CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 1 December 2014
Accepted 1 December 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; thiosemicarbazone; polymorph; conformation; hydrogen bonding

CCDC reference: 960620
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Crystal structure of a new monoclinic polymorph of 2,4-dihydroxybenzaldehyde 4-methylthiosemicarbazone

M. A. Salam, ${ }^{\text {a* }}$ Mouayed A. Hussein ${ }^{\text {b }}$ and Edward R. T. Tiekink ${ }^{\text {c* }}$

${ }^{\text {ab Bangladesh Petroleum Exploration and Production Co. Ltd (BAPEX), } 4 \text { Karwan Bazar, BAPEX Bhabon, Dhaka 1215, }}$ Bangladesh, ${ }^{\text {b }}$ Department of Chemistry, College of Science, University of Basrah, Basra 61004, Iraq, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia. *Correspondence e-mail: salambpx@yahoo.com, edward.tiekink@gmail.com

The title compound, $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, is a second monoclinic $\left(P 2_{1} / c\right)$ polymorph of the previously reported Cc form [Tan et al. (2008b). Acta Cryst. E64, o2224]. The molecule is non-planar, with the dihedral angle between the $\mathrm{N}_{3} \mathrm{CS}$ residue (r.m.s. deviation $=0.0816 \AA$) and the benzene ring being $21.36(4)^{\circ}$. The conformation about the $\mathrm{C}=\mathrm{N}$ bond $[1.292$ (2) \AA] is E, the two N -bound H atoms are anti, and the inner hydroxy O -bound and outer amide N -bound H atoms form intramolecular hydrogen bonds to the imine N atom. Crucially, the H atom of the outer hydroxy group is approximately syn to the H atom of the benzene C atom connecting the two C atoms bearing the hydroxy substituents. This arrangement enables the formation of supramolecular tubes aligned along [010] and sustained by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds; the tubes pack with no specific interactions between them. While the molecular structure in the $C c$ form is comparable, the H atom of the outer hydroxy group is approximately anti, rather than syn. This different orientation leads to the formation a three-dimensional architecture based on $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds.

1. Chemical context

In a review of the biological applications of metal complexes of thiosemicarbazone derivatives, Dilworth \& Hueting (2012) highlighted the various biological roles exhibited by this class of compound. Thus, these may have therapeutic potential, for example being cytotoxic and capable of inhibiting both ribonuclease reductase and topoisomerase II. Metal complexes of thiosemicarbazones can also function as diagnostic agents in imaging/diagnostic applications. In the context of this biological relevance, the specific title compound of the present report has been coordinated as an N, O, S-tridentate dianion to zinc(II) and the resultant complex explored for activity against prostate cancer (Tan et al., 2012).

The crystal structure of the title molecule has been reported previously as a Cc polymorph (Tan et al., 2008b). Following on from previous structural work on related compounds (Affan et al., 2013), the title compound was prepared and routine screening of the crystals indicated that this crystallizes as a second monoclinic ($P 2_{1} / c$) polymorph. The crystal and mol-

Figure 1
The molecular structure of the title compound in the $P 2_{1} / c$ polymorph, showing the atom labelling and displacement ellipsoids at the 70% probability level.
ecular structure of the second form of the title compound is reported herein and compared with the original Cc polymorph.

2. Structural commentary

The molecular structure found in the new monoclinic $\left(P 2_{1} / c\right)$ polymorph is shown in Fig. 1. The molecule is non-planar with a twist about the $\mathrm{C} 1-\mathrm{N} 2$ bond being evident as seen in (i) the $\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$ torsion angle of $164.83(11)^{\circ}$ and (ii) the dihedral angle between the $\mathrm{N}_{3} \mathrm{CS}$ residue (r.m.s. deviation $=$ $0.0816 \AA$) and benzene ring of $21.36(4)^{\circ}$. The conformation about the $\mathrm{C} 3=\mathrm{N} 3$ bond $[1.292$ (2) \AA] is E, the two N-bound H atoms are anti, and within the molecule, both the O1- and N1bound H atoms form intramolecular hydrogen bonds to the imine-N3 atom, Table 1. The $\mathrm{O} 2-\mathrm{H} 2 o \mathrm{H}$ atom is approximately syn to the $\mathrm{C} 6-\mathrm{H} 6 \mathrm{H}$ atom.

To a first approximation, the molecular structure found in the Cc polymorph (Tan et al., 2008b), reported to be isolated also from an ethanol solution, is similar, but two significant differences are noted. These are highlighted in the overlay diagram shown in Fig. 2. With the N3-N2-C1-S1 torsion angle being $-172.5(2)^{\circ}$, the twist about the $\mathrm{C} 1-\mathrm{N} 2$ bond deviates by about 8°, toward planarity, from that in the $P 2_{1} / c$ form. However, the dihedral angle between the $\mathrm{N}_{3} \mathrm{CS}$ residue and benzene ring of $23.1(9)^{\circ}$ is a little wider in the $C c$ form as the terminal methyl group is slightly twisted out of the $\mathrm{CN}_{3} \mathrm{~S}$ plane: the $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$ torsion angle is $-3.1(5)^{\circ} c f$. to

Figure 2
Overlay diagram of the molecules in the $P 2_{1} / n$ polymorph (red image) and in the Cc form (blue). The molecules have been overlapped so the benzene rings are coincident.

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 o \cdots \mathrm{~N} 3$	$0.83(2)$	$1.97(2)$	$2.6992(17)$	$147(2)$
$\mathrm{N} 1-\mathrm{H} 1 n \cdots \mathrm{~N} 3$	$0.815(19)$	$2.35(2)$	$2.7080(19)$	$107.1(16)$
$\mathrm{O} 2-\mathrm{H} 2 o \cdots \mathrm{~S}^{\mathrm{i}}$	$0.90(2)$	$2.37(2)$	$3.1918(12)$	$152(2)$
$\mathrm{N} 1-\mathrm{H} 1 n \cdots \mathrm{~S}^{\mathrm{ii}}$	$0.815(19)$	$2.763(18)$	$3.3883(13)$	$134.9(17)$
$\mathrm{N} 2-\mathrm{H} 2 n \cdots \mathrm{O} 1^{\mathrm{iii}}$	$0.90(2)$	$2.08(2)$	$2.9527(17)$	$162(2)$

Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $x, y-1, z$; (iii) $x, y+1, z$.
$1.2(2)^{\circ}$ in the $P 2_{1} / c$ form. The major and most significant difference arises in the relative orientation of the outer hydroxy group where the $\mathrm{H} 2 o$ atom is anti to the $\mathrm{C} 6-\mathrm{H} 6 \mathrm{H}$ atom $c f$. approximately syn in the $P 2_{1} / c$ form. This has a major consequence upon the crystal packing in the two forms as discussed in $\S 3$.

The calculated density for the $P 2_{1} / c$ form is $1.496 \mathrm{~g} \mathrm{~cm}^{-3}$ and the packing efficiency (KPI), calculated by PLATON (Spek, 2009), is 73.1%. These values are lower than the comparable values in the $C c$ form, i.e. $1.521 \mathrm{~g} \mathrm{~cm}^{-3}$ and 74.4%, respectively, suggesting that the $C c$ form is the more stable.

3. Supramolecular features

In the crystal packing of the $P 2_{1} / c$ polymorph, conventional hydrogen bonding interactions lead to the formation of a supramolecular tube, Fig. 3 and Table 1. Here, the inner N2$\mathrm{H} 2 n$ atom forms a hydrogen bond to a translationally related inner O 1 atom, and the bifurcated S 1 atom accepts hydrogen bonds from the outer, centrosymmetically related, $\mathrm{O} 2-\mathrm{H} 2 o$ and a translationally related, outer $\mathrm{N} 1-\mathrm{H} 1 n$ atom. The tubes are aligned along the b axis and pack with no specific intermolecular interactions between them, Fig. 4. A distinctive crystal packing pattern is noted in the Cc polymorph (Tan et al., 2008b). Here, the inner N2-H2n atom forms a hydrogen bond to a glide-related inner O1 atom, leading to a supramolecular layer that stacks along the a axis. The S 1 atoms project to one side of the layer and the outer $\mathrm{O} 2-\mathrm{H} 2 o$ atoms,

Figure 3
Supramolecular tube along the b axis in the structure of the $P 2_{1} / c$ polymorph sustained by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, shown as blue, orange and brown dashed lines, respectively (see Table 1 for details).

Figure 4
View in projection down the b axis of the unit-cell contents of the $P 2_{1} / c$ polymorph, highlighting the packing of the supramolecular tubes.
with the anti disposition (see above), lie to the other. These form hydrogen bonds so that a three-dimensional architecture ensues, Fig. 5. In this scenario, the outer $\mathrm{N} 1-\mathrm{H} 1 n$ atom only participates in an intramolecular hydrogen bond to the N3 atom, as does in the inner $\mathrm{O} 1-\mathrm{H} 1 o$ atom.

4. Database survey

Given the interest in semithiocarbazones owing to their biological potential, it is not surprising that a search of Version 5.35 (plus May updates) of the Cambridge Crystallographic Database (Groom \& Allen, 2014) revealed almost 100 hits for the $\mathrm{CC}(\mathrm{H})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{C}$ fragment. The only restriction in the search was that the heaviest atom be S . In the

Figure 5
View in projection down the b axis of the unit-cell contents of the $C c$ polymorph, highlighting the the stacking of the layers along the a axis, sustained by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (blue dashed lines), and their connection by $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds (orange dashed lines).

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$
M_{r}	225.27
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Temperature (K)	100
$a, b, c(\AA)$	$7.3058(2), 6.0582(1), 22.6041(6)$
$\beta\left({ }^{\circ}\right)$	$91.100(2)$
$V\left(\AA^{3}\right)$	$1000.27(4)$
Z	4
Radiation type	Mo $\mathrm{K} \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.31
Crystal size (mm)	$0.48 \times 0.19 \times 0.14$
Data collection	Bruker APEXII CCD
Diffractometer	Multi-scan $(S A D A B S$; Sheldrick,
Absorption correction	$1996)$
	$0.866,0.957$
$T_{\text {min }}, T_{\text {max }}$	$9696,2302,1950$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.027
$R_{\text {int }}$	0.650
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.035,0.086,1.06$
No. of reflections	2302
No. of parameters	153
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	refinement
	$0.30,-0.31$

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS2014 and SHELXL2014 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans \& Shalloway, 2001), DIAMOND (Brandenburg, 2006), PLATON (Spek, 2009 and publCIF (Westrip, 2010).
absence of this restriction there were nearly 400 hits. Of the smaller set of structures, there was only one pair of polymorphs, namely two triclinic $(P \overline{1})$ forms for salicylaldehyde 4phenylthiosemicarbazone, one with $Z^{\prime}=3$ (Seena et al., 2008) and the other with $Z^{\prime}=2$ (Rubčić et al., 2008). The most closely related structure in the literature is the N -Et derivative, reported twice (Tan et al., 2008a; Hussein et al., 2014). This structure exhibits the same molecular attributes as described above for the N-Me polymorphs, i.e. conformation, relative disposition of key atoms and intramolecular hydrogen bonding.

5. Synthesis and crystallization

A solution of 2,4-dihydroxybenzaldehyde ($0.65 \mathrm{~g}, 4.75 \mathrm{mmol}$) in ethanol (20 ml) was added to a solution of 4-methyl-3thiosemicarbazide ($0.5 \mathrm{~g}, 4.75 \mathrm{mmol}$) in ethanol (20 ml). The resulting brown solution was refluxed with stirring for 2 h , and then filtered, washed with ethanol and dried in vacuo over silica gel. The filtrate was left to stand at room temperature for two days after which colourless block-like crystals were obtained (yield $0.79 \mathrm{~g}, 74 \%$). M.p: 471-473 K. FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right) \nu_{\text {max }}: 3377(s, \mathrm{OH}), 3190(s, \mathrm{NH}), 1615(m, \mathrm{C}=\mathrm{N}), 1558$ $(s, \mathrm{C}-\mathrm{O}), 1012(m, \mathrm{~N}-\mathrm{N}), 1360,845(w, \mathrm{C}=\mathrm{S})$. Analysis calculated for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 47.94 ; \mathrm{H}, 4.88 ; \mathrm{N}, 18.64 \%$. Found: C, 48.0; H, 4.68; N, 18.52\%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Carbon-bound H -atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95-0.98 \AA)$ and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $=1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms. The O - and N -bound H -atoms were located in a difference Fourier map and freely refined.

Acknowledgements

The authors wish to thank the BAPEX, Bangladesh, for financial support.

References

Affan, M. A., Jessop, P. G., Salam, M. A., Halim, S. N. B. A. \& Tiekink, E. R. T. (2013). Acta Cryst. E69, o1273.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dilworth, J. R. \& Hueting, R. (2012). Inorg. Chim. Acta, 389, 3-15.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gans, J. \& Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Hussein, M. A., Guan, T. S., Haque, R. A., Ahamed, M. B. K. \& Majid, A. M. S. A. (2014). J. Coord. Chem. 67, 714-727.
Rubčić, M., Đilović, I., Cindrić, M. \& Matković-Čalogović, D. (2008). Acta Cryst. C64, o570-o573.
Seena, E. B., Prathapachandra Kurup, M. R. \& Suresh, E. (2008). J. Chem. Crystallogr. 38, 93-96.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tan, K. W., Ng, C. H., Maah, M. J. \& Ng, S. W. (2008a). Acta Cryst. E64, o2123.
Tan, K. W., Ng, C. H., Maah, M. J. \& Ng, S. W. (2008b). Acta Cryst. E64, o2224.
Tan, K. W., Seng, H. L., Lim, F. S., Cheah, S.-C., Ng, C. H., Koo, K. S., Mustafa, M. R., Ng, S. W. \& Maah, M. J. (2012). Polyhedron, 38, 275-284.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, 58-61 [doi:10.1107/S2056989014026498]

Crystal structure of a new monoclinic polymorph of 2,4-dihydroxybenzaldehyde 4-methylthiosemicarbazone

M. A. Salam, Mouayed A. Hussein and Edward R. T. Tiekink

Computing details

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans \& Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008), PLATON (Spek, 2009 and publCIF (Westrip, 2010).

2,4-Dihydroxybenzaldehyde 4-methylthiosemicarbazone

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=225.27$
Monoclinic, $P 2_{1} / c$
$a=7.3058$ (2) Å
$b=6.0582$ (1) \AA
$c=22.6041$ (6) \AA
$\beta=91.100(2)^{\circ}$
$V=1000.27(4) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.866, T_{\text {max }}=0.957$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.086$
$S=1.06$
2302 reflections
153 parameters
0 restraints

$$
\begin{aligned}
& F(000)=472 \\
& D_{\mathrm{x}}=1.496 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3917 \text { reflections } \\
& \theta=3.3-29.8^{\circ} \\
& \mu=0.31 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.48 \times 0.19 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

9696 measured reflections
2302 independent reflections
1950 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=1.8^{\circ}$
$h=-9 \rightarrow 9$
$k=-7 \rightarrow 7$
$l=-29 \rightarrow 24$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0336 P)^{2}+0.7405 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.31 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
S1	$0.15271(5)$	$1.11056(7)$	$1.14702(2)$	$0.01707(12)$
O1	$0.33247(16)$	$0.2527(2)$	$1.00557(5)$	$0.0174(3)$
H1o	$0.301(3)$	$0.362(4)$	$1.0247(11)$	$0.044(7)^{*}$
O2	$0.45517(16)$	$0.0527(2)$	$0.80619(5)$	$0.0204(3)$
H2o	$0.541(3)$	$-0.033(4)$	$0.8232(11)$	$0.051(7)^{*}$
N1	$0.15573(18)$	$0.6695(2)$	$1.14178(6)$	$0.0148(3)$
H1n	$0.153(3)$	$0.557(3)$	$1.1220(9)$	$0.019(5)^{*}$
N2	$0.15295(18)$	$0.8552(2)$	$1.05291(6)$	$0.0152(3)$
H2n	$0.183(3)$	$0.984(4)$	$1.0359(9)$	$0.029(5)^{*}$
N3	$0.19726(17)$	$0.6617(2)$	$1.02301(6)$	$0.0139(3)$
C1	$0.1544(2)$	$0.8599(3)$	$1.11312(7)$	$0.0135(3)$
C2	$0.1526(2)$	$0.6471(3)$	$1.20604(7)$	$0.0197(4)$
H2A	0.2699	0.6968	1.2231	0.030^{*}
H2B	0.1326	0.4920	1.2164	0.030^{*}
H2C	0.0534	0.7374	1.2217	0.030^{*}
C3	$0.1997(2)$	$0.6841(3)$	$0.96619(7)$	$0.0141(3)$
H3	0.1592	0.8197	0.9494	0.017^{*}
C4	$0.2616(2)$	$0.5119(3)$	$0.92679(7)$	$0.0137(3)$
C5	$0.3302(2)$	$0.3078(3)$	$0.94674(7)$	$0.0135(3)$
C6	$0.3978(2)$	$0.1534(3)$	$0.90734(7)$	$0.0154(3)$
H6	0.4461	0.0173	0.9214	0.019^{*}
C7	$0.3941(2)$	$0.1999(3)$	$0.84699(7)$	$0.0157(3)$
C8	$0.3264(2)$	$0.4006(3)$	$0.82584(7)$	$0.0177(3)$
H8	0.3239	0.4312	0.7846	0.021^{*}
C9	$0.2630(2)$	$0.5540(3)$	$0.86554(7)$	$0.0168(3)$
H9	0.2192	0.6920	0.8512	0.020^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0239(2)$	$0.0115(2)$	$0.0158(2)$	$0.00296(15)$	$0.00059(15)$	$-0.00209(15)$
O1	$0.0274(6)$	$0.0135(6)$	$0.0114(6)$	$0.0017(5)$	$0.0029(5)$	$0.0007(5)$
O2	$0.0214(6)$	$0.0243(7)$	$0.0154(6)$	$0.0041(5)$	$0.0010(5)$	$-0.0062(5)$
N1	$0.0223(7)$	$0.0099(7)$	$0.0120(7)$	$-0.0017(5)$	$0.0015(5)$	$-0.0019(6)$
N2	$0.0215(7)$	$0.0103(7)$	$0.0137(7)$	$0.0012(5)$	$0.0019(5)$	$-0.0007(5)$
N3	$0.0163(6)$	$0.0116(6)$	$0.0139(7)$	$-0.0005(5)$	$0.0011(5)$	$-0.0023(5)$
C1	$0.0119(7)$	$0.0145(8)$	$0.0141(8)$	$0.0005(6)$	$0.0004(6)$	$-0.0009(6)$
C2	$0.0279(9)$	$0.0177(8)$	$0.0137(8)$	$-0.0017(7)$	$0.0020(6)$	$0.0019(7)$
C3	$0.0144(7)$	$0.0125(7)$	$0.0153(8)$	$-0.0008(6)$	$0.0001(6)$	$0.0006(6)$

C4	$0.0140(7)$	$0.0143(8)$	$0.0129(7)$	$-0.0016(6)$	$0.0011(6)$	$0.0002(6)$
C5	$0.0145(7)$	$0.0150(8)$	$0.0110(7)$	$-0.0036(6)$	$0.0004(5)$	$0.0005(6)$
C6	$0.0150(7)$	$0.0136(8)$	$0.0177(8)$	$-0.0006(6)$	$0.0018(6)$	$0.0009(6)$
C7	$0.0139(7)$	$0.0180(8)$	$0.0152(8)$	$-0.0016(6)$	$0.0025(6)$	$-0.0043(6)$
C8	$0.0184(7)$	$0.0240(9)$	$0.0106(7)$	$0.0022(6)$	$0.0006(6)$	$0.0008(7)$
C9	$0.0163(7)$	$0.0187(8)$	$0.0153(8)$	$0.0008(6)$	$0.0005(6)$	$0.0027(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

S1-C1	1.7011 (16)	C2-H2B	0.9800
O1-C5	1.3707 (19)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{o}$	0.83 (3)	C3-C4	1.449 (2)
$\mathrm{O} 2-\mathrm{C} 7$	1.3640 (19)	C3-H3	0.9500
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{o}$	0.90 (3)	C4-C5	1.405 (2)
N1-C1	1.323 (2)	C4-C9	1.408 (2)
N1-C2	1.459 (2)	C5-C6	1.389 (2)
N1-H1n	0.81 (2)	C6-C7	1.393 (2)
N2-C1	1.361 (2)	C6-H6	0.9500
N2-N3	1.3945 (18)	C7-C8	1.394 (2)
N2-H2n	0.90 (2)	C8-C9	1.378 (2)
N3-C3	1.292 (2)	C8-H8	0.9500
C2-H2A	0.9800	C9-H9	0.9500
C5-O1-H1o	108.3 (17)	C4-C3-H3	118.5
C7-O2-H2o	108.9 (16)	C5-C4-C9	117.76 (14)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	124.63 (14)	C5-C4-C3	123.32 (14)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{n}$	117.4 (14)	C9-C4-C3	118.82 (14)
C2-N1-H1n	117.9 (14)	O1-C5-C6	117.41 (14)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 3$	120.33 (13)	O1-C5-C4	121.55 (14)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{n}$	114.2 (13)	C6-C5-C4	121.04 (14)
N3-N2-H2n	117.6 (13)	C5-C6-C7	119.46 (15)
C3-N3-N2	113.67 (13)	C5-C6-H6	120.3
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	118.11 (14)	C7-C6-H6	120.3
N1-C1-S1	123.91 (12)	O2-C7-C6	122.00 (15)
N2-C1-S1	117.98 (12)	O2-C7-C8	117.19 (14)
N1-C2-H2A	109.5	C6-C7-C8	120.81 (14)
N1-C2-H2B	109.5	C9-C8-C7	119.10 (15)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	C9-C8-H8	120.4
N1-C2-H2C	109.5	C7-C8-H8	120.4
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	C8-C9-C4	121.80 (15)
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	C8-C9-H9	119.1
N3-C3-C4	123.08 (15)	C4-C9-H9	119.1
N3-C3-H3	118.5		
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 3$	-176.54 (14)	C3-C4-C5-C6	-176.13 (14)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	-178.35 (14)	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	178.45 (13)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	1.2 (2)	C4-C5-C6-C7	-1.3 (2)
N3-N2-C1-N1	-15.6 (2)	C5-C6-C7-O2	-178.64 (14)

$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$164.83(11)$
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 4$	$173.05(13)$
$\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-2.2(2)$
$\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	$-178.56(14)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	$-179.49(14)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	$4.1(2)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.3(2)$

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$1.1(2)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$179.92(14)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$0.2(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$-1.3(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$1.0(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$177.60(14)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 o \cdots \mathrm{~N} 3$	$0.83(2)$	$1.97(2)$	$2.6992(17)$	$147(2)$
$\mathrm{N} 1 — \mathrm{H} 1 n \cdots \mathrm{~N} 3$	$0.815(19)$	$2.35(2)$	$2.7080(19)$	$107.1(16)$
$\mathrm{O} 2 — \mathrm{H} 2 o \cdots$ S $^{\mathrm{i}}$	$0.90(2)$	$2.37(2)$	$3.1918(12)$	$152(2)$
$\mathrm{N} 1 — \mathrm{H} 1 n \cdots \mathrm{~S}^{\text {ii }}$	$0.815(19)$	$2.763(18)$	$3.3883(13)$	$134.9(17)$
$\mathrm{N} 2 — \mathrm{H} 2 n \cdots \mathrm{O}^{\text {iii }}$	$0.90(2)$	$2.08(2)$	$2.9527(17)$	$162(2)$

Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $x, y-1, z$; (iii) $x, y+1, z$.

