of percentage

sequence identity. We confirm and extend this observation for

SRE with Agilent arrays.

It is often intuitively expected that microarray probes will

hybridise to comparator gDNA with a reduced signal, where the

comparator sequence is not identical with its homologue in the

reference. In all aCGH experiments hybridisation strength is a

measurement taken at the reference probe and not across the full

length of the sequence from either organism, unless the probe

covers the full length of the sequence. Where sequence identity is

not homogeneous across the full length of the sequence, or there is

similarity between the probe and a non-homologous sequence, this

expectation may break down. A comparable break down may

occur if there is the possibility of a confounding interaction

between hybridising reference and comparator gDNA to a probe.

Circumstances in which sequence divergence at the probe

hybridisation site is not representative of the overall divergence

across the sequence are highly likely to occur, and even under the

most favourable circumstances it is only possible to refer to the

apparent absence or divergence of sequences in the comparator

organism.

Most published approaches to interpretation of aCGH data

assume that probes which hybridise strongly to comparator gDNA

represent sequences that are present in the comparator organism,

while those probes that do not hybridise well represent sequences

that may be either absent or divergent in the comparator

[e.g.13,15,16]. By careful analysis of aCGH data for bacteria

with complete genome annotations, we have established that this

reasoning, while intuitively plausible, may lead to erroneous

conclusions. Our data support only a distinction between those

sequences that are, and those that are not, orthologous in the

comparator organism. In particular they do not support a

distinction between putatively orthologous sequences in terms of

their degree of sequence identity, using aCGH hybridisation data.

That is, the two sets of putatively orthologous sequences that

would be classified as ‘present’ or merely ‘divergent’ could not be

distinguished by us in terms of their hybridisation scores or ratios,

and therefore the two classes of ‘present’ and ‘divergent or absent’

sequences could also not be distinguished.

We recognise that the array platform itself may be a significant

factor in the interpretation of hybridisation data. Our microarray

spots were designed with probes of 60 nt in length, one for each

CDS, and the L. lactis array data we studied was derived from arrays

spotted with amplicons of variable length from 80–800 bp [13].

Previous aCGH studies have employed a number of alternative

array constructions, including gene-length cDNA probes, cDNA

probes of partial genes, but longer than 60 nt; Affymetrix arrays

with multiple short (25 nt) probes per spot; and Agilent arrays with

60 nt probes [10,12,14,55]. Our data demonstrate that conclusions

about the relationship between sequence identity and array
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hybridisation drawn using a particular array technology do not

necessarily hold for alternative technologies. Measurement and

validation of this relationship is essential for correct interpretation of

aCGH data, and should be performed for each array platform.

Hybridisation binding strength or ratio data may also be

interpreted in terms of a thermodynamic model of probe binding

to the comparator organism gDNA, as an alternative to our

interpretation in terms of percentage sequence identity. This is a

useful technique when applied to resequencing of strains that are

very closely related to the reference, as deviations in hybridisation

strength may be accommodated within the thermodynamic model,

and sequence differences inferred from observed binding affinities,

in terms of that model; it may thus be a better approximator to

hybridisation strength than is sequence identity. However we do not

use it here as our aim is to infer putative orthology, defined in terms

of sequence identity, from hybridisation data. The appropriate

measure of putative orthology in this case is sequence identity, and

not inferred sequence composition based on a model of the

thermodynamic properties of probe binding. An interpretation of

measured hybridisation in terms of sequence identity, validated on

known sequence data, is therefore the most direct and appropriate

approach for this study. Also, a typical bacterial aCGH experiment

may involve a comparator organism that displays considerably

greater divergence than that which would normally be considered

for resequencing or other circumstances in which a thermodynamic

model would usually be applied. For example, in our genus-level

method validation only 807/10280 (less than 10%) of Pba array

probes make a best match (with BLASTN) to the Dda genome that

covers the probe to within 5 bp of its length. This significant

divergence is likely to induce significant uncertainty, and therefore

additional error, in the relationship between base composition as

inferred from a thermodynamic model, and the subsequent

assignment of putative orthology.

The HMM Predictor Robustly Extends the Working Range
of aCGH Analysis to Comparison of Bacteria at the Genus
Level

Array CGH has previously been applied, in the main, to closely

related organisms; in bacteria, this has usually involved comparisons

at the intra- or inter-species level [e.g.5,6,7,9,13,45,46,48,56]. In

principle, as hybridisation affinity is expected to be influenced by

sequence identity, and not by schemes of systematic classification, it

should be possible to extend the technique with some success to

comparisons between organisms with a more ancient last common

ancestor. In particular, DNA-DNA hybridisation studies of

Pba1043, Pcc193 and Dda3937, 16S rRNA analysis and phyloge-

netic considerations (data not shown) indicate genome-wide

sequence similarity that justifies the use of aCGH to compare the

genome complements of these organisms. In this study, we

successfully applied our analysis method to comparison data for

Pba1043 and Dda3937: bacteria that differed at the genus level.

Normalisation Methods for aCGH
It has been noted by other groups that a high degree of

sequence divergence between prokaryotes may obstruct aCGH

approaches, on the grounds that no strong assumption may be

made concerning the distribution of hybridisation ratios for a

Lowess normalisation step. Extension of aCGH to more distant

comparisons has previously been attempted by modification of the

normalisation method used on the array data, such as supervised

Lowess (S-LOWESS) [5,13]. However, we note that Lowess and

many other array normalisation methods employ a null hypothesis

which assumes that, for a significant proportion of probes, the

hybridisation strengths of reference and comparator sequences are

random variables drawn from the same distribution. This is a

reasonable assumption when applied to isogenic data, such as

bacterial mutants, these normalisation operations preserve differ-

ences in transcriptional expression while reducing systematic error,

as the applied correction of normalisation is valid for the great

majority of probes. It is not such a reasonable assumption for

aCGH.

Normalisation methods such as Lowess may be useful for

aCGH, on the condition that the reference and comparator

diverged sufficiently recently, as the proportion of probes that do

not conform to the underlying assumptions is likely to be small.

This restricts the applicability of aCGH when using these

normalisation approaches. However, in cases where the reference

and comparator organisms do not share such a recent common

ancestor, as for the Pba1043:Dda3937 comparison in which a strict

majority of CDS do not have identifiable nucleotide RBH between

the organisms (Figure S1), the underlying assumptions of Lowess

normalisation fail for the majority of probes.

Subset modifications of Lowess have proven effective on within-

species strain comparisons, but require the prior identification of

conserved genes, and the assumption that the derived correction is

applicable even to the majority of divergent sequences [5,13].

Therefore in this study we used the nonparametric normalisation

method of quantile normalisation (QN) to correct for systematic

errors. QN requires no prior assumptions concerning the

relatedness of reference and comparator sequences, and specifi-

cally makes no assumptions relating to sequence conservation. QN

asserts only that the distribution of probe strengths is comparable

across replicate arrays, which was established for our data in

Figure 1.

The results of our consistency test validation indicate that

measures of prediction quality for the interspecies Pba1043:Dda3937

comparison, though lower than that for the interstrain Lactococcus

comparison, remain acceptable.

The HMM aCGH Analysis Method Performs Better than
GACK, MPP and Threshold Methods

Table 2 demonstrates that the HMM analysis method described

in this paper outperforms GACK, MPP and threshold methods in

identifying correctly those CDS in Pba1043 that do not have

orthologues in Dda3937, and also those CDS in L. lactis MG1363

that do not have orthologues in IL1403. The consistency test of

performance on the Pba1043:Dda3937 comparison suggests that

GACK has a tendency to overpredict the number of reference

sequences that have no orthologue in the comparator, which

supports previous observations made using this method [5].

The HMM approach applied herein makes one straightforward

improvement to the naı̈ve threshold cutoff classification in that it

incorporates information about the state of neighbouring CDS on

the genome. Spatial data has previously been incorporated into

methods applied to human copy number variation aCGH

[18,19,20], in which the reference and comparator sequences

may be assumed, accounting for noise, to be either so similar as to

be near-identical, variant in signal by whole-number ratios, or

absent altogether. Bacterial comparative genomic aCGH data also

represents sequences that may be nearly identical, occur as copy-

number variations, or absent altogether. However, the observed

degree of sequence variation in bacterial comparative genomics is

very high, and bacterial comparative data also has the potential to

include tens to thousands of sequences that may be orthologous or

paralogous, and to vary in terms of sequence identity at 50% of

their sequence or more. We have demonstrated that the

relationship between sequence identity and array hybridisation is
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complex in this system, and while it was expected that using

information about spatial organisation would improve predictive

performance, as it has done in the human copy number aCGH

problem domain, the magnitude of this improvement was not

readily predictable.

The HMM applied here is first-order, and so is the simplest

such adaptation that could be applied. Further refinements of the

methodology may deliver enhanced predictive performance.

Although the resulting improvement in performance over a naı̈ve

threshold metric is not as striking as the improvement in relation to

GACK and MPP results, it is a consistently better predictor and

demonstrates that the incorporation of spatial information about

hybridisation scores improves predictive performance. The

qualitatively different predictions of the threshold and HMM

methods suggest that these approaches identify intersecting subsets

of true positives, and that an ensemble approach may be a

worthwhile progression of the method.

It is possible that a HMM with bivariate outcomes, or training

data (representing cy3 and cy5 intensities) might improve

predictive ability of the model. Other methods of identifying an

optimal path through the HMM than the Viterbi algorithm are

also available. However, our results demonstrate that a HMM

with univariate outcome, and using the Viterbi algorithm,

performs better than accepted and widely-used approaches on

bivariate signal data, and is sufficient to demonstrate that the

incorporation of spatial genomic information improves aCGH

prediction on bacterial genome sequences.

It might also be interesting to predict membership of one of the

populations (high, medium or low hybridisation putative ortholo-

gues) observed in Figure 1 for each probe. However, our interest in

this study was potential improvements in the prediction of putative

orthologues in comparator sequences using spatial information in

a HMM, and not optimisation of the predictive HMM.

Array CGH Results Obtained for Pba1043 Comparisons
Support a Model of ‘Accessory’ Genome Acquisition by
Continuing, Dynamic Genomic Island Transfer

The improvement over threshold-based prediction seen with

the HMM suggests a detectable biological signal from the

collocation of sequences in the reference that do not have an

orthologue in the comparator, and supports the hypothesis that

the ‘accessory’ genome is acquired in large part through genomic

islands, rather than individual genes. Accordingly, the number of

islands of Pba1043 CDS with no orthologue in the comparator

organism was seen to increase with evolutionary distance to a

common ancestor. At all evolutionary distances, the predicted

islands showed a statistically significant association with regions

of putative horizontal gene transfer, whether identified by

manual annotation or by the alien_hunter software. Further

statistically significant results were observed for the association of

these islands with sequences that were putatively orthologous to

sequences in plant-associated bacteria, but not in animal-

pathogenic enterobacteria. Taken together, this evidence is

strongly suggestive of the acquisition of functions specific to the

niche of these plant-associated enterobacteria by horizontal

transfer.

The identification of islands in Pba1043 that do not have

orthologues in Pba1039 is evidence that this process of lateral gene

transfer continues in the SRE. Most of the CDS in these islands

appeared to be phage-related or to encode hypothetical proteins

(Table 4). These may not themselves be critical to the phenotypic

differences between strains, but nevertheless indicate a dynamic

genome with the potential for acquisition of novel function.

However, comparisons at the species and genus level reveal major

differences in gene content that may reflect differences in the

abilities of each organism to persist in the environment

(particularly on plants), and to cause disease on susceptible host

plants.

Regions Identified as ‘Accessory’ Genome Are Associated
with Virulence, Pathogenicity, and Persistence in Specific
Environmental Niches

Perhaps the most notable of the accessory islands is that which

includes the cfa genes encoding for coronafacic acid (CFA)

synthesis. The ability to synthesise this compound appears to be

limited to Pba, amongst the SRE. In the plant pathogen

Pseudomonas syringae, CFA is coupled to coronamic acid (CMA),

to produce the phytotoxin coronatine, which promotes disease

through manipulation of plant defences [57]. CFA has also been

demonstrated to be required for virulence in Pba1043, providing

the first evidence for the involvement of phytotoxins in soft rot

pathogenesis, although its precise role has yet to be determined

[22,36]. In Pba1043 the cfa gene cluster is carried on a

pathogenicity island highly similar to PAIs found in Pcc193 and

other bacterial pathogens. In other pathogens these lack the cfa

cluster, but in its place carry other genes with a range of functions,

some of which are known to contribute to disease development,

such as SPI-7 in Salmonella enterica serovar Typhi that carries the Vi

expolysaccharide cluster [53,54].

Other putative phytotoxic PKS and NRPS, such as the PKS

ECA2694 and a syringomycin synthesis-like NRPS are observed to

be components of the ‘accessory’ genomes of Pba and Pectobacter-

ium, respectively. Syringomycin is produced by strains of

Pseudomonas syringae, and is a virulence factor responsible for pore

formation and nutrient leakage through the host cell membrane

[57]. The structure of the compound produced by the putatively

Pectobacterium-specific NRPS, and any role it may play in virulence

are as yet unknown.

The type III secretion system (T3SS) and its translocated

effectors promote virulence by the manipulation of host plant

defence responses [29]. The T3SS structural apparatus encoded

by the hrp/hrc gene cluster appears to be conserved in all four

SRE tested. Our HMM predicts that a number of neighbouring

effector and helper proteins (e.g. dspEF and hrpW), and

agglutinins (hecAB) do not have orthologues in Dda3937 (island

DdaI80). However, sequence comparisons between the ge-

nomes of Pba1043 and Dda3937 indicate that this result is a false

positive, and the Pba1043 CDS do in fact have orthologues in

Dda3937. Such false positives may be caused or exacerbated by

a tendency to design microarray probes to divergent regions of

the reference gene. The distribution of these effectors may be

strain-dependent, as the EC16 strain of Dickeya appears not to

possess dspE or hrpW in the region flanking the hrp cluster

[58,59].

Some putatively Pectobacterium-specific islands carry genes

encoding PCWDE that are not present in Dda3937, such as

pectate lyase (pel3) and polygalacturonase (pehA). These differences

in PCWDE complement may reflect corresponding differences in

environmental niche and/or host range [25]. Other islands carry

siderophores similar to pyoverdine and aerobactin, which appear

to be restricted to Pectobacterium spp. amongst the SRE tested.

Neither of these siderophores yet have a demonstrated association

with virulence in pectobacteria, but the siderophores chrysobactin

and achromobactin, which are not produced by Pba1043, are

known to be involved with virulence in Dda3937 [60,61].

Several Pba-specific and Pectobacterium-specific islands contain

CDS encoding functions that are known or appear to be

associated with persistence in the environment, and particularly

Microarray Comparative Genomic Hybridisation

PLoS Computational Biology | www.ploscompbiol.org 14 August 2009 | Volume 5 | Issue 8 | e1000473



on plant roots. These functions include phenazine antibiotic

production (ehp), multidrug resistance (emr, opr, mex, nfx), and

octopine uptake (occ; see Table 3). Phenazine has been shown to

target other microorganisms in competition for limited nutrient

resources in the rhizosphere [62,63]. Phenazine does not appear

to be produced by Pcc193 or Dda3937, but other antibiotics, such

as carbapenem, which is produced by some Pcc strains, may

provide equivalent function [64]. The multidrug resistance

proteins unique to Pba may provide protection against these

compounds. Octopines are tumour-derived compounds produced

by the plant using genes transferred during infection by

Agrobacterium tumefaciens. The resulting opines, including octopine,

are used as a source of nutrition by the bacterium. The octopine

uptake CDS, which we find to be putatively Pectobacterium-specific,

may reflect an ability to piggyback on Agrobacterium infection and

tumour formation [65]. This is an intriguing possibility when

taken in context with the observation of genes associated with

nitrogen fixation in Pba.

The region encoding putative nitrogen fixation function in

Pba1043 is unusual in that orthologues to key genes in this island

are found in Dda3937, and predicted to be present in Pba1039, but

not in Pcc193. This would appear to imply either that Pcc193 has

lost the capacity to fix nitrogen, or that at least one independent

acquisition event has occurred to confer this ability. Nitrogen

fixation is critical to the nitrogen cycle, and to the soil and

rhizosphere environments, in converting atmospheric nitrogen

into ammonium compounds that can then be converted by other

microorganisms into compounds that may be used by plants. The

apparent absence of this capability in Pcc193 suggests that the

ability to fix nitrogen is not essential for successful pathogenesis.

However, the ability to fix nitrogen may promote establishment

and persistence in the environment.

High-Throughput Sequencing Studies Also Support the
Broad Conclusions of Our aCGH Analysis

Our aCGH study indicated that HAIs in Pba1043 that were

previously identified through manual curation [22] were found to

be variably present in the SRE strains investigated (Table 4). A

recent study that used 454 sequencing to compare the genome of

Pba1043 to the pectobacteria PccWPP14 and P. braziliensis 1692

(Pbr1692) also observed variation in the presence of these HAIs

amongst the pectobacteria [66]. HAI2, which in our analysis was

found to be present in Pba1043 and Pcc193, was found to be

entirely absent from PccWPP14 and Pbr1692, suggesting that its

occurrence is sporadic among the pectobacteria. Similarly

HAI17, which we predicted to be specific to Pba1043, was found

to be present in both PccWPP14 and Pbr1692. These observations

confirm the broad theme of our conclusions, that these

organisms, though related, have a dynamic, plastic genome

composition that results in large functional changes even at the

strain level.

What Are the Prospects for aCGH?
A recent study indicates that high-throughput sequencing (HTS;

serial analysis of gene expression: SAGE) provides advantages over

microarray technology for gene expression analysis, though the

false discovery rate appeared to be greater for SAGE [67]. There

are several additional disadvantages of aCGH that are overcome

by modern HTS methods such as 454 or Solexa/Illumina

sequencing. Aside from the question of whether probe hybridisa-

tion state is a reliable proxy of sequence identity, or even putative

orthology - questions that can be answered directly by sequencing

- unlike HTS, aCGH cannot disclose or describe novel sequences

in the comparator organism [68,69]. The cost of sequencing a

bacterial genome by these methods is falling rapidly at the time of

writing, and there may come a point where the cost of completely

sequencing a comparator genome is less than that of carrying out

the comparable aCGH experiment. Even before that point is

reached, the additional information that HTS provides may be

such that it justifies the additional cost of the technique. This area

is still moving rapidly, but it has been argued that, for some

approaches such as chromatin immunoprecipitation, microarray

and HTS experiments complement each other, and the same may

be true for aCGH [70].

Supporting Information

Table S1 17 Pba1043 genomic islands predicted to have no

orthologues in Pba1039.

Found at: doi:10.1371/journal.pcbi.1000473.s001 (0.06 MB PDF)

Table S2 56 genomic islands predicted to have orthologues in

Pba1043 and Pba1039, but no orthologues in either of Pcc193 or

Dda3937.

Found at: doi:10.1371/journal.pcbi.1000473.s002 (0.10 MB PDF)

Table S3 60 Pba1043 genomic islands predicted to have no

orthologues in Pcc193, prefixed PccI.

Found at: doi:10.1371/journal.pcbi.1000473.s003 (0.10 MB PDF)

Table S4 165 Pba1043 genomic islands predicted to have no

orthologues in Dda3937, prefixed DdaI.

Found at: doi:10.1371/journal.pcbi.1000473.s004 (0.23 MB PDF)

Table S5 168 Pba1043 genomic islands predicted to have no

orthologues in Dda3937, but to have orthologues in both Pcc193

and Pba1039, prefixed PectoI.

Found at: doi:10.1371/journal.pcbi.1000473.s005 (0.16 MB PDF)

Table S6 Islands of Pba1043 CDS predicted by aCGH to have

be Pba-specific (PbaI), or to have no orthologues in either Pcc193

(PccI).

Found at: doi:10.1371/journal.pcbi.1000473.s006 (0.05 MB PDF)

Figure S1 Scatter plot of percentage sequence identity for

coding sequences in Pba1043 to Dda3937 by reciprocal best

FASTA and BLASTN analyses.

Found at: doi:10.1371/journal.pcbi.1000473.s007 (0.31 MB PDF)

Figure S2 Scatterplots of putative orthologue (RBH) nucleotide

sequence identity.

Found at: doi:10.1371/journal.pcbi.1000473.s008 (1.54 MB PDF)

Figure S3 Plot of predictions of the theshold and HMM

methods as the threshold is varied in the aCGH experiment with

Dda3937 against Pba1043 taking log transformed hybridisation

ratios.

Found at: doi:10.1371/journal.pcbi.1000473.s009 (0.23 MB PDF)

Figure S4 Plots of CDS from the reference organisms predicted

to have or not to have a putative orthologue in the comparator

organisms.

Found at: doi:10.1371/journal.pcbi.1000473.s010 (0.10 MB PDF)

Figure S5 Plot of the Pba1043 CDS with and without a

predicted orthologue in Pba1039 and Pcc193.

Found at: doi:10.1371/journal.pcbi.1000473.s011 (0.09 MB PDF)

Figure S6 Linear diagram indicating, on the chromosome of

Pba1043, locations of horizontally acquired islands, aCGH

predictions of genomic islands and predicted divergent base

composition by alien-hunter.

Found at: doi:10.1371/journal.pcbi.1000473.s012 (19.93 MB AI)
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27. Boughammoura A, Matzanke BF, Böttger L, Reverchon S, Lesuisse E, et al.

(2008) Differential role of ferritins in iron metabolism and virulence of the plant-

pathogenic bacterium Erwinia chrysanthemi 3937. J Bacteriol 190: 1518–1530.

28. Desveaux D, Singer AU, Dangl JL (2006) Type III effector proteins:

doppelgangers of bacterial virulence. Curr Opin Plant Biol 9: 376–382.

29. McCann HC, Guttman DS (2008) Evolution of the type III secretion system and

its effectors in plant-microbe interactions. New Phytol 177: 33–47.

30. Block A, Li G, Fu ZQ, Alfano JR (2008) Phytopathogen type III effector

weaponry and their plant targets. Curr Opin Plant Biol 11: 396–403.

31. Zhou J, Chai J (2008) Plant pathogenic bacterial type III effectors subdue host

responses. Curr Opin Microbiol 11: 179–185.

32. Bauer DW, Wei ZM, Beer SV, Collmer A (1995) Erwinia chrysanthemi harpin (Ech)

– an elicitor of the hypersensitive response that contributes to soft-rot

pathogenesis. Mol Plant Microbe Interact 8: 484–491.

33. Yang C-H, Gavilanes-Ruiz M, Okinaka Y, Vedel R, Berthuy I, et al. (2002) hrp

genes of Erwinia chrysanthemi 3937 are important virulence factors. Mol Plant

Microbe Interact 15: 472–480.
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