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Abstract

Background: The widespread incorporation of next-generation sequencing into clinical oncology has yielded an
unprecedented amount of molecular data from thousands of patients. A main current challenge is to find out
reliable ways to extrapolate results from one group of patients to another and to bring rationale to individual cases

in the light of what is known from the cohorts.

Results: We present OncoGenomic Landscapes, a framework to analyze and display thousands of cancer genomic
profiles in a 2D space. Our tool allows users to rapidly assess the heterogeneity of large cohorts, enabling the
comparison to other groups of patients, and using driver genes as landmarks to aid in the interpretation of the
landscapes. In our web-server, we also offer the possibility of mapping new samples and cohorts onto 22 predefined
landscapes related to cancer cell line panels, organoids, patient-derived xenografts, and clinical tumor samples.

Conclusions: Contextualizing individual subjects in a more general landscape of human cancer is a valuable aid for
basic researchers and clinical oncologists trying to identify treatment opportunities, maybe yet unapproved, for
patients that ran out of standard therapeutic options. The web-server can be accessed at https://oglandscapes.

irbbarcelona.org/.

Background

The widespread incorporation of next-generation sequen-
cing into clinical oncology has yielded an unprecedented
amount of molecular data from thousands of patients,
holding promise for a healthcare revolution [1, 2]. One of
the current challenges is to find out reliable ways to
extrapolate results from one group of patients to another
and to bring rationale to individual patients in the light of
what is known from the cohorts. In this context,
visualization tools that enable the exploration and analysis
of large genomic datasets become essential for efficient in-
terpretation and effective communication.

Conventional strategies often represent dysregulated
genes in a cohort as a matrix, with samples as columns
and genes as rows, sorted according to the frequency of
the genomic alterations [3—6]. Although this representa-
tion is useful to identify the main driver genes and to
find recurrent patterns, it often misses the capability of
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capturing the global structure of a cohort of patients or
the comparison to other cohorts. Other approaches are
more focused on exploiting population structure pat-
terns based on genomic profile similarities computed
considering the whole genome or transcriptome [7-9].
The representations generated by these methods are
difficult to interpret from a biological point of view since
most of the genomic alterations considered are of
unknown functional impact. Furthermore, with the
exception of the recently presented TumorMap [7], the
available tools do not offer a means to locate individual
patient data within the cohort as a whole. In this con-
text, as a complementary approach, we have developed a
visualization tool to allow the global characterization of
cohorts, and that focuses on driver alterations with
known functional impact on oncogenesis, yielding a glo-
bal picture of a cohort that is biologically interpretable.

Implementation
Dataset summary
We collected 16,508 genomic profiles (coding somatic
mutations and copy number variants) that are represen-
tatives of several cohorts of patients and cancer models
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(patient-derived xenografts, organoids, and cell lines).
We considered the 92.15% of samples having a puta-
tively oncogenic alteration in one or more genes covered
by the IMPACT410 gene panel (see Table 1). If solicited,
future updates can easily incorporate larger patient co-
horts, such as the complete TCGA [10] and ICGC [11]
sets, and whole exome sequencing data, to complement
the 410 genes included in the IMPACT panel [12].

Variant filtering

In order to filter out as many passenger alterations as
possible, we applied a strict filtering pipeline described
below, which was slightly tailored to each dataset:

TCGA patients

We downloaded the Catalog of Driver Mutations -
2016.5, a curated dataset of known and predicted onco-
genic coding mutations identified after analyzing 6792
exomes of a PanCancer cohort of 28 tumor types [13]. We
could complement this information with copy number
variation data [14, 15] for 4058 patients, representing 16
tumor types. In addition to the known and predicted
oncogenic coding mutations, we also considered as onco-
genic the deletion (GISTIC score < - 2) of tumor suppres-
sor genes and the amplification (GISTIC score>2) of
oncogenes. The role of driver genes was established by
inspecting the Catalog of Cancer Genes [16].

MSKCC patients

We obtained both protein coding mutations (msk_im-
pact_2017_mutations) and copy number variants
(msk_impact_2017_cna) from the MSK_IMPACT Clin-
ical Sequencing Cohort [12] through cBioPortal [14, 15].
Genes with a copy number alteration score<-2 or >2
were considered as putative deletions or amplifications,
respectively.

Novartis PDXs

We collected the 375 PDXs for which both mutations
and copy number alterations were available [17]. After

Table 1 Summary of sample size and provenance
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analyzing the probability distribution of the estimated
absolute copy number per gene, we considered absolute
copy numbers below 1 or above 4 as gene deletions or
amplifications, respectively. Using these criteria, we ob-
served significant differences in gene expression between
deleted tumor suppressors and amplified oncogenes
(Additional file 1: Figure S1A), confirming that those
thresholds are biologically relevant.

GDSC cell lines

We used gene level copy number data reported in the
Genomics Drug Sensitivity in Cancer (GDSC) resource
[18], which is based on PICNIC analysis of Affymetrix
SNP6.0 arrays. We considered genes with a minimum
copy number of any genomic segment mapping to that
gene below 1 or above 6 as gene deletions or amplifications,
respectively. Using those thresholds, we observed signifi-
cant differences in gene expression between deleted tumor
suppressors and amplified oncogenes (Additional file 1:
Figure S1B), as described above for the analysis of copy
number variants in PDXs.

OncoTrack [19]

We downloaded the genomic profiles of a biobank of
106 tumors, 35 organoids, and 59 xenografts. Copy
number alterations were already annotated as “Amplifi-
cation” or “Deletion.”

For MSK-IMPACT, Novartis PDXs, GDSC cell lines
and OncoTrack datasets, protein-coding somatic mu-
tations (following HGVS nomenclature recommenda-
tions), and copy number variants were classified into
predicted passenger or known/predicted oncogenic
alterations using the cancer genome interpreter re-
source [16].

After filtering out putative passenger alterations, we
subsampled the dataset to consider only oncogenic alter-
ations covered by the IMPACT410 gene panel [20],
which provided a much larger reference cohort (> 10,000
patients MSKCC [12]) while retaining enough signal to
build meaningful OncoGenomic Landscapes.

Biological source

No. of samples with
SNV and CNV data

No. of samples with driver
alterations in whole exome

No. of samples with driver
alterations in IMPACT410

TCGA [10] Patients 4058
MSK-IMPACT [12] Patients 10,945
Novartis PDXs [17] PDXs 375
OncoTrack [19] Patients 117
PDXs 59
Organoids 46
GDSC Cell Lines [18] Cell lines 908
TOTAL - 16,508

3935 3850
- 9869
375 375
109 109
59 59

46 46
904 904
5428 15,212
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2D projections

We built a Boolean matrix encoding the oncogenic alter-
ations identified in each sample (in rows) and driver gene
(in columns). We then calculated the Jaccard distance be-
tween all pairs of unique samples and used the resulting
distance matrix as input for a metric multidimensional scal-
ing (MDS), carried out using the scikit-learn implementa-
tion of MDS [21] with default parameters (2 components, 4
SMACOF initializations, and a maximum of 300 iterations
per run). As a result, we obtained (x, y) coordinates for each
of the samples (i.e, a 2D projection). The corresponding
level plots were generated by the 2D kernel density estimate
function of the seaborn library, using 20 levels and a gray
scale color-map as background. The PanCancer and more
specific landscapes are the result of applying this procedure
to the whole dataset and sample subsets, respectively.

To assess the significance of the distance metric and
the dimensionality reduction strategy used to generate
the landscapes, we examined whether the organization
of samples in the PanCancer Landscape reflects the
tissue-of-origin of the tumor. We observed a significant
clustering of samples based on tissue-of-origin when
examining both the Jaccard similarity coefficient in the
multidimensional space and the Euclidean proximity in
the MDS space. To evaluate the robustness of the
current strategy, we also assessed the clustering of sam-
ples when using a Kernel PCA projection, an approach
previously used in the field [9]. We observed that the
MDS projection yields greater spatial resolution com-
pared to Kernel PCA and that the proximity in the MDS
space has a stronger correlation with the proximity in
the multidimensional space (Additional file 1: Figure S2).

When new samples are to be mapped onto a given land-
scape, we approximate their location by a nearest neigh-
bor search in the original multidimensional space of
genomic alterations (i.e., Jaccard distance). A new sample
is assigned the (x, y) coordinate of its nearest neighbor,
and the distance between them serves as a confidence
score of the mapping. We found this simple strategy to be
sufficient, as it yields an error comparable to the intrinsic
one of SMACOF MDS (Additional file 1: Figure S3).

Cohort overlays

In order to highlight the territory occupied by a subset of
samples, we obtained the (x, y) coordinates of the selected
samples in a given landscape and generated a 2D kernel
density estimate with the kdeplot function using 20 levels,
a transparent background, and contours colored using a
color-map that represents probability density as heat.

Driver landmark overlays

Similarly, to highlight the territory occupied by samples
that have an oncogenic alteration in a given driver gene,
we obtained the coordinates of those samples and
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generated a 2D kernel density estimate using 4 levels.
We modified the resulting plots by removing the level
with the lowest density and setting the same color and
transparency to the rest of levels.

Survival analysis

We used the median distance to the 22 nearest PDXs,
which correspond to 5% of the 434 Novartis PDXs, as a
measure of how far a patient is to the PDXs. Patients in
the upper and lower quartiles of the median distance
distribution were considered to be distal or proximal to
PDXs, respectively. We compared the lifespans of pa-
tients that are proximal or distal to PDXs using the
Kaplan-Meyer estimate of the survival function and per-
formed a log-rank test to assess the statistical signifi-
cance of the observed difference using the lifelines
library. Additionally, we investigated the effect of dis-
tance to PDXs on survival using Cox’s proportional
hazards regression model, adjusting for tumor type and
patient provenance covariates.

Results and discussion
We have developed a visualization tool that is mainly fo-
cused on the global characterization of cancer cohorts. Our
computational pipeline mines and integrates genomic pro-
files from 13,827 cancer patients and 1385 cancer models
(434 patient-derived xenografts, 46 organoids, and 905 cell
lines), compares pairs of samples based on shared onco-
genic alterations, and plots the results in a 2D space that
we called OncoGenomic Landscape. We offer our tool as a
web-based interface that enables the comparison of the
main cohorts published to date, as well as the possibility of
mapping new samples or cohorts on any of the available
landscapes. Below, we describe some test cases to illustrate
the utility of our tool, and we also provide a step-by-step
tutorial on how to perform basic downstream analyses
(available at https://oglandscapes.irbbarcelona.org/tutorial).
Figure 1 displays the distribution of samples across the
PanCancer Landscape, including 15,212 genomic profiles
from different tissues (see Table 1). As expected, territories
corresponding to recurrent drivers such as TP53 or KRAS
are well populated (Fig. 1a). Perhaps more interesting is the
relatively large amount of patients that occupy a territory
shared by TP53 and KRAS alterations, consistent with a
significant co-occurrence observed in the MSK-IMPACT
Clinical Sequencing Cohort [12, 15], and suggesting a syner-
gistic effect between these alterations. It is also apparent that
samples with alterations in CDKN2A and CDKN2B occupy
almost identical regions, which agrees with the finding that
these two tumor suppressors are usually co-deleted as they
are encoded next to each other in a very small locus [22].
Beyond key gene alterations, the PanCancer Landscape
retains the tissue of origin of the tumors (Fig. 1b). We can
observe how certain tumor types (e.g., glioblastoma or
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Fig. 1 Visual display of the OncoGenomic Landscape of cancer. a PanCancer Landscape populated by 15,212 samples of 19 major tumor types of
different biological origin (13,827 patients, 434 PDXs, 46 organoids, 905 cell lines). The territories occupied by samples that have at least one of
the five most recurrent oncogenic alterations are shaded in different colors and serve as landmarks for molecular interpretation. b Distinct
territories occupied by the nine most comprehensively characterized tumor types are depicted as transparent level plots overlaid on the
PanCancer Landscape background. BRCA breast carcinoma, LUAD lung adenocarcinoma, COREAD colorectal adenocarcinoma, PRAD prostate
cancer, GBM glioblastoma multiforme, RCCC renal clear cell carcinoma, CM cutaneous melanoma, OV ovarian cancer, and THCA thyroid cancer.

¢ The OncoGenomic Landscape of breast invasive carcinoma (BRCA) patients is shown to illustrate how each of the 19 tumor type-specific
landscapes is displayed in our web-server. Colors represent the territories occupied by samples having oncogenic alterations in five breast cancer
specific landmark driver genes. d Boxplot showing the median distance of breast cancer samples to the 5% nearest neighbors in each
comparison. The first two boxes compare the median distance of all breast cancer patients among themselves and to patients with other tumor
types. The remaining pairs of boxes focus on patients that have an oncogenic alteration in each of the main five BRCA driver genes. Panels a, b,
and c are screenshots directly obtained from the web-server. Panel d was generated after performing the statistical analysis outside of the app

colorectal adenocarcinoma) often present a limited set of otherwise be hidden in the broader PanCancer Landscape
driver mutations and are thus restricted to very specific  (Fig. 1c). For instance, despite their considerable heterogen-
areas in the map, while other types (e.g., breast cancer or eity, we see that breast cancer samples are closer to each
prostate adenocarcinoma) show a much more diverse other than to other tumor types (Fig. 1d). The observed
pattern of oncogenic alterations and are widely spread. In  proximity cannot be only attributed to the presence of
both cases, it is possible to cluster cancer patients based on ~ common driver genes since we observe that tumor samples
the tissue of origin of their tumor and to identify dominant  in different tissues sharing the most frequent driver alter-
groups representing each tumor type (Additional file 1: ations in breast cancer are significantly more distal. These
Figure S2), as previously suggested for the 12 major cancer  results strongly suggest that our tumor type-specific terri-
types [3, 4] and, more recently, for the 33 cancer types that  tories capture complex mutational signatures that cannot
comprise the complete TCGA PanCancer Analysis [6]. be attained by analyzing driver genes individually.

Moreover, we can zoom in on a region that is specific for a The accurate comparison of patient or cancer model co-
certain tumor type and capture patterns that might horts is fundamental to evaluate their molecular diversity
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and, more importantly, to assess whether information such
as treatment benefits or prognostic factors learned from a
reference group can be safely transferred to a new cohort.
For instance, by comparing primary resections of treatment
naive tumors (3850 patients from The Cancer Genome
Atlas (TCGA)) to 9869 clinically aggressive tumors from
the Memorial Sloan Kettering Cancer Center (MSKCC), we
can readily see than alterations in TP53 are much more
common in the MSKCC cohort than in TCGA, as recently
reported [12], while BRAF alterations show the opposite
trend (Fig. 2a). We believe that portrayals like this might
also guide the design of clinical basket trials, where patients
are selected based on their oncogenomic profiles regardless
of their specific tumor type [23].

We can also use OncoGenomic Landscapes to assess the
molecular representativity of different model systems (cell
lines, organoids, or patient-derived xenografts (PDXs)) with
respect to a reference clinical cohort. For example, even
though alterations in TP53, KRAS, and CDKN2A are the
most prevalent in pancreatic ductal adenocarcinoma pa-
tients [22], when we look at the tumors that successfully
engrafted in mice (ie, PDXs), we clearly see that
CDKN2A-CDKN2B co-alterations are much more frequent
in PDXs than it would be expected from clinical data
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(Fig. 2b), supporting the idea that the simultaneous inacti-
vation of CDKN2A and CDKNZ2B is required for the
induction of pancreatic cancer in adult mice with overex-
pressed KRAS®'*P and loss of TP53 [22]. Conversely, we
observe that the small collection of 69 OncoTrack colorec-
tal organoids [19] spans the molecular diversity seen in a
much larger cohort of COREAD patients (188 from TCGA
and 953 from MSKCC) (Fig. 2¢). Finally, the overlay of 905
cancer cell lines [18] on top of patient samples reveals a
lack of cell models to study the effects of KRAS and BRAF
mutations alone (Fig. 2d).

Interestingly, we also find that distances in OncoGe-
nomic Landscapes correlate with relevant clinical features.
Mutations in the androgen receptor (AR) in prostate and
in estrogen receptor (ESR1) in breast cancer are related to
acquired resistance to hormonal therapies. The density of
patients with mutations in those genes is notoriously
higher in MSKCC than in TCGA, consistent with the
known clinico-pathological differences of those two co-
horts (Fig. 3a). We can also relate territories in the
landscape to overall survival probabilities (Fig. 3b). It is
well documented that during the establishment of PDXs,
there is an engraftment bias towards more aggressive tu-
mors [24, 25]. Accordingly, we see that patients that are

@ TCGA on MSKCC patients

c Colorectal organoids
on patients

Fig. 2 Overlay of different OncoGenomic Landscapes. a The cohort of primary tumors from TCGA (n = 3850) is displayed as a transparent level plot
overlaid on a largest cohort of clinically aggressive tumors from MSKCC (n = 9869), represented as a background landscape in gray scale. In a similar way, b
pancreatic adenocarcinoma PDXs are overlaid on a cohort of PAAD patients (n = 377), ¢ OncoTrack colorectal organoids (n = 46) are overlaid on colorectal
adenocarcinoma patients (n = 1141), and d a panel of 905 cell lines is overlaid on 13,827 PanCancer patients. Panels b and d are screenshots directly
obtained from the web-server. In panels a and d, we converted one of the landscapes into gray scale to enable a more visual comparison

b Pancreatic adenocarcinoma PDXs
on patients
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Fig. 3 Clinical relevance of OncoGenomic Landscapes. a Differences between TCGA and MSKCC cohorts related to resistance to endocrine
therapy in PRAD and BRCA. The fraction of patients in each cohort presenting alterations in the androgen receptor (AR) and the estrogen
receptor (ESR1) are shown in green and magenta, respectively. b Patient distance to PDXs correlates with overall survival probability. The
territories occupied by PDXs are shown as a background landscape in gray scale whereas the location of patients that are proximal (red) or distal
(blue) to PDXs are shown as transparent level plots. b Kaplan-Meyer analysis comparing the overall survival rate of patients that are proximal (red)
or distal (blue) to PDXs. Panel a is composed of screenshots directly obtained from the webserver. Panel b was generated outside the app
following the steps described in the tutorial available at https://oglandscapes.irbbarcelona.org/tutorial
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proximal to successfully engrafted tumors show a signifi-
cantly worse prognosis than patients that are distal to
PDXs (p value 9.74x107>°), and the trend remains signifi-
cant (Cox regression p value 2.23 x 10™'%) after adjusting
for possible confounding factors such as tumor type and
patient provenance (TCGA or MSKCC). This observation
is in line with the recent finding that pancreatic ductal
adenocarcinoma patients whose tumors did engraft in mice
had significantly shorter recurrence-free and overall sur-
vivals than patients whose tumors failed to engraft [24].

Conclusions

In summary, OncoGenomic Landscapes is a web-based
visualization tool that organizes tumor samples, and other
cancer models, in a 2D space, enabling the comparison of
large cohorts and capturing their molecular heterogeneity.
We offer the possibility of mapping new samples and co-
horts onto a set of 22 predefined landscapes, providing an
intuitive means to visualize user’s data and enrich it with
knowledge transferred from the large corpus of cancer sam-
ples available today. Contextualizing individual patients in a
more general landscape of human cancer is, we believe, a
valuable aid for clinical oncologists trying to identify treat-
ment opportunities, maybe in a compassionate use basis,
for patients that ran out of standard therapeutic options.
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