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ABSTRACT Compared with urban-industrial populations, small-scale human com-
munities worldwide share a significant number of gut microbiome traits with nonhu-
man primates. This overlap is thought to be driven by analogous dietary triggers;
however, the ecological and functional bases of this similarity are not fully understood.
To start addressing this issue, fecal metagenomes of BaAka hunter-gatherers and tradi-
tional Bantu agriculturalists from the Central African Republic were profiled and com-
pared with those of a sympatric western lowland gorilla group (Gorilla gorilla gorilla)
across two seasons of variable dietary intake. Results show that gorilla gut micro-
biomes shared similar functional traits with each human group, depending on sea-
sonal dietary behavior. Specifically, parallel microbiome traits were observed between
hunter-gatherers and gorillas when the latter consumed more structural polysaccha-
rides during dry seasons, while small-scale agriculturalist and gorilla microbiomes
showed significant functional overlap when gorillas consumed more seasonal ripe fruit
during wet seasons. Notably, dominance of microbial transporters, transduction sys-
tems, and gut xenobiotic metabolism was observed in association with traditional agri-
culture and energy-dense diets in gorillas at the expense of a functional microbiome
repertoire capable of metabolizing more complex polysaccharides. Differential abun-
dance of bacterial taxa that typically distinguish traditional from industrialized human
populations (e.g., Prevotella spp.) was also recapitulated in the human and gorilla
groups studied, possibly reflecting the degree of polysaccharide complexity included
in each group’s dietary niche. These results show conserved functional gut micro-
biome adaptations to analogous diets in small-scale human populations and nonhu-
man primates, highlighting the role of plant dietary polysaccharides and diverse envi-
ronmental exposures in this convergence.

IMPORTANCE The results of this study highlight parallel gut microbiome traits in
human and nonhuman primates, depending on subsistence strategy. Although these
similarities have been reported before, the functional and ecological bases of this
convergence are not fully understood. Here, we show that this parallelism is, in part,
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likely modulated by the complexity of plant carbohydrates consumed and by expo-
sures to diverse xenobiotics of natural and artificial origin. Furthermore, we discuss
how divergence from these parallel microbiome traits is typically associated with
adverse health outcomes in human populations living under culturally westernized
subsistence patterns. This is important information as we trace the specific dietary
and environmental triggers associated with the loss and gain of microbial functions
as humans adapt to various dietary niches.

KEYWORDS gut microbiome, metagenomics, gorillas, traditional agriculturalists,
hunter-gatherers

The gut microbiome of different primate species has been shown to be phylogeneti-
cally conserved and inherited in a vertical manner (1, 2). This phylogenetic signal is

maintained, even when individual primate hosts face natural dietary shifts, likely
reflecting constraints imposed by host physiological evolution (3). However, similarities
in gut microbiome traits between closely and distantly related primates can still be
observed, likely due to shared ecological niches, and independent from geographical
location or host genetic similarity (4, 5). Analyzing the functional basis of similar micro-
biome traits between different primates, including humans, could shed light on the ec-
ological forces that have impacted the human microbiome in the context of subsistence
gradients and health and disease phenotypes. For instance, while the gut microbiome of
populations that rely on westernized subsistence strategies has adapted rapidly to indus-
trialized dietary behaviors and lifestyles (6–8), traditional human populations worldwide
(hunter-gatherers and small-scale agriculturalists) share numerous compositional and
functional traits with nonhuman primates (4, 5, 9). These observations may indicate that
the specific ecological and subsistence forces shaping the gut microbiome of traditional
human populations may be analogous to those seen in nonhuman primates. In contrast,
adaptations to industrialized subsistence and lifestyle patterns have triggered the loss of
those microbiome features shared between nonhuman primates and human popula-
tions (7), which has been hypothesized to adversely impact the physiological landscape
of human populations living in a culturally westernized context (9–11).

To shed light on the ecological basis of similar and divergent microbiome traits
between humans and nonhuman primates, we investigated functional microbiome
adaptations to different subsistence strategies in humans and measured the extent to
which these adaptations align with those seen in a closely related nonhuman primate
across analogous subsistence gradients. In this regard, we have previously docu-
mented significant compositional microbiome distinctions between the gut micro-
biomes of sympatric hunter-gatherers and small-scale agriculturalists (7), likely driven
by adaptations to process energy-dense, more processed diets by the latter (12). In
addition, we have shown that when western lowland gorillas transition from dry to
wet seasons, their gut microbiome composition corresponds with gut metabolome
traits associated with increased energetic turnover (13). As such, we expect parallel
functional changes between gorillas and traditional populations in response to analo-
gous ecological conditions. Here, we hypothesized that functional microbiome adapta-
tions that distinguish foraging from agricultural subsistence in humans (7) are analo-
gous to those seen in wild western lowland gorillas (Gorilla gorilla gorilla) when
shifting feeding behaviors between foliage/leaf-based diets and high-energy, ripe fruit
consumption during dry and rainy seasons, respectively. We discuss our findings in the
context of microbiome adaptations to subsistence shifts in humans and nonhuman pri-
mates and the factors that shape the human microbiome as we know it today.

RESULTS
Characteristics of the metagenome data set. After collecting fecal samples of

BaAka hunter-gatherers (n = 14), Bantu agricultural populations (n=14), and sympatric
wild western lowland gorillas (G. gorilla gorilla) across dry (n= 11) and wet seasons
(n=12) in the Dzanga Sangha Protected Areas (Central African Republic), we profiled
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gut microbiome functions via shotgun metagenomic sequencing. We obtained a total
of 979,507,504 host-filtered shotgun reads (average of 19,206,030 reads per sample;
range, 5,701,216 to 33,876,024) (see Data Set S1, tab 1, in the supplemental material).
The shotgun metagenomic reads were mapped (average mapping rate of ;81.38%
[Data Set S1, tab 1]) onto a total nonredundant gene set (a total of 4,298,551 open
reading frames), constructed by combining all predicted genes (a total of 12,260,992)
from assembled contigs in each sample, followed by clustering. Overall, gorillas,
regardless of season, exhibited higher functional diversity compared with the two
human groups; however, Bantu agriculturalists always exhibited the lowest gene
content richness and diversity (Kruskal-Wallis test; P , 0.05) (see Fig. S1a and b in
the supplemental material). To mine for functional gut microbiome distinctions
between BaAka and Bantu and gorillas across dry and wet seasons, a total of
3,804,658 filtered genes (present in at least three samples) were quantified and
mapped against KEGG, carbohydrate-active enzymes (CAZy), and xenobiotic degra-
dation enzymes (XDEs) databases (see Materials and Methods). From the KEGG
pathway analysis, a total of 242,349 KEGG genes (6.4% of filtered gene set), 5,747
KEGG modules (KEGG orthologs [KOs]), 1391 EC numbers, and 330 pathways were
quantified in all samples.

Functional microbiome profiles in hunter-gatherers, agriculturalists, and gorillas
across wet and dry seasons. Analyses of KEGG pathways (relative abundances)
showed clear distinctions among the fecal metagenomes of the BaAka, Bantu, and the
gorillas across wet and dry seasons (Bray-Curtis distance, principal-coordinate analysis
[PCoA], permutational multivariate analysis of variance [PERMANOVA], R2 = 0.14, P =
0.001) (Fig. 1a). However, inspection of PCoA ordination scores indicated that, com-
pared with Bantu agriculturalists, BaAka hunter-gatherer metagenomes shared more
functional features with those of western lowland gorillas, particularly, during the dry
season, when gorillas consumed more leaves, herbs, and fibrous fruits. In contrast, the
functional gut microbiome landscape of Bantu agriculturalists shared more common
traits with gorillas during the wet season, when they consume more ripe fruit (Fig. 1b).

To address factors driving this interspecies similarity, the abundance distribution of
specific KEGG pathways was analyzed. For instance, the BaAka exhibited significantly
less interindividual variability in KEGG pathways compared to the Bantu agricultural-
ists. This trait was also observed in gorillas during the dry season, in contrast to when
they consumed more ripe, digestible fruit sources during the rainy season (Fig. 1c). In
general, more discriminant KOs were detected characterizing the Bantu agriculturalists
(144 versus 27 in the BaAka) and the wet season in gorillas (695 versus 526 in the dry
season) (Data Set S1, tabs 2 and 3). However, upon further inspection of all detected
pathways (Fig. S2a and b and Data Set S1, tabs 4 and 5), some interspecies commonal-
ities were found; for example, pathways involved in membrane transport (ABC trans-
porters, phosphotransferase system), regulatory signal transduction systems (two-com-
ponent system), amino acid catabolism (valine, leucine, and isoleucine) and xenobiotic
degradation (styrene) were consistently more abundant in Bantu agriculturalists and
gorillas during the wet season. These pathways were significantly depleted in the
BaAka and gorillas during the dry season; the BaAka and gorillas exhibited an increased
abundance of microbial genes involved in streptomycin biosynthesis compared with
the Bantu and gorillas during the wet season (Fig. 1d).

Additionally, lipid metabolic activities in the gut microbiome of these communities
were analyzed. PCoA analysis on relative abundances of pathways involved in lipid me-
tabolism showed minor differences between the fecal metagenomes of the BaAka,
Bantu, and the gorillas across wet and dry seasons (PERMANOVA, R2 = 0.13, P = 0.004).
However, closer inspection shows functional lipid metabolic differences between the
microbiomes of BaAka hunter-gatherers and Bantu agriculturalists (PERMANOVA,
R2 = 0.17, P = 0.01), while no significant differences were found between gorillas
across seasons of variable dietary intake (PERMANOVA, R2 = 0.08, P = 0.09) (Fig. S3a).
Specifically, among all lipid metabolic pathways analyzed, synthesis and degradation
of ketone bodies were consistently abundant in Bantu agriculturalists and gorillas

Interspecies Microbiome Overlap in Primates

November/December 2020 Volume 5 Issue 6 e00815-20 msystems.asm.org 3

https://msystems.asm.org


during the wet season (Fig. S3b). Of note, metabolism of linoleic acid was highly con-
served in the BaAka and gorillas during wet seasons (Fig. S3b). This observation could
be related to higher consumption of linolenic acid-rich diets, such as those found in
oils of vegetable origin from nuts, seeds, and fruits. These foods, which are consumed
more by the gorillas in the wet seasons and by the BaAka (12, 14), have been associ-
ated with optimal cardiovascular health (15, 16).

To further investigate the specific dietary factors driving this interspecies functional
similarity, an analysis of carbohydrate-active enzymes (CAZymes) was conducted. A
total of 19,783 (0.52% of filtered gene set) CAZy genes, belonging to 362 CAZy families,
were identified in the complete metagenomic pool, indicating a distinct CAZyme rep-
ertoire in the gut microbiome of BaAka, Bantu, and gorillas across seasons (Bray-Curtis,
PCoA, PERMANOVA, R2 = 0.20, P = 0.01) (Fig. 2a). However, as observed with KEGG
pathways, the CAZyome (collection of all CAZyme-coding genes) distinctions between
the Bantu and BaAka were also analogous to those seen in gorillas shifting from fruit-
to leaf-based diets, with the CAZyome of the hunter-gatherers showing more similar-
ities with that of gorillas regardless of season (Fig. 2b). As with KEGG pathways, one of
the shared traits detected reflected higher interindividual variation in the CAZyome of
Bantu agriculturalists and gorillas during the wet season (Fig. 2c). Also, although the
abundance of main CAZy classes was similar between humans and gorillas, showing

FIG 1 Functional adaptations in the gut microbiome of western lowland gorillas across seasons of variable dietary intake and in humans under two
different subsistence strategies. (a) Principal-coordinate analysis using Bray-Curtis distances generated from the relative abundances of KEGG pathways
shows functional distinctions between the microbiome of gorillas across dry (dark wheat) and wet (light wheat) seasons and between BaAka hunter-
gatherers and Bantu agriculturalists (PERMANOVA: R2 = 0.14, P = 0.01**). The amplified ordination panel on the left specifically shows functional distinctions
between gorillas across seasons (PERMANOVA: R2 = 0.10, P = 0.05*). (b) Ordination scores along PCo2 reflect functional similarities between BaAka hunter-
gatherers and gorillas in dry seasons and between Bantu agriculturalists and gorillas in wet seasons. (c) Higher interindividual variations were observed in
Bantu agriculturalists and gorillas during the wet season. (d) Relative abundances of significantly discriminating pathways identified using gene set
enrichment analysis further highlights the similarity between Bantu and gorillas during the wet season and BaAka and gorillas during the dry season. The
square root (sqrt) of cumulative abundance is shown on the y axes. The color key in panel a applies to all panels. A nonparametric two-sided Wilcoxon
rank sum test was used for testing the box plot distributions. The center values indicate the median values, and error bars depict the standard deviations
(SD). ns, not significant; *, P , 0.05; **, P , 0.01.
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predominance of glycoside hydrolases (GH) and transferases (GT) in both primate spe-
cies (Fig. S4a), discriminant and similar patterns in the abundance of several CAZy fami-
lies between the BaAka and Bantu (Fig. S5a and Data Set S1, tab 6) and dry and wet
seasons in gorillas were detected (Fig. S5b and Data Set S1, tab 7). For example, GH
subfamily 113, involved in the metabolism of mannans, galactomannans, and gluco-
mannans was more abundant in both human groups and in gorillas during the wet

FIG 2 Carbohydrate-degrading capabilities in the gut microbiome of gorillas across two seasons of variable dietary intake and in humans under two
different subsistence strategies. (a) Principal-coordinate analysis using Bray-Curtis distances generated from the CAZyome shows distinctions in
carbohydrate-degrading capabilities in the microbiome of gorillas across dry and wet seasons and between BaAka hunter-gatherers and Bantu
agriculturalists (PERMANOVA: R2 = 0.20, P = 0.01**). The amplified ordination panel on the left specifically shows functional distinctions between gorillas
across seasons (PERMANOVA: R2 = 0.13, P = 0.01**). (b) PCo2 ordination score reflects functional similarities of BaAka hunter-gatherers with gorillas in both
dry and wet seasons. (c) Higher interindividual variability in CAZyme content was observed in Bantu agriculturalists and gorillas during the wet season. (d)
Heatmap of CAZy families and subfamilies shows discriminant patterns among groups and subgroups. Two-sided Wilcoxon rank sum test was applied for
each pair (dry versus wet season and BaAka versus Bantu) (false-discovery rate [FDR]-corrected P , 0.05). Color code of each CAZyme shows the broad
carbohydrate utilization capabilities. The heatmap is color coded based on the row normalized z-scores. (e) Distinctions in broad CAZyme categories
among human and gorilla groups and subgroups, plotted by their respective distributions. The color key in panel a applies to all panels. A nonparametric
two-sided Wilcoxon rank sum test was used for testing the box plot distributions. The center values indicate the medians, and error bars depict the SD. ns,
not significant; *, P , 0.05; **, P , 0.01.
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season, while GH subfamilies involved in the metabolism of starch and glycogen
(GH13) were more abundant in humans. CAZy subfamilies involved in the metabolism
of xylans (GH43), mucopolysaccharides (polysaccharide lyase PL13), and agarose
(GH96) were more abundant in gorillas (Fig. 2d).

When CAZy families were divided into specific classes based on carbohydrate utili-
zation capabilities (Data Set S1, tab 8), their cumulative proportions showed some
interspecies similarities based on subsistence strategy (Fig. 2e). Primarily, CAZymes
involved in the digestion of plant polysaccharides were enriched in gorillas during the
dry season and in BaAka hunter-gatherers. For other broad categories, clear differences
were found only in gorillas with CAZymes involved in digestion of starch, glycogen,
mucopolysaccharides, lignin, and algal polysaccharides distinguishing the wild apes
during the dry season. In contrast, digestion of mannans, galactomannans, and gluco-
mannans and biosynthesis of polysaccharides seemed to be more prevalent when
gorillas consumed more fruit during rainier periods of the year. Although similar inter-
species patterns were observed, no significant differences were detected in these
broad categories between BaAka hunter-gatherers and Bantu agriculturalists (Fig. 2e
and Fig. S4b). However, we found negative associations between synthesis and degra-
dation of ketone bodies, an important pathway involved in lipid metabolism, and the
abundance and diversity of carbohydrate-active enzymes (CAZymes) (Spearman r2 =
20.53 and r2 =20.69, respectively, Fig. S4c and d).

To assess other dietary or environmental exposure drivers of the interspecies simi-
larities observed, functional microbiome adaptations to xenobiotics were also ana-
lyzed. We identified a total of 95 xenobiotic degradation enzymes (XDEs), indicating
inter- and intraspecies distinctions and similarities (Bray-Curtis, PCoA, PERMANOVA,
R2 = 0.19, P = 0.01), and highlighting similarities in XDE content between the hunter-
gatherers and the gorillas (Fig. 3a and b). Although both human groups exhibited
higher content of XDEs, the agriculturalists and gorillas during the wet season exhib-
ited the greatest abundance (Wilcoxon rank sum test; P = 0.04 for BaAka hunter-gath-
erers versus Bantu agriculturalists, and P = 0.05 for dry versus wet season) (Fig. 3c). In
general, more discriminant XDEs (odds ratio. 2) characterized the Bantu (26 versus 8
in the BaAka) and the gorillas during the wet season (12 versus 8 in the dry season)
(Fig. S6a and b and Data Set S1, tabs 9 and 10). However, some interspecies common-
alities were found; for instance, the abundance of cytidine deaminase (NCBI:protein
accession no. P32320) was higher in the Bantu agriculturalists, and significantly higher
in gorillas during the wet season. In contrast, abundance of methionine synthase
(Q99707) was higher in the BaAka and tended to be higher when gorillas consumed
more leaves (Fig. 3d). Abundance of aconitate hydratase (Q99798) was also higher in
the BaAka, compared to any other group, while wet season gorilla microbiomes
showed greater abundances of GMP synthase (P49915) (Fig. 3d).

Associations between functional and taxonomic microbiome profiles. We iden-
tified a total of 810 bacterial species in the sampled gut metagenomes. Analyses on
species distribution show significant discrimination among all four groups (Bray-Curtis,
PCoA, PERMANOVA, R2 = 0.56, P = 0.001) (Fig. 4a) but also some interspecies common-
alities, with hunter-gatherers showing more taxonomic similarities with gorillas regard-
less of season (Fig. 4b). This analysis also showed five taxa simultaneously enriched in
the BaAka hunter-gathers and in gorillas during the dry season: Prevotella spp., Prevotella
copri, Ruminococcus spp., Prevotella stercorea, and Eubacterium rectale. In contrast, 11
taxa were enriched in the Bantu agriculturalists and in gorillas when more fruit was con-
sumed: Faecalibacterium, Candidatus, Olsenella, Bacteroides ovatus, Collinsella aerofaciens,
Treponema, Bacteroides spp., Collinsella, Lactococcus lactis, Leuconostoc citreum, and
Ruminococcus bromii (Fig. 4c and Data Set S1, tabs 11 and 12).

To infer the functional potential of these taxa, a co-occurrence analysis with the
functions previously detected as similar or discriminant was conducted and depicted
in three subnetworks (SNs) (compositionally corrected correlations 0.4 , r, 0.7,
q value , 0.05). For example, in SN1, unidentified Olsenella found as markers of the
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Bantu and wet season microbiomes in gorillas coabounded with several CAZymes; gly-
cosyl transferases (GH) subfamilies 21, 88, and 24, polysaccharide lyases (PL 4_2), multi-
copper oxidases (auxiliary activity, AA1), and GH96. This cluster also showed associa-
tion with XDE P49915 (GMP synthase). In SN2, Collinsella aerofaciens, which showed
the greatest abundance in the agriculturalists and the gorillas during the wet season,
showed coabundance patterns with genes involved in styrene degradation, phospho-
transferase system (PTS) systems, ABC transporters, and two-component systems, with
Faecalibacterium also coabundanding with the latter. Prevotella copri and Prevotella
stercorea, markers of the microbiomes of hunter-gatherers and gorillas during the dry
season, coabounded with markers of starch and glycogen degradation (GH13) and

FIG 3 Xenobiotic-degrading capabilities in the gut microbiome of gorillas across two seasons of variable dietary intake and in humans under two different
subsistence strategies. (a) Principal-coordinate analysis using Bray-Curtis distances generated from the relative abundances of XDEs shows distinctions in
xenobiotic-degrading capabilities in the microbiome of gorillas across dry and wet seasons and between BaAka hunter-gatherers and Bantu agriculturalists
(PERMANOVA: R2 = 0.19, P = 0.01**). The amplified ordination panel on the left specifically shows functional distinctions between gorillas across seasons
(PERMANOVA: R2 = 0.16, P = 0.01**). (b) PCo2 ordination score reflects functional similarities of BaAka hunter-gatherers with gorillas in both dry and wet
seasons. (c) The distribution of XDEs across population shows higher abundance in Bantu agriculturalists and gorillas during the wet season. (d) Relative
abundances of selected significantly discriminating XDEs are plotted by their respective distributions. The color key in panel a applies to all panels. A
nonparametric two-sided Wilcoxon rank sum test was used for testing the box plot distributions. The center values indicate the medians, and error bars
depict the SD. ns, not significant; *, P , 0.05; **, P , 0.01.
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XDE Q99798 (aconitate hydratase). Abundances of Bacteroides ovatus and an unknown
Prevotella were also associated with both XDEs Q99798 and Q99707 (methionine syn-
thase) (Fig. 4d and Data Set S1, tab 13).

Carbohydrate utilization capabilities of shared taxonomic traits between
humans and gorillas. Given the associations detected between specific marker taxa
and functional profiles and the importance of Prevotella and Treponema as taxa that
consistently differentiate nonhuman primates and traditional human populations from
industrialized societies (5, 17, 18), we sought to further investigate their degrading
capabilities and possible dietary associations. The cumulative abundance of all discrim-
inating taxa belonging to the genus Prevotella coincided with the patterns mentioned
above; that is, this taxon was more abundant in the BaAka and gorillas during the dry
season. Spirochaetaceae were always more abundant in both gorilla groups compared
to humans, but this taxon did not follow differential trends across subsistence

FIG 4 Taxonomic abundances in the gut microbiome of gorilla across two seasons of variable dietary intake and of humans under two different
subsistence strategies. Taxonomic assignments obtained from shotgun metagenomic data were used for this analysis. (a) Principal-coordinate analysis using
Bray-Curtis distances generated from the relative abundances of bacterial taxa (NCBI plus HMP) shows distinctions in the microbial composition of gorillas
across dry and wet seasons and between BaAka hunter-gatherers and Bantu agriculturalists (PERMANOVA: R2 = 0.56, P = 0.001***) and gorillas during dry
versus wet seasons separately (left graph, PERMANOVA: R2 = 0.15, P = 0.001***). The amplified ordination panel on the left specifically shows distinctions in
the microbial composition between gorillas across seasons (PERMANOVA: R2 = 0.15, P = 0.01**). (b) Ordination scores along PCo2 did not show similarity in
BaAka hunter-gatherers or Bantu agriculturalists with gorillas in dry or wet seasons. (c) Bubble plot of discriminating taxa selected using indicator species
analysis (total mean relative abundance. 1%, indval. 0.4 and P , 0.05). (d) Correlation network analysis between significantly discriminating bacterial
taxa and functional profiles. The plot was constructed in CytoScape using positive compositionally corrected correlations (0.4 , r, 0.71 and q value ,
0.05) calculated using CCREPE. Symbols and colors represent different microbial nodes, whereas edge patterns represent the strength and direction of
correlation. The color key at the top of panel c applies to all panels. ns, not significant; *, P , 0.05; **, P , 0.01.
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gradients in humans or gorillas (Fig. 5a and b). These analyses also revealed corre-
sponding associations between abundance of the genus Prevotella and all CAZymes
involved in the degradation of plant polysaccharides. Conversely, this association was
negative for Spirochaetaceae (Fig. 5a and b). Representative genomes of these two
taxa were reconstructed, with a total of 1,388 genomic bins recovered from the 51
metagenomes. The completeness and contamination of each bin were estimated using
the presence or absence of lineage-specific marker genes. Of these, 335 bins (average
completeness=78.33, average contamination=1.46, average number of scaffolds=187.23)
from dry and wet season gorilla samples (Fig. S7a, left panel, and Data Set S1, tab 14)
and 257 bins (average completeness= 72.62, average contamination=1.48, average
number of scaffolds= 234.85) from BaAka hunter-gatherers and Bantu agriculturalists
(Fig. S7b, left panel, and Data Set S1, tab 15) were recovered. A total of seven genomic
bins were assigned to Prevotella and 11 to the Spirochaetaceae family in all four groups
(detailed statistics provided in Fig. S7a and b and Data Set S1, tab 16). There were no
direct bins assigned to the Treponema genome; hence, Spirochaetaceae bins were con-
sidered for further analysis.

First, we examined the distribution and sequence similarity of single-copy marker
genes of the selected bins against Prevotella and Treponema reference genomes. This
procedure led to the identification of Prevotella copri DSM 18205 and Treponema succi-
nifaciens DSM 2489 as the most similar species to the bins recovered, as reported previ-
ously for other traditional populations worldwide (18, 19) (Fig. S8a and b). A principal-
component analysis based on the relative abundance of CAZy families in each
constructed bin was performed, showing substantial differences in the carbohydrate uti-
lization capabilities between the reconstructed genomes of Prevotella and Treponema
(PERMANOVA, R2 = 0.43, P = 0.001, Fig. 5c). For example, Prevotella bins showed higher
abundance and diversity of total CAZyme repertoires (Fig. 5d) and higher abundance of
carbohydrate esterases (CE) and glycoside hydrolases (GH). In contrast, Treponema bins
were associated with a higher abundance of carbohydrate binding modules (CBM), and
tended to show higher prevalence of glycosyltransferases (GT), although not significantly
(P = 0.10) (Fig. 5e).

To further break down these differences in broad CAZyme categories into more
specific functions, relative abundances of significantly discriminating CAZy families
were considered and plotted on a heatmap (Wilcox rank sum test, P , 0.05, Data Set
S1, tab 17). Overall, most of the CAZy families enriched in Prevotella bins were involved
in metabolism of cellulose/hemicellulose, xylan, pectin, xyloglucan, mannan, short-
chain dextrins, fucose, interactions with cyclic oligosaccharides, and in the synthesis of
glycoproteins (mannosyl-oligosaccharide alpha 1,2-alpha-mannosidase). In contrast,
enzyme families enriched in Treponema bins were mainly involved in metabolic activ-
ities of glycogen, starch, peptidoglycan and in the metabolism of maltose (Fig. 5f and
Data Set S1, tab 17). Then, the bins showing maximum completeness and closest simi-
larity to the reference genomes were selected to assess their abundance distribution
across all groups. Prevotella copri DSM 18205 (bin148) tended to show higher preva-
lence in BaAka hunter-gatherers and the gorillas during the dry season, although not
significantly (Fig. S9a). In contrast, Treponema succinifaciens DSM 2489 (bin487) showed
the greatest abundance in gorillas compared to both human groups, especially during
the wet season; however, differences across seasons in gorillas were not significant (P
= 0.3) (Fig. S9b).

DISCUSSION

Research on the gut microbiome of traditional human populations and nonhuman
primates has contributed significantly to our understanding of the ecological and evo-
lutionary forces shaping the human microbiome (2, 6). Specifically, shifts in subsistence
strategies and dietary choices are critical driving forces of the primate gut microbiome
(7, 8, 20). These reports have emphasized the gain and loss of specific microbiome
traits in primates, along with adaptations to energy-rich, processed diets, analogous to
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those characterizing agriculture and industrialization. In turn, rapid adaptations to
these diets are believed to have had major impacts on human health (9, 11, 21–23).
Here, we show that functional gut microbiome traits, which distinguish hunting and
gathering from traditional agriculture in humans, parallel those seen in sympatric goril-
las when shifting between diets of low and high energetic content. Building on this ec-
ological gradient analogy, we sought to dissect the functional basis supporting

FIG 5 Functional and genome reconstruction analyses of Prevotella and Spirochaetaceae in the gut microbiome of gorillas across two seasons of variable
dietary intake and in humans under two different subsistence strategies. From the taxonomic analysis, cumulative abundance of all discriminating taxa
belonging to Prevotella (a) and Spirochaetaceae (b) were used to assess their distribution and association with the digestion of plant polysaccharides. (c)
Principal-component analysis generated from the relative abundances of CAZy families in Prevotella and Treponema bins (PERMANOVA: R2 = 0.43, P =
0.001***). (d) Higher diversity of carbohydrate-active enzymes was observed in Prevotella compared to Treponema bins. (e) Relative abundances of broad
CAZy classes found in these bins were plotted by their respective distributions. (f) Heatmap of significantly discriminating CAZy families showing
differences between Prevotella and Treponema bins (two-sided Wilcoxon rank sum test for each pair, dry versus wet and BaAka hunter-gatherers versus
Bantu agriculturalists, P , 0.05, Data Set S1, tab 17). Color code represents bins, whereas symbols represent CAZy classes as shown in panel e. Heatmap is
color coded based on normalized z-scores. A nonparametric two-sided Wilcoxon rank sum test was used for testing the box plot distributions. The center
values indicate the medians, and error bars depict the SD. ns, not significant; *, P , 0.05; **, P , 0.01.
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microbiome similarities among different primate species and the ecological and die-
tary factors associated with loss and gain of specific microbiome features in humans.

These results show that exposure to agricultural and energy-dense diets in humans
and nonhuman primates is characterized by an increased abundance of gut microbial
transporters and transduction systems. Both functional traits appear to be enriched in
the gut microbiome in response to energy-dense diets in mice and human models of
obesity (24–28). Thus, high abundance of microbial transporters and transduction sys-
tems in gut microbiomes has been suggested to reflect an increased capacity to har-
vest dietary energy and exposure to a variety of dietary substrates, mainly diverse free
sugars, but also lipids, peptides, metals, and even antibiotics (29, 30). Along these lines,
we have previously shown that when gorillas shift from high structural polysaccharide
intake associated with highly folivore diets to wet season-driven ripe fruit consumption
(31, 32), their fecal metabolomes are substantially more diverse, reflecting wide expo-
sure to different types of simple sugars, vitamins, lipids, amines, sterols, bile acids,
indoles, and amino acids (13). Compared to hunter-gatherers, Bantu agriculturalists are
also exposed to a wider range of dietary substrates from processed market foods,
including greater proportions of energy-dense foods, rich in fat and free sugars and
low in complex polysaccharides (12, 33).

Thus, exposure to diverse types of nutrients from energy-accessible diets may be a
selective force causing gut microbiome similarities between traditional agriculturalists
and the gorillas consuming ripe fruit. This dietary convergence may also be character-
ized by on-demand, individual access to a variety of foods, which may explain the high
heterogeneity detected in gut microbial metabolic pathways and carbohydrate-active
enzymes (CAZymes) in agriculturalists and gorillas during the wet season. We have pre-
viously shown increasing interindividual variability in microbiome taxonomic profiles
in humans along subsistence gradients, from hunter-gatherers to traditional agricultur-
alists and humans in the United States (7). Indeed, when gorillas transition to energy-
dense diets during wet seasons, when a variety of easily digestible foods is widely
available (13), they exhibit marked interindividual differences in feeding behaviors
within a single social group (31, 32, 34). Interindividual variation is also one of the main
traits observed in the gut microbiome of humans on industrialized diets, which may be
explained by significant heterogeneity in food choices (35). Such interindividual vari-
ability is believed to be associated with inconsistencies in individual responses to die-
tary or therapeutic interventions that target the microbiome to improve health, such
as prebiotics (36, 37), antibiotics (38), and probiotics (39).

Dietary choices in hunter-gatherers are also substantially diverse (12, 40). However,
in agricultural diets, dietary nutrients are likely consumed in free form and readily me-
tabolizable by microbes and the host, as opposed to being embedded in natural, com-
plex matrices with other nutrient fractions (i.e., fiber and phenolics) (21). This observa-
tion is concordant with more microbial adaptations for the degradation of broad plant
polysaccharides, including lignified substrates, detected in the microbiomes of hunter-
gatherers and gorillas during the dry season. However, carbohydrate-degrading capa-
bilities involved in the metabolism of mannans, galactomannans, and glucomannans,
which are widely distributed in legumes, seeds, nuts, tubers, gums, and fruit (41), were
equally important in the BaAka and Bantu, and more prevalent in gorillas during the
wet season. The functional overlap between BaAka and Bantu gut microbiomes may
reflect shared dietary practices and the gradual integration of Congo basin hunter-
gatherers into market economies and agriculture (12, 33). Nonetheless, the CAZyme
repertoire of the BaAka was still significantly more similar to that of gorillas, regardless
of season. The CAZyome overlap between the BaAka and gorillas indicates a stronger
influence of complex polysaccharides in the BaAka diet and deviations from more nat-
ural microbiome configurations by the Bantu agriculturalists.

Also, compared with the BaAka or gorillas in the dry season, increased abundance
of genes involved in the degradation of branched-chain amino acids (BCAAs) (leucine,
valine, and isoleucine) was observed in the agriculturalists and in gorillas consuming
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ripe fruit. Increased colonic fermentation of BCAAs has been previously associated with
a need for fermenting carbon sources other than carbohydrates, due to their low avail-
ability in the distal gut (42). A scenario of prolonged deprivation of carbohydrates ac-
cessible to microbes in the colon and increased BCAA metabolism and absorption has
been associated with impaired insulin sensitivity and generation of toxic polyamines
(43, 44). Along these lines, the prevalence of Collinsella, which characterized gorillas
during the wet season and agriculturalists, in association with the abundance of trans-
porters and transduction systems, has been also correlated with low dietary fiber
intake, insulin resistance, and gut inflammation (45–47). Moreover, this taxon has been
recently shown to influence the expression of host intestinal genes associated with cer-
tain metabolic syndromes (48). Thus, taxa such as Collinsella and an increased capacity
to catabolize amino acids may constitute markers equally conserved in the human and
nonhuman primate gut microbiome in response to low fiber availability in the colon.

Also, it is well established that carbohydrate and fat metabolisms are closely con-
nected. Thus, it is expected that the downregulation of fat metabolism must occur in
the face of increased carbohydrate consumption. This was evident in the negative
associations found between genes involved in the synthesis and degradation of ketone
bodies and both abundance and diversity of carbohydrate-active enzymes (Fig. S4c
and d). Synthesis and metabolism of ketone bodies increase when there is limited car-
bohydrate colonic fermentation, in which case, microbes use ketone bodies as an alter-
native substrate for short-chain fatty acid (SCFA) generation (49, 50). The gut micro-
biomes of Bantu agriculturalists and gorillas during wet seasons may emphasize this
metabolic route at the expense of colonic fiber fermentation.

Higher abundances of Collinsella also coincided with an increased capacity to de-
grade styrene in the Bantu agriculturalists. Styrene is an aromatic compound naturally
found in plants, but it is also a toxic compound released into the environment by
industrial chemical processes (51). The abundance of this xenobiotic degradation path-
way in the Bantu agriculturalists is concordant with previously predicted adaptations
to degrade bisphenol in this cohort and with reports of greater microbiome capacity
to degrade xenobiotics in agriculturist and industrialized populations (7, 52, 53). The
Bantu also exhibited the most unique XDE profiles compared to the hunter-gatherers
and gorillas regardless of season; one example is the abundance of cytidine deami-
nase. This microbial enzyme mediates the catabolism of pyrimidine nucleoside xenobi-
otics, including the inactivation of therapeutic cancer drugs (54), which may reflect
more access to commercial pharmaceuticals by traditional agriculturalists compared to
foragers (33). Cytidine deaminase was also more prevalent in the wet season in gorillas.
In this regard, the results of nutritional (14) and gut metabolomic analyses in western
lowland gorillas (55) indicate higher exposure to a wide variety of compounds when
the gorillas were consuming more fruit, including aromatic compounds (gallic, cin-
namic, and coumaric acids), sterols, amines, indoles, and diverse nucleosides. Other
enzymes involved in xenobiotic metabolism, such as methionine synthase and aconi-
tate hydratase, which showed higher abundance in the hunter-gatherers and dry sea-
son in gorillas, are involved in folate and vitamin B12 biosynthesis and metabolism of
short-chain fatty acids (56, 57), a characteristic of microbial ecosystems adapted to
increased fiber degradation, as is the case in the bovine rumen (58). These observa-
tions confirm that increased dietary exposure to structural and other complex polysac-
charides are important mediators of the convergence observed between traditional
human populations and nonhuman primates. Nonetheless, the specific triggers of
these analogous patterns in gorillas and traditional humans, in the context of dietary
or other xenobiotic exposures, are unclear.

These data do not imply that all the microbiome features associated with traditional
agriculture and consumption of ripe fruit by gorillas are proxies for the ecological basis
of potentially detrimental diet-microbiome interactions. Taxa such as Faecalibacterium
and Ruminococcus bromii, prevalent in agriculturalists and gorillas during the wet season,
are not only known for their associations with consumption of resistant starch in
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cultivated plants, but also with immunomodulatory properties (59, 60). Likewise,
Lactococcus lactis and Leuconostoc spp. have been linked to foodborne microbes associ-
ated with consumption of lacto-fermented foods, known for their immunomodulatory
properties (61, 62). These microbiome markers may be reflective of technological and
cultural innovations associated with traditional food processing and agriculture in
humans (63, 64), while in gorillas, they may reflect dietary access to readily fermentable
ripe fruits (32).

However, these data also emphasize gut microbiome markers that have been
depleted in abundance along with the technological and cultural innovations associ-
ated with agriculture. Such is the case of Prevotella and taxa associated with the
Spirochaetaceae family (e.g., Treponema), whose abundance in coprolites, nonhuman
primates, and traditional populations and depletion in industrialized humans, has gen-
erated significant interest (17, 65–67). Here, it is shown that these taxa do not metabo-
lize the same types of polysaccharides, and hence, their depletion in agriculturalists
and wet season gorilla microbiomes are unlikely to be attributed to the same negative
selective forces. These data support the contention that absence of Prevotella from the
industrialized gut microbiome may be associated with loss of nutritionally diverse
plant foods, composed of different types of complex and fermentable polysaccharides
(11). This observation is concordant with the fact that Prevotella showed the highest di-
versity and richness of CAZymes and higher abundance of glycoside hydrolases and
that this taxon is particularly enriched in primates with the most eclectic diets (5). In
contrast, the loss of Treponema, whose abundance was higher in nonhuman primates
compared to humans, regardless of subsistence strategy, may be associated with ab-
sence of very specific dietary substrates. Although genome reconstruction analyses of
both taxa showed that they both exhibit significant glycogen- and starch-degrading
capabilities, their specific dietary selective forces in traditional human populations still
remain unclear and should be subject to further investigation.

Study limitations. One of the limitations of this study was not having controlled
for physical activity and other lifestyle factors, which may also have an impact on the
composition and function of the gut microbiome. Although it has been well docu-
mented that hunter-gatherers and gorillas during the wet season tend to have
increased patterns of physical activity (22, 32, 68), it is unclear how this factor could
affect microbiome function in the context of energy expenditure and metabolism in
these populations. Likewise, even though dietary intake differences between the
BaAka and Bantu, as well as gorillas during wet and dry seasons have been well estab-
lished (32, 68), detailed diet intake data would have allowed us to investigate the asso-
ciations between specific foods and the microbiome patterns observed. Last, we also
acknowledge the limitations of our small sample size; however, studies with similar or
greater sample sizes focusing on distinctions between the gut microbiome of hunter-
gatherers, industrialized humans, and nonhuman primates across seasons of variable
dietary intake have found similar patterns (8, 13, 52, 55).

Conclusions. In summary, these data emphasize parallel functional adaptations in
the gut microbiome of humans and nonhuman primates in response to analogous eco-
logical stimuli. Specifically, we highlight how adaptations to metabolize plant dietary
polysaccharides, the degree of energy readily available in those foods, and degree of
exposure to xenobiotics may be selective forces of conserved functional gut micro-
biome traits observed between nonhuman primates and traditional human popula-
tions. These parallel adaptations reflect loss of microbiome capabilities enabling the
processing of a variety of complex polysaccharides, the emergence of taxa such as
Collinsella, and very heterogeneous microbiome assortments among individuals, in
association with traditional agriculture and energy-dense diets in gorillas. These traits,
which have likely been exacerbated with industrialized lifestyles, have been associated
with adverse metabolic phenotypes and inconsistent efficacy of specific dietary and
therapeutic interventions targeted to improve metabolic health in industrialized popu-
lations through microbiome modulation. Although it cannot be stated that compari-
sons of contemporary primate populations are representative of evolutionary
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processes in human history, these data also shed light on the ecological processes
associated with loss and gain of microbiome traits as humans have adapted to diverse
dietary niches, including transitions to agriculture and industrialized, processed diets.
Moving forward, it is critical to identify the specific dietary triggers of the microbiome
traits conserved in traditional populations and nonhuman primates and to investigate
whether their recovery in the guts of humans in culturally westernized contexts is con-
ducive to signatures associated with improved metabolic health in subjects at risk.

MATERIALS ANDMETHODS
Sample collection. Fecal samples of western lowland gorillas (Gorilla gorilla gorilla) were collected

during November and December of 2009 (n= 11) (dry season), during June and July of 2011 (n= 12)
(wet season). Fecal samples of BaAka hunter-gatherers (n= 14) and Bantu agriculturalists (n= 14) were
collected during June to August of 2010 and 2011 at the Dzanga Sangha Protected Areas (DSPA),
Central African Republic. Approximately 1 g of feces was placed in 2-ml Eppendorf tubes containing
RNAlater (Invitrogen, Life Technologies). Samples were kept at room temperature for a maximum of one
month before transport to the Institute of Vertebrate Biology, Czech Academy of Sciences, where they
were kept frozen at 220°C, until they were shipped to the University of Illinois at Urbana-Champaign,
where DNA was extracted. Ethical approval for sample collection and processing was granted by the
Czech Academy of Sciences (55) and the University of Illinois Institutional Review Board for protection of
human subjects (protocol number 13045, 4 September 2014) (7). The samples were collected noninva-
sively, adhering to DSPA research and ethical protocols and site regulations and approved by the
Ministre de l’Education Nationale, de l’Alphabetisation, de l’Enseignement Superieur, et de la Recherche
(Central African Republic).

Dietary information of collected samples.Western lowland gorilla fecal samples were collected in
two seasons of different dietary intake. Each period differs substantially in terms of the availability of
ripe fruits (14, 32, 34). During the dry season, gorillas heavily depend on a highly fibrous diet (mainly
leaves, pith, bark, herbaceous vegetation, and other plant parts), due to the low availability of ripe fruit.
In contrast, during the wet season, gorillas spend .80% consuming ripe, sweet fruit (31, 69, 70). Food
items consumed in each season differ substantially in the content of phenolics and fibrous and readily
digestible carbohydrates (32). The diets of BaAka hunter-gatherers mainly consist of wild and cultivated
tubers and nuts, tree leaves (Gnetum africanum; high in fiber and tannins), honey, and wild game meat
(7, 12, 71). Although the Bantu may overlap with the BaAka on consumption of some food items such as
cultivated nuts and tubers, they rely more on agricultural products and a market economy, emphasizing
higher consumption and intake frequency of grains, dairy products, and livestock (C. A. Jost Robinson,
personal observation).

Metagenomic sequencing and analysis. DNA extraction from stool samples was conducted using
the MoBio PowerSoil kit (then, MoBio Laboratories) and following the manufacturer’s instructions.
Metagenomic libraries were constructed using the Kapa library preparation kit or the TruSeq SBS and
sequenced on a HiSeq2500 Illumina sequencing platform at the Roy J. Carver Biotechnology Center,
University of Illinois at Urbana-Champaign (gorilla samples) and at the J. Craig Venter Institute (La Jolla,
CA), respectively. Then 2� 150 paired-end (PE) reads were generated from an average 400 to 500
genomic DNA (gDNA) fragment size. The paired-end sequences were passed through FastQC for quality
check (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), trimmed, and filtered to remove
ambiguous bases (“N”) using the NGSQC toolkit (72). Homopolymer removal was conducted using prin-
seq (73), and reads were trimmed using a 10-bp sliding window with an average quality score of 20 and
minimum length of 80 in Trimmomatic (74). These high-quality cleaned reads were filtered for gorilla
DNA and human DNA via mapping them against gorilla genome (gorGor4, assembly date December
2014) and human genome (GRCh38, assembly date December 2013) using a combination of bowtie2,
samtools, and bedtools (75–77). De novo metagenomic assembly was performed on these filtered
sequences using metaSPAdes, with k-mer lengths of 21, 33, and 55 (78). Open reading frame (ORF) pre-
diction was performed on the assembled contigs using prodigal (79). From the total number of genes, a
nonredundant gene set (identity = 95%, alignment coverage = 90%) was created using CD-HIT (80) and
used for gene quantification by aligning high-quality sequences using bwa and counting genes using
samtools (81). Gene counts were further normalized by gene length and filtered for their presence in at
least three samples. The relative abundances of each gene were used for downstream analysis.

KEGG pathway details, as far as carbohydrate- and xenobiotic-degrading abilities of these microbial
communities were obtained using BLAST against the Kyoto Encyclopedia of Genes and Genomes data-
base (KEGG_20032014), Carbohydrate-Active enzymes Database (CAZyDB_07202017), and xenobiotic-
degrading enzymes (XDEs) downloaded from DrugBank, respectively, with a sequence identity threshold
of 50%, query coverage fraction of 80%, a bit score of 60, and E value of 1e–6 (82–85). Taxonomic assign-
ments were obtained from the alignment of all genes against NCBI and HMP databases (same version as
used in our previous study (86) using comprehensive sequence similarity parameters across different
phylogenetic ranks as described earlier (86, 87). The lowest common ancestor (LCA) method was used in
case multiple best hits were found with equal identity percentage. Relative abundance of KO, pathways,
CAZy families, XDEs, and microbial taxa were calculated using custom Perl scripts. These abundance
tables were subsequently used for comparisons of functional and taxonomic potential between the four
populations.
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Genome reconstruction. Genome assembly was conducted to construct contigs using Megahit
(88). High-quality reads were mapped on filtered contigs (.1000 bp) using bowtie2 (75) with default pa-
rameters, and the mean coverage of contigs was obtained using jgi_summarize_bam_contig_depths
command of Metabat2 (89). Genomes were independently recovered from each population using
Metabat2. Quality assessment of each genomic bin recovered was conducted using CheckM using line-
age-specific marker genes and default parameters (90). The merge method of CheckM was used to com-
bine bins from the same microbial population in order to increase the completeness ($90) and reduce
contamination (#10). Additional bins were formed via grouping bins into a single bin if they met the
defined criteria. For filtering contigs having divergent genomic properties, tetranucleotide frequencies
were calculated using the outlier method of CheckM. Taxonomic string indicating approximate place-
ment of the genomic bin in the tree was carried out using the tree_qa method of CheckM.
Reference genomes of Prevotella and Treponema were downloaded from the NCBI and HMP data-
bases. These reference genomes were used for inferring the evolutionary relationship of the specific
genomic bins using ezTree (91), which identified single-copy marker genes from a group of
genomes. Assembly statistics of selected bins were obtained using DFAST (92), and carbohydrate-
degrading abilities were evaluated via BLAST alignment of protein-coding genes from these bins
against the CAZyme database (84). The presence/absence matrix of CAZymes in selected bins was
used for further statistical analysis.

Statistical analyses. Ordination analyses were performed using Bray-Curtis distances calculated on
the relative abundance of KEGG pathways, CAZy families, XDEs, and bacterial species from metage-
nomic data, using the vegan and ape packages in R (93, 94). Differences between dry versus wet and
BaAka versus Bantu were evaluated using the adonis function from the vegan package (95). Methods
such as the two-sided Wilcoxon rank sum or Kruskal-Wallis test, species indicator analysis, and random
forest were used for the identification of significantly discriminating taxa and functions, based on fold
changes, P values, indval scores, and mean decrease in accuracy functions. Reporter feature algorithm
was implemented to do gene set enrichment analysis on P values and fold changes of each KO for the
identification of significantly discriminating pathways between different groups using the runGSA
function in the R piano package (96). Heatmaps were generated using the aheatmap function from
the NMF R package (97). The CCREPE R package was used to detect pairwise associations or coabun-
dance patterns between selected bacterial species and functions (98). R packages dplyr and calibrate
were used to format the data before plotting (99, 100). The relative abundances of CAZymes, calcu-
lated from presence/absence matrices, were used for principal-component analysis using the factoex-
tra R package (101). All graphs and plots were generated using ggplot, boxplot, and Cytoscape 3.7.1
(102, 103).

Availability of data and materials. Shotgun metagenomic sequences generated in this study have
been deposited in the NCBI SRA under the BioProject identifier (ID) code PRJNA635116.
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