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Viral dissemination is a key mechanism responsible for persistence and disease

following human cytomegalovirus (HCMV) infection. Monocytes play a pivotal role in viral

dissemination to organ tissue during primary infection and following reactivation from

latency. For example, during primary infection, infected monocytes migrate into tissues

and differentiate into macrophages, which then become a source of viral replication.

In addition, because differentiated macrophages can survive for months to years, they

provide a potential persistent infection source in various organ systems. We broadly note

that there are three phases to infection and differentiation of HCMV-infected monocytes:

(1) Virus enters and traffics to the nucleus through a virus receptor ligand engagement

event that activates a unique signalsome that initiates the monocyte-to-macrophage

differentiation process. (2) Following initial infection, HCMV undergoes a “quiescence-

like state” in monocytes lasting for several weeks and promotes monocyte differentiation

into macrophages. While, the initial event is triggered by the receptor-ligand engagement,

the long-term cellular activation is maintained by chronic viral-mediated signaling events.

(3) Once HCMV infected monocytes differentiate into macrophages, the expression of

immediate early viral (IE) genes is detectable, followed by viral replication and long term

infectious viral particles release. Herein, we review the detailed mechanisms of each

phase during infection and differentiation into macrophages and discuss the biological

significance of the differentiation of monocytes in the pathogenesis of HCMV.
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INTRODUCTION

HCMV is a global infectious pathogen with 56–94% seroprevalence in adults worldwide (Zuhair
et al., 2019). The reported seroprevalence varies depending on the economic status of infected
individuals and the country in which the individual resides in. The severity of clinical symptoms
caused by HCMV infection is associated with the immunological status of the host. In most cases,
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primary infection in immunocompetent individuals results
in mild or no symptoms; however, HCMV can cause the
development of mononucleosis in some individuals. In cases
of maternal primary infection or reinfection during pregnancy,
HCMV can cross the placenta and result in severe fetal
complications such as hearing loss and microcephaly (Yamamoto
et al., 2011; Gabrielli et al., 2012; Lanzieri et al., 2017; Britt,
2018). In immune-compromised individuals, including AIDS
patients and solid organ/bone marrow transplant recipients,
HCMV infection can cause severe morbidity and mortality
(Boehme et al., 2006; Ramanan and Razonable, 2013; Adland
et al., 2015; Stern et al., 2019). For example, HCMV infection
can cause pneumonia, retinitis, encephalitis, and bowel disease
(Arribas et al., 1996; Boeckh et al., 2003; Heiden et al., 2007;
Garrido et al., 2013; Fonseca Brito et al., 2019). In organ
transplant recipients, HCMV-mediated disease and the risk for
the development of HCMV-mediated disease is dependent on
the nature of the transplant (i.e., solid organ vs. bone marrow;
Ramanan and Razonable, 2013; Stern et al., 2019). In addition,
chronic reactivation and long-term infection also appears to
result in various cardiovascular diseases including atherosclerosis
and restenosis (Zhou et al., 1996; Gilbert and Boivin, 2005).

Blood-borne monocytes, derived from CD34+ HPC in the
bone marrow, play a pivotal role in replenishment of tissue
resident macrophages involved in surveillance and elimination
of foreign pathogens. Under normal condition, these short
lived cells circulate in the bloodstream and only infiltrate
into secondary lymphoid organs and diverse tissues when
recruited via cytokines or other signaling processes, which in
turn allows their interaction with endothelial cells and their
subsequent migration through the endothelium (Serbina et al.,
2008; Jakubzick et al., 2013, 2017; Varol et al., 2015). However,
upon pathogenic challenge, monocytes can rapidly migrate to
sites of infection and differentiate into macrophages or dendritic
cells (DCs). These activated and differentiated innate immune
cells can initiate systemic immune responses directed toward
pathogens via secretion of inflammatory cytokines and delivery
of antigen to secondary lymphoid organs (Hume et al., 2019).
Due to their biopotency and immunological function, diverse
pathogens specifically target monocytes in order to evade and
manipulate systemic immune responses (Nikitina et al., 2018).
In addition, monocytes show a strong capacity to migrate to
nearly all tissues in the body as part of their homeostatic and
immune functions, which can be manipulated by pathogens
during infection to promote wide dissemination of the infectious
agent harbored in these infected monocytes.

During primary infection and following reactivation, HCMV
replication in monocytes/macrophages is tightly associated with
differentiation of infected monocytes into macrophages (Taylor-
Wiedeman et al., 1991, 1994; Maciejewski et al., 1993; Mendelson
et al., 1996; Smith et al., 2004a; Chan et al., 2012; Stevenson
et al., 2014). For example, in monocytes isolated from HCMV
sero-positive individuals, 0.01% of monocytes contain the viral
genome but showed undetectable levels of viral gene expression.
However, treatment of monocytes with hydrocortisone or
PMA induced differentiation into macrophages as well as
HCMV IE gene expression (Taylor-Wiedeman et al., 1994). In

addition, treatment with granulocyte-colony stimulating factor
(G-CSF) induces HCMV reactivation in human latently infected
monocytes/macrophages in a humanized animal model (Smith
et al., 2010). Primary infection of monocytes with HCMV also
induces differentiation of monocytes into macrophages; these
virus-differentiated macrophages show a macrophage phenotype
with expression of key macrophage markers (Smith et al.,
2004a, 2010; Noriega et al., 2014). At 3 weeks post-infection,
these differentiated macrophages begin to produce immediate
early (IE) proteins, which triggers the early (E) and late (L)
gene expression that initiates the production of mature virus
(Ibanez et al., 1991; Smith et al., 2004a; Stevenson et al., 2014).
In addition, the mobility and function of these differentiated
monocytes/macrophages is significantly increased (Ibanez et al.,
1991; Smith et al., 2004a, 2007; Chan et al., 2008, 2009a;
Stevenson et al., 2014; Collins-McMillen et al., 2017).

Monocytes and Macrophages
Mononuclear phagocytic cells including monocytes,
macrophages, and DCs—are associated with normal homeostatic
properties in the body, in addition to their role in immunological
surveillance (Arandjelovic and Ravichandran, 2015; Rodero
et al., 2015; Yona and Gordon, 2015). Monocytes, circulating
in the blood, have a short half-life (∼1.6 day) and can respond
to a variety of pathogens, which results in their activation
and the initiation of innate and adaptive immune responses
(Patel et al., 2017; Hume et al., 2019). Following pathogenic
stimulation, monocytes can differentiate into macrophages
and/or DCs. While DCs deliver antigens to secondary lymphoid
organs to stimulate naïve lymphoid cells such as T and B cells,
macrophages can trigger local inflammatory responses and show
a heightened phagocytic ability for a variety of pathogens. These
differentiated monocytes/macrophages can also replenish tissue
resident macrophages that originated from fetal liver and the
yok sac (Jakubzick et al., 2017). The nature of the signaling
that controls differentiation is complex with many receptors
and soluble factors controlling the process. For example,
differentiation can be initiated by pattern recognition receptors
(PRRs) and independent of this process, through a variety of
cytokines and other stimuli (Goudot et al., 2017).

The Infinite Loop of HCMV Infection
Long-term maintenance of HCMV in a host is the result
of the careful orchestration of the process of latency and
reactivation in infected hematopoietic progenitor cells. HCMV
has a diverse host cell tropism and virus is produced with
different rates depending on the type of infected cell (Collins-
McMillen et al., 2018a). In fibroblasts and endothelial/epithelial
cells viral particles are produced via a lytic replication cycle, but
in CD34+ hematopoietic stem cells (HPCs), the virus establishes
a latent infection (Sinzger et al., 2008; Goodrum, 2016; Collins-
McMillen et al., 2018a). In contrast, it seems that infection of
monocytes serves as a key bridge between lytic and latent phases
of infection (Figure 1; Smith et al., 2004a; Chan et al., 2012).
That is to say that monocytes are a key cell type for both lytic
and latent processes. At the site of initial infection, HCMV first
infects epithelial cells where the virus begins to proliferate and
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FIGURE 1 | Cycle of HCMV infection, latency and reactivation. HCMV infected epithelial cells at the initial infection site likely rapidly produce virus, which spreads to

adjacent cells at these local sites of infection. Monocytes infected with HCMV either as they are patrolling, or perhaps by free virus, then infiltrate into a variety of organ

tissues and spread virus throughout the whole body. These monocytes differentiate into macrophages allowing for organ persistence and infection of new epithelial

cells and virus release in various bodily fluids. Some of these infected monocytes infiltrate into the bone marrow and allow the establishment of latency in CD34+

HPCs. During a reactivation event, monocytes develop from CD34+ HPCs spreading virus throughout the whole body, again.

spread to adjacent cells. It appears that the virus spreads via
a cell-to cell-mediated route rather than a cell-free route since
virus is usually undetectable in the blood stream (Sinzger and
Jahn, 1996). Monocytes then become the next target of the virus.
Infected monocytes are a vector for viral spread due to their
mobility and ability to migrate into most organ tissues (Sinzger
and Jahn, 1996; Smith et al., 2004a), and it is the infiltration of
infected monocytes into the bone marrow that is required for
the establishment of latent infection in the CD34+ HPC reservoir
(Streblow and Nelson, 2003; Wills et al., 2015; Collins-McMillen
et al., 2018a). During reactivation, HCMV infected CD34+ HPCs
can develop into monocytes allowing viral spread throughout the
body (Smith et al., 2010; Crawford et al., 2018; Zhu et al., 2018).
This cycle is repeated to maintain HCMV in infected individuals
and in the human population as a whole; thus, there exists an
exquisite balance between reactivation and latency. This model
suggests that monocytes play a central role in the dissemination
and pathogenesis of HCMV.

Polarization of HCMV-Infected Monocytes
Due to the multi-potency and motility of monocytes, many
pathogens target monocytes as reservoirs of infection (Nikitina
et al., 2018). Many studies on the differentiation of monocytes
discuss the process in terms of immune evasion and/or
dissemination of the infecting pathogen (Hou et al., 2012; Foo
et al., 2017; Ayala-Nunez et al., 2019). For example, Asian-
lineage Zika virus (ZIKV) polarizes infected monocytes toward
M2 macrophages that express anti-inflammatory cytokines such
as IL-10 that likely suppress the adaptive immune response

in pregnant women (Foo et al., 2017). In addition, hepatitis
B core antigen triggers M2 polarization of monocytes via
TLR2-singaling pathway (Yi et al., 2020). In line with these
observations, we have documented that HCMV polarizes
monocyte differentiation into inflammatory macrophages (Chan
et al., 2009a; Stevenson et al., 2014) with a specific bias
toward an M1 phenotype. However, others have shown
that HCMV infection can inhibit the full differentiation of
infected monocytes induced to differentiate with cytokines
generated during allogeneic immune responses (Gredmark et al.,
2004a,b). It was also shown that HCMV infection can block
monocyte differentiation into DCs, likely through secretion
of anti-inflammatory cytokines such as IL-10 (Gredmark and
Soderberg-Naucler, 2003). Results from our transcriptome
analysis supported HCMV-induced differentiation of monocytes
into macrophages and specifically showed that ∼70% of
upregulated genes in HCMV-infected monocytes are considered
M1 or M2 macrophage transcripts. Since the transcript pattern
had a greater number of proinflammatory transcripts we
favor labeling of infected monocytes as having a biased
polarization toward an M1 phenotype (Chan et al., 2008, 2009a;
Stevenson et al., 2014). We realize that there are M2 cytokines
secreted from infected cells, so it seems that, although biased
toward M1, they likely have a blended unique phenotype that
favors viral replication. So why might there be differences
with HCMV-mediated differentiation? Besides being different
systems, the data provides biological clues to disease. Perhaps
the block in differentiation due to cytokines produced during
alloreactivity explain HCMV disease in allogenic stem cell
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transplant patients (Gredmark et al., 2004b). Collectively, the
data suggest HCMV regulates the polarization and differentiation
of monocytes towards a unique M1/M2 macrophage that favors
viral persistence under normal infection conditions.

Motility of HCMV-Infected Monocytes
Monocytes rapidly infiltrate into multiple organs following
appropriate stimuli (Jakubzick et al., 2017; Patel et al., 2017)
in a process that facilitates HCMV dissemination in these
infected monocytes (Bentz et al., 2006; de Witte et al., 2008;
Nogalski et al., 2011; Chan et al., 2012; Nikitina et al., 2018;
Ayala-Nunez et al., 2019). Other viruses are also known to
use this inherent monocyte ability. For example, ZIKV-infected
monocytes with high level expression of adhesion molecules
such as CD162, CD169, and CD43, show increased attachment
to brain endothelium, which may promote ZIKV infection of
neuronal cells (Ayala-Nunez et al., 2019). Monocytes infected
with human immunodeficient virus (HIV) can penetrate the
blood-brain barrier due to disruption and reduced expression of
tight junction proteins such as ZO-1, occludin, and claudin in the
barrier (Boven et al., 2000; Spindler and Hsu, 2012).

HCMV-infected monocytes can infiltrate a broad range of
tissues, which in turn results in multiorgan pathogenesis. The
migration of myeloid cells to specific sites is tightly regulated and
determined by chemokines (Rossi and Zlotnik, 2000). However,
it has been reported that expression of chemokine receptors such
as CCR1, CCR2, CCR5, and CXCR4 is reduced on the surface of
HCMV-infected monocytes, causing HCMV-infected monocytes
to be less response to these chemokines (Frascaroli et al., 2006).
Yet, overtime the HCMV-infected monocytes showed greater
movement than PMA treated monocytes. This pathogenic
motility was dependent on PI(3)K and the actin cytoskeleton
as LY294002 (an inhibitor of PI(3)K) or cytochalasin D (the
inhibitor of actin polymerization) treatment blocked motility
(Smith et al., 2004a,b). In addition, the activation of PI(3)K via
integrin and EGFR signaling induces the phosphorylation of
paxillin, a key molecule of actin rearrangement, and upregulation
of an actin-nucleator not usually associated with monocyte
motility, N-WASP (Chan et al., 2009b; Nogalski et al., 2011).
Collectively, the same signals that trigger differentiation also
stimulate motility in a chemotaxis-independent manner, known
as chemokinesis.

Survival of HCMV-Infected Monocytes
Viability of blood monocytes is tightly regulated by apoptosis,
which is triggered by a variety of death signals or diverse
microenvironmental perturbations and caspase-mediated cell
death processes (Galluzzi et al., 2012). Survival of infected
monocytes is important for their differentiation, replication and
persistence. Although these are discrete biological processes that
are interrelated, ultimately similar pathways are involved in both
processes. In serum-free medium, more than 70% of monocytes
spontaneously undergo apoptosis and show the activation of
caspase 3 within 16 h (Fahy et al., 1999). Due to the short half-
life of monocytes, pathogens targeting and utilizing monocytes
must have a “strategy” to extend their life span (Nikitina et al.,
2018). HCMV-infected monocytes/macrophages can survive for

long periods of times (weeks ∼ years), which allows long-
term viral production in infected cells (Wardley and Wilkinson,
1978; Nagra et al., 1993; Mistrikova et al., 1994; Radkowski
et al., 2005; Psalla et al., 2006; Nikitina et al., 2018). HCMV-
infected monocytes can survive for months-to-years as a result
of subverting various cell death pathways (Smith et al., 2004a).
HCMV glycoproteins interacting with cellular receptors activates
anti-apoptotic molecules such as Bcl-2 family members to inhibit
apoptosis (Chan et al., 2010; Collins-McMillen et al., 2015). In
addition, a number of other cell death pathways are regulated
by variety of viral gene products (reviewed in Collins-McMillen
et al., 2018b). It is expected that once productive infection is
initiated, in the context of viral lytic gene expression, these viral
produced anti-apoptotic factors such as pUL36, pUL37x1, and
pUL38 to name a few (reviewed in Collins-McMillen et al.,
2018b) would play key roles in the extended survival of these
infected macrophages. Collectively, HCMV-induced signaling
controls the expression of anti-apoptotic molecules such as Mcl-
1 and Bcl-2 and others, resulting in the long-term survival of
HCMV-infected monocytes, which in turn allows differentiation
to proceed.

Mechanisms of Monocyte to Macrophage
Differentiation During HCMV Infection
Monocytes are considered a major vector or Trojan Horse for
hematogenous dissemination of the virus following primary
infection and upon reactivation from latency. Thus, there is a
strong need to better understand the pathological consequences
of their infection (Streblow and Nelson, 2003; Chan et al., 2012).
Upon initial infection monocytes generate very little viral gene
expression, with viral genes only being seen 2–3 weeks after
infection and cellular differentiation (Ibanez et al., 1991; Smith
et al., 2004a, 2010; Stevenson et al., 2014; Kim et al., 2016).
These results suggest that cellular differentiation is required for
the initiation of the expression of IE genes and viral replication
(Ibanez et al., 1991; Smith et al., 2004a; Nogalski et al., 2011).
For HCMV-induced monocyte to macrophage differentiation,
we have broadly outlined three steps (Figure 2). (1) Receptor-
ligand interactions and the initiation of differentiation, (2) Full
differentiation with concomitant viral nuclear translocation and
(3) IE gene expression and mature virus release from long-term
infected macrophages. We will discuss each step during primary
infection of HCMV in monocytes/macrophages below.

HCMV-Induced Receptor-Ligand Signaling
HCMV infection results in rapid cellular activation and early
steps in the differentiation process of monocytes during the cell
binding and entry phase via a pathogen associated molecular
pattern (PAMP) independent manner (Boehme et al., 2006;
Smith et al., 2007; Chan et al., 2009b; Yew et al., 2010, 2012;
Nogalski et al., 2011, 2013; Kim et al., 2016; Collins-McMillen
et al., 2017). Glycoproteins on the HCMV envelop engage
several cellular receptors, including the epidermal growth factor
receptor (EGFR), β1 and β3 integrins and heparan sulfate
proteoglycans (Wang et al., 2003; Feire et al., 2004; Nogalski et al.,
2013) (Figure 3). Other receptors have also been documented
to bind to various viral glycoproteins (Soroceanu et al., 2008;
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FIGURE 2 | Simply model for the differentiation of primary HCMV-infected monocytes. We have loosely grouped the process of differentiation into 3 phases. Phase (1)

Viral glycoproteins interact with cellular receptors during cell entry, which activates a variety of signaling cascade that in turn promote the early stages of differentiation

(<72 h after infection). Phase (2) The activated signaling is sustained and continues to induce monocyte differentiation into a unique M1/M2 macrophage (72 h ∼ 2

weeks after infection). Phase (3) Differentiated macrophages show chronic activation and long-term survival (months to years) and show expression of a full cascade

of viral genes and production of infectious virions (> 2 weeks after infection).

Martinez-Martin et al., 2018; Xiaofei et al., 2019). However,
it remains unclear the role that these receptors play during
entry and signaling in monocytes. HCMV glycoprotein B (gB)
and gH/gL/UL128-131 (the Pentamer), respectively, engages
EGFR and β1/β3 integrins for viral entry, which induces the
activation of PI(3)K and other signaling pathways (Chan et al.,
2008, 2009a,b, 2012; Nogalski et al., 2013). The HCMV-induced
signalosome following viral binding contributes to monocyte
differentiation and motility, resulting in the induction of the
unique M1/M2 macrophage phenotype (Ibanez et al., 1991;
Smith et al., 2004a; Bentz et al., 2006; Chan et al., 2008).

Our data collectively supports that the interaction between
viral envelop glycoproteins and cellular receptors leads to
monocyte differentiation into macrophages (Ibanez et al., 1991;
Smith et al., 2004a; Stevenson et al., 2014; Collins-McMillen
et al., 2017). Furthermore, it does not appear that expression
of de novo viral gene products is required for monocyte-to-
macrophage differentiation because we have observed a delayed
nuclear translocation of the viral genome until 3 days post-
infection (Kim et al., 2016) and a lack of de novo IE gene
expression until around 3 weeks post-infection, which is after
cellular differentiation has occurred (Smith et al., 2004a; Nogalski
et al., 2013). Furthermore, use of UV-inactivated HCMV also
induces monocyte differentiation in a manner similar to that
seen with live HCMV, indicating that ligand-receptor interaction
without the expression of viral genes plays a pivotal role in
the differentiation of HCMV infected-monocytes (Smith et al.,
2004a). Lastly, through blockade of type I and II interferons, we

also noted that these interferon pathways are not involved early
in the infection process (Collins-McMillen et al., 2017).

HCMV engagement of cellular receptors initiates not only
viral entry but also monocyte differentiation into macrophages.
EGFR is required for viral entry via interaction with viral gB
(Wang et al., 2003; Chan et al., 2009b) (Figure 3). A recent study
showed that EGFR and integrin signaling are required for HCMV
mediated monocyte differentiation (Smith et al., 2007; Chan
et al., 2009b, 2012; Nogalski et al., 2013; Collins-McMillen et al.,
2017). Pharmacological inhibition of EGFR with AG1478 (EGFR
tyrosine kinase inhibitor), and/or PP2 (Src kinase inhibitor)
significantly reduced phosphorylation at Y701 and S727 in signal
transducer and activator of transcription 1 (STAT1), which in
turn affected monocyte function and differentiation (Collins-
McMillen et al., 2017). Also, knockdown and inhibition of STAT1
by siRNA and fludarabine (an inhibitor of STAT1 activation)
further implicated receptor-ligand signal induced STAT1 in
differentiation of monocytes into macrophages. Although STAT1
plays a key antiviral role duringmost infections, we argued in this
study that phosphorylation and upregulation of STAT1 was used
during HCMV infection to promote monocyte differentiation
and that activation of the EGFR and integrin signaling pathways
following viral binding initiated this process.

The viral genome is rapidly translocated into the nucleus
of fibroblasts and epithelial/endothelial cells; however, in
monocytes, there is an extended nuclear translocation and
trafficking process in which the virus must move through the
trans-golgi network and recycling endosomes before nuclear
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FIGURE 3 | Signal transduction in monocytes during HCMV primary infection.

Binding of gB to EGFR and the pentamer to β1 and β3 integrins activates

downstream signaling pathways via the EGFR tyrosine kinase and c-Src,

respectively. This gB and pentamer activation of monocytes creates a viral

signalosome that leads the differentiation of monocytes-into-macrophages.

Monocytes can also be activated by Toll-like receptors (TLRs) and RIG-I like

receptors (RLR), which recognizes pathogen associated molecular patterns

(PAMP). It is unclear how TLRs and RLRs affect differentiation of monocytes

following HCMV infection. Other potential receptors also exist and how they

influence monocyte infection is also unknown.

translocation occurs around 3 days post infection (Kim
et al., 2016). Receptor-ligand signaling between integrins and
the gH/gL/UL128-131-complex is required for viral entry,
endosomal trafficking and nuclear translocation (Kim et al., 2016;
Collins-McMillen et al., 2017). Pharmacological inhibition of
β1 and β3 integrin induced signaling through c-Src reduced
efficient viral entry, and showed that the viral particles that did
enter the cell underwent rapid lysosomal degradation, further
emphasizing the importance of early signaling (Nogalski et al.,
2013; Kim et al., 2016). HCMV gB engages EGFR, as discussed
above, and this engagement is also essential for viral entry and
productive infection (Chan et al., 2009b); demonstrating that
multiple signaling complexes exist that work in cooperation to
drive the biological processes required for productive infection
of monocytes/macrophages.

PAMP-Dependent Differentiation
PAMPs are recognized by Pattern Recognition Receptors (PRRs)
such as Toll-like receptors (TLRs) or the various intracellular
biosensors such as Retinoic Acid Inducible Gene I (RIG-I),
cyclic GMP-AMP synthase (cGAS), and Stimulator of Interferon

Gene (STING) (Takeuchi and Akira, 2010; Li and Chen, 2018).
This PRR/PAMP engagement induces inflammatory cytokines
and activates many different immune response pathways.
This PRR/PAMP engagement can also result in monocyte
differentiation under some circumstances (Krutzik et al., 2005).
HCMV components have been reported to be recognized by
PRRs and to lead to the production of inflammatory cytokines
(Figure 3). For example, purified gB interacts with TLR2
(Boehme et al., 2006). HCMV infection was also seen to induce
the expression of IL-12 and TNF-α in THP-1 cells via TLR2 and
9, respectively (Yew et al., 2010). cGAS, a cytosolic DNA sensor,
but not IFI16, recognizes HCMV and induces type I interferons
(Type I IFNs), in endothelial cells (Lio et al., 2016). IFI16,
however, can regulate HCMV replication in fibroblasts even
though a relationship with Type I IFNs was not shown (Gariano
et al., 2012). This PAMP dependent signaling can alter infection
of some cell types and under some circumstances contribute to
the differentiation of HCMV-infected monocytes, although more
work needs to be undertaken to elucidate this process further.
We have noted that human monocyte activation occurs in the
absence of a robust IFN response (Collins-McMillen et al., 2017)
and thus argue that glycoprotein-cell receptor engagement is the
key event dictating monocyte differentiation following primary
infection. We also suggest that perhaps the observed extended
trafficking is, in part, a mechanism to avoid PRRs and the
immune response to the virus (Kim et al., 2016).

Transcriptional Changes During
Differentiation
The initiation of differentiation occurs early, with significant
transcriptional changes seen ∼4–24 h after infection that is
strongly induced by engagement of viral glycoproteins with
various cellular receptors (Chan et al., 2008, 2009a; Stevenson
et al., 2014) (Figure 4). For example, at 4 h post-infection,
65% of genes related to classic M1 macrophage polarization
(inflammatory macrophage) are up-regulated in HCMV primary
infected monocytes, while only 4% of genes associated with
classic M2 macrophage polarization (resolving/wound healing
macrophage) are upregulated (Chan et al., 2012). On the other
hand, proteomic analysis of the secretome identified that a
similar level of M1 (44%) and of M2 (33%) chemokines were
produced. In addition, these early transcriptional changes were
controlled by NF-κB and PI(3)K signaling events as treatment
with pharmacological inhibitors of these pathways (Bay 11-7802;
an inhibitor of NF-κB activity or LY294002; an inhibitor of
PI(3)K activity) inhibited expression of 30–50% of M1 and 100%
of M2 upregulated genes in infected monocytes. Interestingly,
the cytokines induced during this time frame are monocyte
trophic recruiting factors such as CCL2, CXCL10 and CCL15
as well as the anti-inflammatory cytokine IL-10 (Chan et al.,
2008). Not only are there early transcriptional changes, but
there are also long-term transcriptional changes in HCMV-
infected monocytes. Transcriptional analysis showed a dynamic
change in M1 and M2 related genes over 4 h ∼ 2 weeks course
of infection (Figure 4) (Chan et al., 2008; Stevenson et al.,
2014). Viral homologs of human IL-10 (UL111A) have been

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6 July 2020 | Volume 10 | Article 368

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Min et al. HCMV Replication Requires Monocyte Differentiation

FIGURE 4 | Kinetics of select M1/M2 genes in HCMV infected

monocytes/macrophages. M1 and M2 macrophage related genes in

HCMV-infected monocytes are differently expressed in a time dependent

manner (4 h ∼ 2 weeks after HCMV infection). The graph indicates the

temporal changes in M1 (Red) or M2 (Blue) macrophage related gene

expression patterns using a select few genes to emphasize the patterns of

expression. The results are reanalyzed data of previous transcriptome analyses

(Chan et al., 2008; Stevenson et al., 2014).

reported to induce the differentiation of monocytes toward an
M2 macrophage (Avdic et al., 2013, 2016), perhaps this IL-10
made prior to viral gene expression has a similar function. This
data suggests HCMV infection promotes monocyte recruitment
into tissues where upon differentiation occurs. The HCMV
differentiated macrophage shows a unique M1/M2 phenotype
and transcriptional and secretomic profiling suggests the virus
creates a long term “perfect” macrophage for viral replication.

Differentiation During Reactivation From
Latency
CD34+ HPCs in the bone marrow are considered to be the
major reservoir for HCMV latency (Streblow and Nelson, 2003;
Cheng et al., 2017; Collins-McMillen et al., 2018a; Buehler
et al., 2019). Monocytes discussed above likely carry virus into
the bone marrow following primary infection to promote the
establishment of latency (Chan et al., 2012). During reactivation
from latency, the differentiation of CD34+ HPCs into monocytes
is important for widespread viral dissemination (Sinclair, 2008;
Smith et al., 2010; Crawford et al., 2018; Zhu et al., 2018; Hancock
et al., 2020). Although the initiation of viral reactivation in
CD34+ HPCs remains unresolved, it is known that a number
of viral genes such as US28 and UL7 are involved in the
differentiation of CD34+ HPC during reactivation (Crawford
et al., 2018, 2019; Zhu et al., 2018). Other products such as UL138,
LUNA are also involved in reactivation (Lee et al., 2015; Collins-
McMillen et al., 2018a; Poole et al., 2018; Elder and Sinclair,
2019). We briefly discuss below those gene products that have
been reported to be involved in cellular differentiation.

US28
US28, a viral G protein-coupled receptor, is strongly associated
with the differentiation of CD34+ HPCs into monocytes during
reactivation (Vomaske et al., 2009a,b; Zhu et al., 2018; Crawford
et al., 2019). US28 expression during latent-infection of CD34+

HPCs plays a key role in the maintenance of latency (Vomaske
et al., 2009a; Poole et al., 2013; Crawford et al., 2015, 2019;
Cheng et al., 2017; Krishna et al., 2019). A recent study showed
that US28 is involved in the programming of CD34+ HPCs for
a longer-life span, perhaps to better allow differentiation into
monocytes or macrophages (Zhu et al., 2018). A US28 deficient
mutant HCMV was unable to activate the cellular signaling
transducer and activator of transcription 3 (STAT3) and failed
to differentiate CD34+ HPCs into monocytes expressing CD14,
CD11b, M-CSFR, and CD16 (Zhu et al., 2018). Furthermore, in
a humanized mice model, a US28-Y16F mutant virus (a ligand
bindingmutant) was unable tomaintain latency in CD34+ HPCs,
which suggests that US28 ligand binding is required for the
maintenance of HCMV latency in CD34+ HPCs (Vomaske et al.,
2009a; Crawford et al., 2019)

UL7
HCMV UL7 is a novel carcinoembryonic antigen-related cell
adhesion molecule 1 (CEACAM-1)- like molecule, that is
homologous to CD229, the signaling lymphocyte-activation
molecule (SLAM) which is involved in leukocyte activation
(MacManiman et al., 2014). It was reported that UL7 transfected
myeloid cells, including immature dendritic cells, monocytes,
and macrophage cell lines showed reduced production of pro-
inflammatory cytokines such as IL-8, IL-6, and TNF with or
without co-treatment with PMA or lipopolysaccharide (Engel
et al., 2011). Importantly for myeloid cell differentiation, a recent
study showed that UL7 induces CD34+ HPC and monocyte
differentiation (Crawford et al., 2018). Furthermore, UL7 was
shown to bind to the Flt3R and induce phosphorylation and
activate downstream molecules including Akt and ERK1/2. This
was the first report of an HCMV gene product acting like a stem
cell-like factor.

HCMV Replication in Differentiated
Macrophages
The replication of HCMV in primary infected myeloid cells
is closely related to their differentiation status (Chan et al.,
2012; Stevenson et al., 2014). The same point holds true for
these cells during reactivation of latent virus. The differentiation
of monocytes, that are latently infected with HCMV, require
differentiation of the cells into macrophages in order to show
lytic gene expression (Taylor-Wiedeman et al., 1994; Soderberg-
Naucler et al., 1997; Smith et al., 2010; Nogalski et al., 2013). A
similar process occurs in seropositive individuals, as allogenic
stimulation and differentiation was shown to be essential
for viral replication in HCMV-infected monocytes isolated
from a seropositive individual (Taylor-Wiedeman et al., 1994;
Soderberg-Naucler et al., 1997; Smith et al., 2010). Allogenic
stimulation induced the reactivation of viral replication, but also
the differentiation of monocytes into macrophages expressing
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M1 polarized markers such as CD14, CD64, CD83, and HLA-
DR. Interestingly, the study showed that allogenic stimulated
monocytes also expressed a surface marker of dendritic cells—
CD1a. Consistent with the result seen following allogenic
stimulation of monocytes from seropositive individual, in vitro
primary infected monocytes expressed CD68 and HLA-DR
(Smith et al., 2004a). These primary infected HCMV infected
monocytes also expressed the M1-specific markers, CD86 and
CD71, and the M2-specific maker, CD163 (Stevenson et al.,
2014). These initial phenotypic analyses are consistent with the
data from various transcriptomes showing a unique M1/M2
phenotype in the differentiated macrophages, demonstrating that
in many cases whether primary infection of monocytes, which
results in differentiation to productively infected macrophages or
reactivation and differentiation of that latently infectedmonocyte
to a productively infected macrophages there seems to be
similar phenotypic characteristics (even though molecular and
biological differences exist). Interestingly, these infected allogenic
stimulated monocytes/macrophages generated detectable levels
of IE proteins at 4–5 days post reactivation and viral late
proteins started to accumulate around 7 days post stimulation.
Ultimately, it appears that differentiation is required and essential
for HCMV infected monocytes to become productively infected
macrophages and to efficiently produce infectious virions (Ibanez
et al., 1991; Smith et al., 2004a; Stevenson et al., 2014).

FUTURE PERSPECTIVE

A distinct combination of viral and cellular mechanisms
orchestrates the differentiation of HCMV-infected myeloid cells.
This differentiation of monocytes into tissue macrophages is

a required step both in primary infection and in reactivating
virus in monocytes. Since previous studies elucidated some of
the responsible factors for the differentiation using advanced
techniques and diverse models, we now need to focus on the
specific factors driving the molecular and biological processes
with an attention toward identifying the steps that could be
blocked to mitigate disease. We also need to better characterize
the differentiated macrophage in order to understand how
HCMV manipulates the immune system of the host. Since
monocytes differentiate into a diverse array of macrophages via
various environmental factors in vivo, we need to define how
HCMV controls specific points of differentiation using ex vivo or
equivalent systems in order to better define mechanism involved
and what the ideal virally infected long-term macrophage really
“looks like.” Even though these questions are difficult to answer,
these results would provide a new point for discussion of
HCMV pathogenesis during primary infection and reactivation
and the information would help promote the development of
new drug targets that could be used to alleviate disease in
immunocompromised patients.
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