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Abstract
Axons of adult neurons in the mammalian central nervous system generally fail to regenerate by themselves, and few if any 
therapeutic options exist to reverse this situation. Due to a weak intrinsic potential for axon growth and the presence of strong 
extrinsic inhibitors, retinal ganglion cells (RGCs) cannot regenerate their axons spontaneously after optic nerve injury and 
eventually undergo apoptosis, resulting in permanent visual dysfunction. Regarding the extracellular environment, research 
to date has generally focused on glial cells and inflammatory cells, while few studies have discussed the potentially signifi-
cant role of interneurons that make direct connections with RGCs as part of the complex retinal circuitry. In this study, we 
provide a novel angle to summarize these extracellular influences following optic nerve injury as “intercellular interactions” 
with RGCs and classify these interactions as synaptic and non-synaptic. By discussing current knowledge of non-synaptic 
(glial cells and inflammatory cells) and synaptic (mostly amacrine cells and bipolar cells) interactions, we hope to accentuate 
the previously neglected but significant effects of pre-synaptic interneurons and bring unique insights into future pursuit of 
optic nerve regeneration and visual function recovery.
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Introduction

Retinal ganglion cells (RGCs) play a central role in normal 
vision; their axons collectively form the optic nerve and 
extend through the chiasm, to innervate the lateral genicu-
late nucleus, superior colliculi, suprachiasmatic nucleus, and 
several other nuclei of the di- and mesencephalon [1]. The 
distant bridge from the retina to the brain renders the optic 
nerve vulnerable to injury, including traumatic and ischemic 
optic neuropathy, optic neuritis, and glaucoma, resulting in 
visual dysfunction and blindness [2]. Unfortunately, as with 
other central nervous system (CNS) pathways, RGCs have 
minimal intrinsic capacity to regenerate their axons after 

traumatic or ischemic injury or degeneration [3]. In addition, 
unlike the peripheral nervous system, multiple cell-extrinsic 
inhibitors of axon growth capacity also contribute to regen-
erative failure. Learning how to surmount these obstacles is 
the focus of most research aimed at achieving optic nerve 
regeneration [4, 5].

Traditionally, when referring to the extrinsic environ-
ment of regenerating RGC axons, the spotlight is placed on 
myelin, the glial scar, and inflammation [6, 7], and not on 
the participation of other retinal neurons. However, the vital 
role of interneurons in RGC axon regeneration is receiving 
increasing attention lately. In this review, we summarize 
these extrinsic influences as “intercellular interactions,” 
a novel angle that discusses interactions after optic nerve 
injury between RGCs and other cells, including interneu-
rons, glial cells, and inflammatory cells. For further descrip-
tion, we divide these interactions into two broad categories, 
namely synaptic and non-synaptic (Fig. 1).

In terms of the non-synaptic interactions, we mainly 
discuss the relationship between RGCs, glial cells, and 
inflammatory cells. On the one hand, myelin and glial scars, 
composed of inhibitory molecules from oligodendrocytes, 
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reactive astrocytes, and microglia, have been demonstrated 
to mediate the majority of their interactions with RGCs and 
inhibit axon regeneration following optic nerve injury [7]. 

On the other hand, neutrophils and macrophages infiltrate 
the retina after injury and interact with RGCs via various 
cytokines and neurotrophic factors [8].
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Fig. 1  Schematic illustration of synaptic and non-synaptic interac-
tions with retinal ganglion cells in optic nerve regeneration. (A) 
After optic nerve injury, various types of cells interact with RGCs 
and participate in optic nerve regeneration. These post-injury inter-
cellular interactions could be classified into two broad categories: 
synaptic interactions, involving with ACs and BCs (not shown in the 
figure), and non-synaptic interactions, including glial cells (oligoden-
drocytes, reactive astrocytes, and microglia) and inflammatory cells 
(macrophages and neutrophils). (B) Synaptic interactions: (1) Puri-
fied ACs inhibit axon outgrowth through co-culture with RGCs in 
direct contact. (2) Mobile  Zn2+ accumulated in ACs is transported in 
pre-synaptic vesicles by ZnT-3 and then transfer into RGCs through 
vesicular release to inhibit axon regeneration. (3) Inhibitory neu-
rotransmitters released by ACs bind to post-synaptic receptors and 
attenuate axon regeneration induced by IGF-1. (C) Non-synaptic 
interactions: Nogo-A, MAG, and OMgp expressed by oligodendro-
cytes; CSPGs, Sema3A, and tenascins derived from reactive astro-
cytes; and Ocm secreted by macrophages and neutrophils all accumu-
late around damaged axons and bind to specific receptors on RGCs 
to inhibit axon regeneration. RhoA/ROCK/LIMK1 pathway is the 

primary signaling downstream of glial cell interactions and leads to 
subsequent actin polymerization and axon regeneration inhibition. 
PirB and Trk convey inhibitory signals of axon regeneration through 
two downstream cascades SHP-1/2 and POSH. The potent pro-regen-
erative effects of Ocm are mediated by increased level of intracel-
lular cAMP. ACs, amacrine cells; BCs, bipolar cells; cAMP, cyclic 
adenosine monophosphate; CSPGs, chondroitin sulfate proteogly-
cans; IGF-1, insulin-like growth factor-1; LAR, leukocyte common 
antigen-related; LIMK, Lin-11, Isl-1 and Mec-3 kinase; LINGO-1, 
leucine-rich repeat immunoglobulin-like domain-containing pro-
tein 1; MAG, myelin-associated glycoprotein; NgR, Nogo receptors; 
NRP-1, neuropilin 1; Ocm, oncomodulin; OMgp, oligodendrocyte-
myelin glycoprotein; PirB, paired immunoglobulin-like receptor B; 
PlexA1, plexin A1; POSH, Plenty of SH3s; PTPσ, protein tyrosine 
phosphatase sigma; p75NTR, p75 neurotrophin receptor; RGCs, reti-
nal ganglion cells; ROCK, Rho-associated protein kinase; Sema3A, 
semaphorin 3A; SHP, Src homology 2-containing protein tyrosine 
phosphatase; Trk, tropomyosin receptor kinase; TROY, tumor necro-
sis factor receptor orphan Y; ZnT,  Zn2+ transporter

3053Molecular Neurobiology  (2022) 59:3052–3072

1 3



The synaptic interactions between RGCs and interneu-
rons and their role in axon regeneration, however, remain 
a mystery. Previously, RGC death and regeneration were 
commonly considered to be cell-autonomous or influenced 
by glia. Recently, however, the importance of synaptic inter-
actions between RGC and interneurons, mostly amacrine 
cells (ACs), has been realized [9]. Therefore, we summarize 
recent advances in the interneuron-mediated inhibition of 
axon regrowth and proposed several hypotheses regarding 
its potential mechanisms.

In general, we summarize current strategies to promote 
axon regeneration regarding non-synaptic interactions 
among retinal cells after optic nerve injury. Furthermore, 
we aim to draw attention to synaptic interactions between 
interneurons and RGCs, eventually pointing to a promising 
future for optic nerve regeneration.

Non‑synaptic Interactions with RGCs

Oligodendrocytes and Myelin

Physiologically, myelin guarantees axon insulation, rapid 
conduction of electrical signals over distance, and meta-
bolic support in the adult nervous system [10]. The myelin 
of the peripheral nervous system originates from Schwann 
cells, which provide a permissive environment for axon 
regeneration. While in the CNS, oligodendrocytes cre-
ate myelin barriers for axon regeneration by expressing 
abundant inhibitory myelin-associated molecules [2, 3]. 
After optic nerve damage, transected or crushed axons 
are exposed to suppressed myelin-associated molecules. 
Prototypical myelin-associated inhibitors (MAIs) are 
mainly derived from oligodendrocytes, including Nogo, 
myelin-associated glycoprotein (MAG), and oligoden-
drocyte-myelin glycoprotein (OMgp) [11]. MAIs bind to 
their specific receptors on RGC axons and destabilize the 
actin cytoskeleton through intracellular downstream sign-
aling, thereby collapsing axon growth cones and imped-
ing axon regeneration [7, 12]. This process serves as the 
major intercellular interaction between oligodendrocytes 
and RGCs after optic nerve injury. Herein, we summarize 
the typical MAIs, their receptors, and related strategies to 
overcome this inhibition.

Typical Myelin‑Associated Inhibitors

Nogo originates from the reticulon family and is expressed 
predominantly by oligodendrocytes in CNS [13, 14]. 
Among the three classical Nogo homologs (Nogo-A, 
Nogo-B, and Nogo-C) [15], Nogo-A has been identified 
as the dominant inhibitory component in oligodendrocytes 

and CNS myelin membranes, restricting axon regeneration 
ability of adult mammalian neurons [16–18]. In contrast, 
Nogo-B and Nogo-C found widespread expression in other 
tissue apart from the CNS [19]. Nogo-A is a multipass 
transmembrane protein with distinct molecular structures 
and growth-retrained regions. Several studies have identi-
fied different active sites of Nogo-A, such as NiG-Δ20 and 
Nogo-66, which are involved in growth cone destruction 
and neurite outgrowth inhibition [20–22].

MAG is the first identified neurite outgrowth inhibitor 
that belongs to the immunoglobulin gene superfamily [23] 
and is also selectively produced by oligodendrocytes in the 
CNS peri-axon membranes of myelin [24, 25]. Two forms 
of MAG polypeptides (72 and 67 kDa) expressed by a 
single transcript exist in myelin [26, 27]. MAG was found 
to bifunctionally regulate axon growth. Initially, research-
ers discovered that MAG facilitates interactions between 
glial cells and young neurons, ultimately enhancing neu-
rite outgrowth [28]. However, subsequent studies have 
argued that MAG impedes neurite extension and activates 
growth cone retraction of older individuals [29]. Similarly, 
the influence of MAG on axon regeneration of adult CNS 
is controversial; the mainstream agrees with the inhibition 
of MAG, while others do not support its inhibitory role in 
axon regeneration [30].

OMgp is a glycosylphosphatidylinositol (GPI)-linked pro-
tein that is expressed by oligodendrocytes and neurons in the 
CNS [31–33]. In vitro studies revealed a highly conserved 
region of OMgp, the leucine-rich repeat (LRR) domain, 
which is necessary for growth cone collapse, neurite out-
growth inhibition, and cell proliferation [34]. Identical to 
Nogo and MAG, OMgp also contributes robustly to inhibi-
tory activities associated with CNS myelin through distinct 
receptors and their attached complexes [35, 36].

Receptors of Typical Myelin‑Associated Inhibitors

Nogo receptors (NgR) consist of the founding member 
NgR1 and its isoforms NgR2 and NgR3, which belong to the 
GPI-linked LRR protein family [37, 38]. Despite the highly 
heterogeneous structures of MAIs, they all bind to NgR with 
similar affinity [33, 39, 40]. The cross-activity of NgR par-
tially stems from the overlapping binding domains of MAIs 
[41]. NgR1 is expressed by nearly all RGCs [42, 43] and 
exhibits a major function based on its intact intracellular 
signaling complex, involving the LRR immunoglobulin-
like domain-containing protein 1 (LINGO-1) [44] combined 
with either p75 neurotrophin receptor (p75NTR) [45–47] 
or tumor necrosis factor receptor orphan Y (TROY) [48]. 
Later, NgR2 was found to bind MAG with a stronger affin-
ity than NgR1 [49], while NgR3 may function as an NgR1 
co-receptor [50]. Furthermore, paired immunoglobulin-like 
receptor B (PirB), associated with its partner tropomyosin 
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receptor kinase (Trk), serves as another high-affinity recep-
tor for MAIs in collaboration with NgR [51, 52]. Recent 
studies have implied the existence of PirB in the intact optic 
nerve and ganglion cell layer and its post-injury upregula-
tion [53].

Interfering with Oligodendrocytes‑RGCs Interactions 
to Promote Optic Nerve Regeneration

Starting with genetic interventions toward MAIs (Table 1), 
neurite sprouting and axon regrowth have been observed 
in triple knockout (Nogo-A, MAG, and OMgp) mice after 
injury [54, 55], while limited axon regeneration occurs 
when a single or double knockout (MAG and OMgp) 

is performed [30, 56], suggesting the potentially domi-
nant role of Nogo-A and synergistic actions of MAG and 
OMgp. However, since Nogo-A is also expressed in neu-
rons, including RGCs [19], subsequent experiments have 
shown that axon regeneration is not improved in traditional 
Nogo-A knockout mice, in which both glial and neuronal 
Nogo-A are deleted [57]. Recent studies indicate that 
Nogo-A expression in RGCs might enhance axon sprout-
ing after injury and that specifically deleting Nogo-A in 
oligodendrocytes while preserving RGC Nogo-A could be 
a promising strategy to promote optic nerve regeneration 
[58]. Antibody-induced immunoblocking of MAIs also 
induces post-injury axon regeneration. Nogo-A antibod-
ies, such as monoclonal antibody IN-1 [15], significantly 

Table 1  Interfering with oligodendrocytes-RGCs interactions to promote optic nerve regeneration

RGCs, retinal ganglion cells; NgR, Nogo receptor; NgR(DN), dominant negative form of NgR; Ocm/tp, oncomodulin/truncated protamine; PirB, 
paired immunoglobulin-like receptor B; AAV, adeno-associated virus; p75NTR, p75 neurotrophin receptor; LOTUS, lateral olfactory tract usher 
substance; NEP1-40, Nogo-A extracellular peptide 1–40

Targets Mechanisms Methods In vitro/in vivo Models Outcomes References

Ligands Nogo-A/B/C Nogo-A/B/C knock-
out

Transgenic mice In vitro/in vivo Cultured RGCs 
(mice)/optic nerve 
crush (mice)

Promote axon out-
growth /promote 
axon regeneration

[54]

Nogo-A Oligodendrocytes-
specific Nogo-A 
knockout

Transgenic mice In vivo Optic nerve crush 
(mice)

Promote axon 
regeneration

[58]

Nogo-A Nogo-neutralizing 
antibody IN-1

Intravitreal injection In vivo Optic nerve crush 
(rats)

Promote axon 
regeneration

[61]

Receptors NgR RGC-specific 
NgR(DN) expres-
sion

AAV-NgR(DN) In vivo Optic nerve crush 
(rats)

Promote axon 
regeneration

[64]

NgR1, 2, 3 NgR1, 2, 3 triple 
knockout

Transgenic mice In vivo Optic nerve crush 
(mice)

Promote axon 
regeneration

[65]

NgR RGC-specific NgR 
knockdown

Ocm/tp-NgR-siRNA In vitro Cultured RGCs 
(rats)

Promote axon out-
growth

[66]

NgR, PirB Endogenous 
NgR and PirB 
antagonist LOTUS 
overexpression

AAV-LOTUS In vivo Optic nerve crush 
(mice)

Promote axon 
regeneration

[67]

p75NTR Disturbing interac-
tion between 
NgR1 and 
p75NTR by solu-
ble LOTUS

Intravitreal injection In vivo Optic nerve crush 
(mice)

Promote axon 
regeneration

[68]

PirB PirB knockout Transgenic mice In vitro Cultured neurons 
(mice)

Promote axon out-
growth

[51]

PirB RGC-specific PirB 
knockdown

AAV-PirB-siRNA In vitro/in vivo Cultured RGCs 
(rats)/optic nerve 
crush (rats)

Promote axon out-
growth /Promote 
axon regeneration

[69]

NgR1 NgR1 competitive 
antagonist NEP1-
40

Intravitreal injection In vitro Cultured RGCs 
(rats)

Promote axon out-
growth

[70]

NgR1 NgR1 blocking pro-
tein NgR1(310)-Fc

Intravitreal injection In vivo Optic nerve crush 
(rats)

Promote axon 
regeneration

[71]

PirB PirB antibody Co-cultured with 
neurons

In vitro Cultured neurons 
(mice)

Promote axon out-
growth

[51]
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increase axon regeneration in spinal cord injury [59, 60] 
and optic nerve crush (ONC) mice [61]. Similarly, the 
inhibitory effects on neurite sprouting are neutralized by 
MAG antibodies from the soluble fraction of myelin-con-
ditioned media [62, 63].

Manipulations toward receptors have also drawn atten-
tion. Although initial genetic deletion of NgR fails to inhibit 
neurite outgrowth in cultured neurons or promote axon 
regeneration in mice [72], subsequent experiments have 
demonstrated that NgR knockout alone is capable of induc-
ing optic nerve regeneration at a moderate level [65, 73]. 
Transfecting RGCs with adeno-associated viruses (AAV) 
that express a dominant-negative form of NgR significantly 
stimulates axon regeneration after optic nerve damage [64]. 
Meanwhile, a competitive antagonist of NgR1, Nogo-A 
extracellular peptide (NEP1-40), can promote axon out-
growth in primary RGCs [70]. Intravitreal administration 
of an NgR blocking decoy, human NgR1(310)-Fc, success-
fully seals the receptors and regenerates axons in ONC mice 
[71]. Interfering with PirB activity, either genetically or with 
antibodies, also leads to partial relief from myelin inhibi-
tion, and simultaneously blocking NgR almost completely 
restores neurite outgrowth potentials in neurons cultured 
with myelin [51, 69]. Recently, the lateral olfactory tract 
usher substance (LOTUS), a newly discovered endogenous 
NgR [74] and PirB [75] antagonist, may become a potential 
therapeutic target. Studies have demonstrated that AAV-
mediated overexpression of membrane-located LOTUS in 
RGCs blocks the binding between Nogo and NgR [67], and 
intravitreal injection of the soluble form of LOTUS sup-
presses the intracellular signal transduction of NgR1 by dis-
turbing the connections between NgR1 and p75NTR [68], 
both of which significantly promote optic nerve regeneration 
in vivo.

Other Myelin‑Associated Molecules

Semaphorin 4D (Sema4D), also known as CD100, is spe-
cifically expressed by oligodendrocytes and is transiently 
upregulated after optic nerve injury, serving as a novel inhib-
itory factor for axon regeneration [76]. Plexin B1, a recep-
tor for Sema4D, induces repulsive responses by inactivating 
PI3K and dephosphorylating Akt and GSK-3β, triggering the 
collapse of growth cones and impeding axon regeneration 
[77]. Semaphorin 5A (Sema5A) is explicitly expressed by 
oligodendrocytes instead of astrocytes [78], and blockage of 
Sema5A by a neutralizing antibody significantly increases 
axon regrowth after injury [79, 80]. Ephrin-B3, previously 
identified as a repellant in axon guidance, accounts for inhib-
itory activity equivalent to that of the three main MAIs, fur-
ther contributing to axon growth deficiency and regeneration 
limitation after CNS trauma [81, 82]. Netrin-1 is another 
axon guidance factor that is expressed by oligodendrocytes 

and binds its receptor complex DCC/UNC5 (namely deleted 
in colorectal cancer and uncoordinated-5) with a dual role 
during development [83] and inhibiting axon regeneration 
in the adult CNS [84, 85].

Reactive Astrocytes and Glial Scarring

In response to injuries, the adult CNS initiates a rapid and 
protective response, also known as reactive astrogliosis or 
glial scarring, to repair and isolate tissue from secondary 
damage [86–88]. However, multiple studies have now shown 
that inhibitory molecule deposition in the scar contributes 
to the chemical barrier of axon regeneration, which is also 
the primary barrier [89–92]. Astrocytes, the glial cells that 
support synapse development, transmission, and plasticity 
[93], are thought to form molecular barriers of glial scar 
that prevent the post-injury regeneration of RGC axons [94, 
95]. These inhibitory molecules have been demonstrated to 
include tenascins, semaphorins, ephrins, and, most impor-
tantly, chondroitin sulfate proteoglycans (CSPGs). Like 
MAIs, the inhibitory molecules deposited in the glial scar 
contribute to the interactions between reactive astrocytes 
and RGCs after injury by binding to their specific receptors.

Typical Inhibitory Molecules in the Glial Scar

CSPGs belong to a type of proteoglycans that consist of 
a protein core with adherent glycosaminoglycan (GAG) 
side chains [96] and serve as the predominant inhibitory 
components in the glial scar [97–99]. After optic nerve 
injury, CSPGs are secreted into the extracellular environ-
ment mainly by reactive astrocytes, oligodendrocytes, and 
macrophages [100, 101]. This secretion leads to a dense 
and persistent enrichment of CSPGs within the glial scar 
and specific inhibition of axon regeneration [102]. Admin-
istration of the chondroitinase ABC (ChABC) was shown 
to digest the GAG side chains and attenuate the inhibition 
of CSPGs [103], suggesting that the inhibitory properties 
of CSPGs could be attributed to the sulfated sugar GAG 
chains.

The semaphorin family contains eight classes, includ-
ing secreted, membrane-associated, and GPI-anchored mol-
ecules, all of which conserve a specific “Sema” domain 
[104]. Accumulation of semaphorins within the glial scar 
is detected after mature mammalian central nerve injury 
[105]. Semaphorin 3A (Sema3A), a secreted molecule and 
a prototype of the semaphorin family, was initially discov-
ered to guide axon growth in the development of the CNS 
[106]. Sema3A was later found to be upregulated after CNS 
injury [107], and several researchers have demonstrated that 
Sema3A is one of the dominant inhibitors of axon regenera-
tion deposited in the glial scar [108, 109].

3056 Molecular Neurobiology  (2022) 59:3052–3072

1 3



Tenascins belong to a family of oligomeric glycopro-
teins deposited in the extracellular environment [110]. 
The two archetypal glycoproteins of the tenascin family 
in vertebrates, tenascin-C (TN-C) and tenascin-R (TN-R), 
are upregulated during development and suppressed in the 
mature CNS [111], playing crucial roles in the development 
and pathology situation of the optic nerve. TN-C clumps in 
the glial scar secreted by reactive astrocytes and exhibits 
an inhibitory effect on axon regeneration after optic nerve 
transection [112] and other CNS injuries [113, 114]. Similar 
outcomes have been observed in goldfish after ONC [115]. 
TN-R has also been proposed to inhibit optic nerve regrowth 
and to persist at the lesion site in vitro [116, 117]. Inter-
estingly, however, a shift in the expression levels of TN-R, 
either reduced or increased, was detected in salamanders 
[118] and lizards [119] after optic nerve injury.

Receptors of Inhibitory Molecules in the Glial Scar

Studies have indicated that the negative role of CSPGs in 
axon regeneration is predominantly mediated by two mem-
bers of the leukocyte common antigen-related (LAR) phos-
phatase subfamily, transmembrane protein tyrosine phos-
phatase sigma (PTPσ) receptor and LAR phosphatase [120, 
121]. In addition, NgR1 and NgR3 also serve as the func-
tional receptors and mediate the anti-regenerative effects of 
CSPGs to some extent [65]. Receptors neuropilin 1 (NRP-1) 
and plexin A1 (PlexA1) serve as the functional co-receptors 

of Sema3A in neurons [122]. While NRP-1 acts as a bind-
ing segment, PlexA1 then activates its GTPase-activating 
protein domain and initiates downstream signaling pathways 
[123]. Integrin α9β1 is a transmembrane receptor with the 
ability to promote neurite outgrowth and axon regeneration 
[124, 125] when bound to the fibronectin type III domain 
of TN-C [126]. However, the expression of integrins is 
decreased in the adult nervous system [127] and even absent 
after CNS damage, particularly TN-C binding integrin α9β1 
[128, 129], eventually eliminating the regenerative proper-
ties of TN-C and impeding axons from penetrating the glial 
scar.

Interfering with Astrocytes‑RGCs Interactions to Promote 
Optic Nerve Regeneration

As stated above, treatments with ChABC attenuate CSPG 
inhibition and achieve RGC axon regeneration combined 
with other interventions in vivo [73] (Table 2). Initially, 
genetic deletion of PTPσ was found to diminish neuronal 
sensitivity toward CSPGs and comprehensively enabled 
regenerative RGC axons to penetrate the glial scar at the 
lesion sites [120, 130]. Some studies have revealed that optic 
nerve regeneration in NgR1 and 3 co-deficient mice was 
further enhanced when PTPσ was deleted [65]. Moreover, a 
peptide mimic of PTPσ binding to its wedge domain is suf-
ficient to block CSPG-mediated inhibition in vitro, allowing 
adult neurons to regrow axons after injury [131]. Systemic 

Table 2  Interfering with astrocytes-RGCs interactions to promote optic nerve regeneration

CSPGs, chondroitin sulfate proteoglycans; GAG , glycosaminoglycan; ChABC, chondroitinase ABC; Sema3A, semaphorin 3A; RGCs, retinal 
ganglion cells; PTPσ, protein tyrosine phosphatase sigma receptor; NgR, Nogo receptor; AAV, adeno-associated virus

Targets Mechanisms Methods In vitro/in vivo Models Outcomes References

Ligands CSPGs (GAG) Digestion of GAG 
side chains by 
ChABC

Intravitreal injection In vivo Optic nerve crush 
(mice)

Promote axon 
regeneration

[73]

Sema3A Inhibition of 
Sema3A expres-
sion by miR-30b

AAV-miR-30b 
mimic

In vitro Cultured RGCs 
(rats)

Promote axon 
outgrowth

[134]

Sema3A Inhibition of 
Sema3A expres-
sion by Sema3A 
siRNA

Lipofectamine 
induced Sema3A 
siRNA transfec-
tion

In vitro Cultured RGCs 
(rats)

Promote axon 
outgrowth

[135]

Receptors PTPσ PTPσ knockout Transgenic mice In vivo Optic nerve crush 
(mice)

Promote axon 
regeneration

[130]

PTPσ Inactivation and 
clustering of 
PTPσ by enoxa-
parin

Systemic adminis-
tration

In vivo Optic nerve crush 
(rats)

Promote axon 
regeneration

[132]

NgR1, 3 NgR1, 3 double 
knockout

Transgenic mice In vivo Optic nerve crush 
(mice)

Promote axon 
regeneration

[65]

α9β1 α9β1 and kindlin-1 
expression in 
RGCs

AAV-α9β1 and 
kindlin-1

In vivo Optic nerve crush 
(mice)

Promote axon 
regeneration

[136]
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administration of enoxaparin, a traditional anticoagulant, has 
been proposed to inactivate PTPσ and boost axon regrowth 
in rats with optic nerve injury at clinically tolerated doses 
[132]. Additionally, attenuation of excessive astrogliosis by 
microRNA (miR)-21 inhibition promotes axon regeneration 
and functional recovery of the flash visual evoked potentials 
(F-VEPs) in rats after optic nerve crush [133].

Although intravitreal injection of anti-Sema3A antibodies 
improves RGC survival after optic nerve transection [137], 
none of its effects has been reported in axon regeneration. 
Therefore, researchers have diverted their attention away 
from antibodies to anti-expression. MiR-30b was found to 
inhibit Sema3A expression by binding to the 3′ untranslated 
region of Sema3A mRNA; transfecting cultured RGCs with 
AAV-miR-30b reduced Sema3A expression levels and sig-
nificantly promoted the growth of axons while impeding the 
growth of dendrites [134, 135]. Likewise, Sema3A small 
interfering RNA and miR-30b overexpression exert similar 
effects on axon regeneration, collectively representing a new 
target for the treatment of optic nerve injury [135]. Moreo-
ver, inhibition of Sema3A intracellular signaling transduc-
tion alleviates the suppressed axon regeneration and com-
pletely rescues the decreased amplitude of F-VEPs induced 
by Sema3A [138].

In addition to CSPGs and Sema3A, studies of TN-C- 
or TN-R-deficient mice with spinal cord injury showed 
increased amounts of neural fibers penetrating the glial scar 
[139]. However, others argue that TN-C is necessary for 
axon regeneration as more axons retract after injury in TN-C 
knockout mice, and this retraction could be rescued via viral-
mediated overexpression of TN-C [140]. Further studies 
have observed improved axon regeneration and functional 
recovery via polyclonal antibodies against TN-R [116]. 
Additionally, re-expression of TN-C after injury, along with 
the integrin activator kindlin-1, promotes neurite outgrowth 
and axon regeneration in the spinal cord [141] and optic 
nerve [136].

Controversy in Microglia

Microglia are resident immune cells originating from mac-
rophages in the mammalian CNS and play an essential role 
in both physiological homeostasis maintenance and path-
ological immune responses [142, 143]. Physiologically, 
microglial cells constantly monitor the CNS environment 
and scavenge cellular debris, DNA fragments, and infec-
tious agents [144, 145]. Upon sensing injury, microglia 
are immediately activated and release cytokines and neu-
rotrophic factors, leading to macrophage infiltration and 
immune defensive responses [146, 147]. However, whether 
microglial activation is beneficial or detrimental during 
CNS repair after damage remains unclear [148]. Micro-
glia can induce neurotoxicity and aggravate the subsequent 

neurodegeneration after injury, but they can also contribute 
to the protective mechanisms of tissue repair and regenera-
tion, depending on the characteristics of insults as well as 
microenvironmental conditions [149]. On the one hand, acti-
vated microglia are reported to produce neurotrophic factors 
and eliminate destructive debris that eventually promotes 
neuron survival and axon regeneration [150–152]. On the 
other hand, unidentified inhibitory molecules and numer-
ous inflammatory cytokines can impede axon regrowth and 
damage the intact neurons near the injury site [153–155].

According to the macrophage activation process [156], 
microglia can be generally divided into at least two sub-
classes with distinct functions depending on the activa-
tion pathway. M1 microglia are “classically activated” by 
lipopolysaccharides or interferon γ (IFN-γ) and then produce 
large amounts of oxidative metabolites and proinflamma-
tory cytokines, resulting in a defensive immune response, 
astrogliosis reactivation, and neuronal damage. In contrast, 
M2 microglia are “alternatively activated” by interleukin-4 
(IL-4) and IL-13, and they express IL-10 and arginase-1, 
collectively downregulating inflammation and promoting 
tissue repair [142]. An elevated M1/M2 ratio leads to sec-
ondary neurodegeneration in mice after spinal cord injury, 
while a shift in microglial phenotypes from M1 to M2 was 
observed during the wound healing and axon regeneration 
processes [157–159].

After optic nerve injury, microglia become activated and 
infiltrate at the lesion site, recruiting macrophages, phago-
cytosing cellular and axonal debris, and even becoming 
involved in glial scar formation [160–162]. However, the 
distinct interactions between microglia and RGCs after optic 
nerve injury remain unclear. We have little idea of the neu-
rotoxic or neuroprotective effects of activated microglia on 
RGCs in response to damage. Our previous work showed 
that laquinimod, a newly discovered immunosuppressant, 
impeded microglia activation and attenuated high intraocu-
lar pressure-induced RGC death [163], and that long non-
coding RNA-H19 served as a crucial progenitor of microglia 
pyroptosis and RGC death after ischemia/reperfusion-
induced inflammation [164]. It is unknown whether optic 
nerve regeneration is enhanced or suppressed by cytokines 
and neurotrophic factors secreted by microglia. The con-
troversial and insufficiently identified characteristics of 
microglia could be partially attributed to the lack of reliable 
experimental methods to distinguish microglia from other 
invading immune cells [165]. Recently, a study reported 
a novel inhibitor of colony stimulator factor 1 receptor 
(CSF1R) that could efficiently eliminate more than 99% of 
microglia without affecting macrophages and other immune 
cells [166]. Interestingly, after intravitreal injection of this 
inhibitor, the extent of RGC degeneration after optic nerve 
injury remained unaffected, and no significant alterations 
were detected in RGC axon regeneration induced by lens 
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injury. Slight but significant inhibition of optic nerve regen-
eration was observed when microglia and macrophages were 
co-depleted [167]. Therefore, a new theory is proposed that, 
despite their role in macrophage recruitment and phagocy-
tosis, microglia may not be necessary for RGC degeneration 
and axon regeneration after acute optic nerve injury.

Inflammatory Cells and Neurotrophic Factors

After injury-induced inflammation, macrophages and neu-
trophils are the primary immune cells that are recruited 
and accumulate within the lesion site; then, they interact 
with RGCs via the secretion of various cytokines and neu-
rotrophic factors that manipulate the axon regeneration 
process. Intraocular inflammation, induced by a lens injury 
or intravitreal zymosan injection, can delay injury-induced 
RGC degeneration and promote axon regeneration beyond 
the optic nerve lesions, profoundly influencing neurological 
outcomes [6, 168, 169].

Macrophages

Macrophages have been shown to change the non-permis-
sive environment to a pro-regenerative environment at the 
lesion sites of adult rat optic nerve in vitro [170]. Later, an 
elevated level of infiltrated macrophages was detected after 
lens injury or zymosan injection, accompanied by protein 
accumulation later identified as oncomodulin (Ocm) [171]. 
Ocm is a calcium-binding protein mainly derived from acti-
vated macrophages and neutrophils [8, 172]. After intraocu-
lar inflammation, Ocm increases within the retina and binds 
to RGCs with high affinity in a cAMP-dependent manner, 
serving as a potent growth factor and stimulating significant 
axon regrowth in vitro and in vivo [173, 174]. Combinato-
rial treatment with Ocm and cAMP analogs simulates the 
pro-regenerative effects of intraocular inflammation, while 
peptides or antibodies against Ocm almost neutralize the 
positive effects of zymosan injection on optic nerve regen-
eration [174]. In addition, Ocm has been used as a guide in 
a vector complex delivering small interfering RNA of NgR 
to RGCs because of its high affinity, which dramatically pro-
motes axon regrowth of RGCs [66].

Neutrophils

Neutrophils are reported to be immediately activated and 
accumulate within lesions after spinal cord injury [175]. 
Shortly after intraocular zymosan injection, the vast major-
ity of neutrophils infiltrate the eyes before macrophages, and 
they promote optic nerve regeneration by expressing high 
levels of Ocm [8]. Immunodepletion of neutrophils reduces 
the expression of Ocm within the eyes and suppresses 
inflammation-induced regeneration. Anti-Ocm intervention 

abolished axon regeneration as effectively as neutrophil 
depletion. Moreover, macrophages are insufficient to induce 
axon regeneration in the absence of neutrophils, implying 
that neutrophils might play a vital and pro-regenerative role 
in inflammation-induced axon regeneration [8]. Meanwhile, 
the combined deletion of the pattern recognition receptors 
dectin-1 and toll-like receptor 2 (TLR2) completely abol-
ished the effects of zymosan injection, and further intravit-
real injection of the dectin-1 ligand curdlan promotes axon 
regeneration at the same level as zymosan [176]. Recently, 
a study has found that administration of Ly6G-specific anti-
bodies successfully depleted neutrophils and significantly 
compromised the pro-regenerative effects of neurotrophic 
factors [177]. Another study identified a unique subset of 
immature neutrophils (CD14 + Ly6Glo) induced by inhibi-
tion of C-X-C motif chemokine receptor 2 (CXCR2), which 
promotes axon regeneration in part via the secretion of vari-
ous growth factors [178].

Neurotrophic Factors

Ciliary neurotrophic factor (CNTF) is elevated after injury or 
zymosan-induced intraocular inflammation [179] and serves 
as a leading therapeutic candidate to promote neuroprotec-
tion and axon regeneration after CNS injury [180, 181]. 
However, recombinant CNTF (rCNTF) has been shown to 
have limited effects on axon regeneration [182]. The low 
efficacy of rCNTF could be attributed to the upregulation 
of the suppression of cytokine signaling factor 3 (SOCS3), 
an inhibitor of the JAK/STAT pathway, in mature RGCs 
[168, 182, 183]. After SOCS3 knockout, rCNTF is capa-
ble of enhancing regeneration by activating gp130-depend-
ent kinase signaling [179]. However, another therapeutic 
method, AAV-mediated CNTF expression, promotes robust 
optic nerve regeneration by itself, and this pro-regeneration 
effect involves neuroinflammation, which is mediated pri-
marily by C–C motif chemokine ligand 5 (CCL5) instead 
of direct action on RGCs [177]. Leukemia inhibitory factor 
(LIF) has also been identified as an additional contribut-
ing factor to CNTF, as CNTF and LIF combined knockout 
completely abolishes the positive effects on RGC survival 
and axon regeneration [179, 184]. Interestingly, the role 
of brain-derived neurotrophic factor (BDNF) post-injury 
is relatively controversial. After optic nerve injury, BDNF 
protects RGCs from cell death [185], but also attenuates 
the level of inflammation-induced axon regeneration [186].

Synaptic Interactions with RGCs

As concluded above, the physiological functions and patho-
logical impacts of glial cells and inflammatory cells after 
optic nerve injury were thoroughly evaluated. However, we 

3059Molecular Neurobiology  (2022) 59:3052–3072

1 3



ignored another large number of cells that also have insepa-
rable connections with RGCs, namely interneurons. Due 
to their neuronal characteristics, the interactions between 
interneurons and RGCs are predominantly mediated via syn-
apses, which are significantly different from non-neurons. 
Recently, several studies have concentrated on excavating 
the role of interneurons and their synaptic impacts on RGC 
axon regeneration.

Retinal interneurons, consisting of horizontal cells, 
bipolar cells (BCs), and ACs, play an essential role in 
the normal retina. In mammalian retinal circuitry, pho-
toreceptors translate light energy into neural signals and 
convey them to interneurons. Within the outer plexiform 
layer, horizontal cells contact photoreceptors and mediate 
feedback and feedforward inhibition of photoreceptors and 
BCs, respectively [187]. In the inner plexiform layer, BCs 
form excitatory synapses with at least 40 distinct types of 
ganglion cells [43, 188], and various ACs regulate these 
connections through pre-synaptic and post-synaptic inhi-
bition [189, 190]. Given the evidence that only BCs and 
ACs have direct contact with RGCs, and their vital role in 
normal retinal circuitry, subsequent studies have mainly 
focused on the effects of these two types of interneurons 
after optic nerve injury.

Amacrine Cells

ACs are very diverse predominant inhibitory interneu-
rons in the retina circuit that diminish RGCs’ activity state 
through inhibitory neurotransmitters, including glycine, 
γ-aminobutyric acid (GABA), and dopamine [191, 192]. 
Nearly all ACs form inhibitory synapses with RGCs and could 
be divided into two subclasses: glycinergic narrow-field type 
and GABAergic wide-field type [193]. True to their name, 
instead of axons, ACs output signals to BCs, RGCs, and other 
ACs via the same dendrites that receive synaptic inputs [187].

The exploration of interneuron-associated axon regen-
eration inhibition began with ACs. Initially, Goldberg and 
colleagues found that purified ACs could induce neonatal 
RGCs to irreversibly transform their growth mode from 
axonogenesis to dendritogenesis in culture. This inhibition 
of axon growth occurred only when RGCs and ACs were 
co-cultured in direct contact. Therefore, they proposed that 
a contact-mediated or membrane-associated signal plays a 
role in this inhibition [194, 195]. Although this conclusion 
merely stopped at the surface of this phenomenon, it pro-
vided a hint that this inhibition, unlike that from glial cells, 
could be involved with synapses since membranes are neces-
sary. After a decade, direct evidence of synaptic interactions 
has been proposed. Ionic zinc  (Zn2+) was reported to accu-
mulate in the AC processes immediately after ONC and keep 
increasing during the first 24 h, and then transfer into RGCs 
through synaptic vesicular release, thereby impeding axon 

regeneration [196]. Recently, optic nerve injury pathologi-
cally activates ACs, which later reduces the electrical activ-
ity and growth factor responsiveness of RGCs. Genetically 
silencing ACs or blocking inhibitory neurotransmitters both 
enhance RGC growth factor signaling, thereby promoting 
optic nerve regeneration [197].

Bipolar Cells

BCs receive various information, output excitatory signals 
to a diversity of neuron types in the retina, and, most impor-
tantly, connect with photoreceptors, primary sensory neu-
rons, and RGCs, which project their axons out of the eye 
to the brain [198, 199]. The first operations and analysis of 
visual systems occur in BCs, which collect photoreceptor 
signals and accept adjustment from horizontal and ACs for 
further processing in the inner retina [200].

In a retinal regeneration model of zebrafish, after intravit-
real injection of ouabain, a cytotoxin that destroys the inner 
retina, BCs, and their post-synaptic partner RGCs were shown 
to survive and regenerate concurrently [201]. Intriguingly, 
RGCs are generated prior to BCs in the embryonic retina 
of zebrafish, which is different from the sequence of neuro-
genesis in regeneration [202]. Furthermore, morphological 
measurements of BC axons found that the thickness of the 
inner plexiform layer and number of axon branches were 
slightly reduced after regeneration, but the synapses on their 
axons were in excess of the usual number, suggesting a certain 
impact of BCs on RGC axon regeneration [203, 204]. In an 
optic nerve injury situation, it has been proposed that BCs are 
involved in RGC protection and axon regeneration indirectly 
through interactions with ACs. Excitatory neurotransmitter 
glutamate released by BCs binds to NMDA and AMPA recep-
tors on the post-synaptic membrane of ACs, leading to the 
latter neurons’ activation, depolarization,  Ca2+ influx, and 
eventually  Zn2+ accumulation [9]. In fact, AC-specific block-
age of NMDA receptors suppresses mobile  Zn2+ elevation 
within AC processes after ONC [9]. Nevertheless, the direct 
effects of BCs on axon regeneration still remain unclear.

Potential Mechanisms of Synaptic Interactions 
in Optic Nerve Regeneration

After uncovering the inhibitory effects of interneurons after 
optic nerve injury, we investigated the potential mecha-
nism behind this phenomenon. Herein, we summarize the 
results of previous related experiments and propose several 
hypotheses.

Antagonistic Axon‑Dendrite Interplay

In adult zebrafish, a vertebrate animal model that is capa-
ble of spontaneously regenerating CNS axons, synapse 
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degeneration, and dendrite retraction was immediately 
observed in RGCs after ONC. Axon regeneration was initi-
ated only when remarkable synapse and dendrite shrinkage 
occurred [205]. Intriguingly, dendritic regrowth and recon-
nection occurred after the regenerative axons reinnervated 
their target neurons in the optic tectum [205].

This obvious time-organized sequence of dendrite remod-
eling and axon regrowth in zebrafish suggests an antagonistic 
axon-dendrite interplay after ONC. Hence, several studies 
have focused on whether the inhibition of dendrite shrinkage 
promotes axon regeneration. Inhibition of mTOR via intravit-
real injection of rapamycin successfully preserved synapses 
and dendrites early after ONC, which subsequently restrained 
axon regeneration and reinnervation [206]. However, if the 
administration of rapamycin was delayed until the synapses 
and dendrites had already deteriorated, no signs of negative 
impact on axon regeneration were observed [206]. Together, 
these data could indicate an underlying antagonistic interplay 
between axon regrowth and dendrite remodeling and that den-
drite shrinkage is favorable for axon regeneration during CNS 
repair.

In this context, it is reasonable that dendrite shrinkage 
after axon injury is the necessary preparation for axon 
regrowth in mammals, despite their failure of regeneration 
due to the lack of intrinsic potentials and strong inhibi-
tory environments. Some evidence supports this opinion. 
As mentioned above, the contact-mediated or membrane-
associated signals from ACs irreversibly switch neonatal 
RGCs from an axon growth mode to a dendrite growth 
mode [194]. Intravitreal injection of rCNTF combined 
with cAMP analogs or Rho-GTPase inhibitor (BA-210) 
has been shown to increase RGC survival and axon regen-
eration [207, 208]. However, this pro-regenerative out-
come is accompanied by aberrant dendrite morphologies, 
including excessive looping processes and shrinking but 
sparser dendritic fields [209]. Similarly, dendrites have 
been proposed to repress axon regeneration through a dual 
leucine zipper kinase (DLK)-independent pathway, as cut-
ting dendrites in the DLK knockout background relieve 
the anti-growth signal and result in axon regeneration 
[210]. Apart from RGCs, axon regeneration of light and 
pheromone-sensing neurons (ASJ) in Caenorhabditis 
elegans is enhanced when axotomy is performed simul-
taneously with dendritomy compared to axon transection 
alone [211].

Overall, the retraction of RGC dendrites from their 
synaptic connections with interneurons has been proven 
to benefit axon regeneration and nerve repair. Neverthe-
less, more research is clearly needed to provide solid evi-
dence for the observed antagonistic axon-dendrite inter-
play and the role of synaptic inhibition during optic nerve 
regeneration.

Inhibitory Neurotransmitters

The diversity of neurotransmitters that carry information 
between neurons within their synaptic clefts provides the 
nervous system with remarkable complexity and functional-
ity [212, 213]. In the retina circuitry, glycine, GABA-A, and 
dopamine receptors are distributed on RGC dendrites and 
receive inhibitory input from ACs [214, 215], whereas gly-
cine and GABA-C receptors are distributed on BC axon ter-
minals that also mediate inhibitory signals from ACs [216, 
217]. Hence, it is plausible that these inhibitory neurotrans-
mitters and their receptors are critical therapeutic targets 
after optic nerve injury.

A massive amount of aminoacidergic neurotransmit-
ters (mostly glycine, GABA, and glutamate) has been 
observed after spinal cord injury [218, 219]. Excessive 
accumulation of glutamate and glycine results in excito-
toxicity and neuronal loss [220–222]. In contrast, GABA 
has been reported to promote survival and regeneration of 
descending neurons after spinal cord injury in larval lam-
preys [223]. Unfortunately, few studies have demonstrated 
the pro-regenerative effects of these neurotransmitters in 
mammals, and none of these results has been verified in 
optic nerve injury models. Nevertheless, some studies have 
indirectly hinted at the influence of inhibitory neurotrans-
mitters on optic nerve regeneration. After ONC, a drug 
cocktail consisting of antagonist blockers of inhibitory 
neurotransmitter receptors was immediately injected into 
the vitreous body of mice. The responsiveness of RGCs 
to growth factors was enhanced, and axon regeneration 
level was significantly increased when antagonist cocktail 
treatment was combined with insulin-like growth factor-1 
(IGF-1) [197]. Intriguingly, the recovery of signaling com-
petence toward IGF-1 was caused by the maintenance of 
IGF-1 receptors in RGC primary cilia, which would have 
been lost upon optic nerve injury [197].

In another view, the level of RGC physiological activ-
ity depends on the excitatory or inhibitory neurotransmit-
ters from pre-synaptic interneurons, which also alters the 
growth state of RGCs. Thus, different experiments were 
conducted to explore the role of neuronal activity in axon 
regeneration. In cultured immature RGCs, BDNF-induced 
axon outgrowth was remarkably potentiated by spontane-
ously generated electrical activity at physiological levels 
[224]. After ONC, RGC axon regeneration is enhanced by 
elevated levels of electrical activity induced by light stim-
ulation through GPCR signaling [225] or by transcorneal 
electrical stimulation [226, 227]. Recent findings indicate 
that increasing mouse RGC activity by visual stimulations 
or chemogenetics combined with mTOR activation could 
serve as a potent tool for improving axon regeneration, 
even with partial recovery of visual functions and vision-
guided behaviors, including the optomotor response, 
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pupillary response, depth perception, and circadian 
entrainment [228, 229]. Upon activation and depolariza-
tion of RGCs,  Ca2+ influx then initiates active-dependent 
transcription and elevates the level of cAMP, which in turn 
promotes the expression of growth-related genes, bridging 
the gap between neuronal activity and pro-regenerative 
function [230, 231].

All these facts taken together, we still need to uncover the 
precise role of each kind of neurotransmitter, either protec-
tive or neurotoxic, in the optic nerve injury situation. Fur-
ther, more in-depth studies are required to determine the 
specific receptors that neurotransmitters bind and how intra-
cellular post-synaptic signaling downstream is mediated.

Other Synaptic Vesicular Contents

In addition to neurotransmitters, other vesicular contents 
transported within synaptic clefts may contribute sig-
nificantly to the synaptic interactions between interneu-
rons and RGCs post-injury. As stated above,  Zn2+ was 
reported to increase in ACs immediately after ONC and 
then transfer into RGCs through synaptic vesicular release. 
 Zn2+ transporter 3 (ZnT-3) knockout in slc30a3-deficient 
mice significantly attenuated  Zn2+ accumulation in the 
AC vesicles and eventually promoted axon regeneration. 
Intravitreal administration of  Zn2+ chelators also promoted 
axon regeneration and even enhanced the pro-regenerative 
effects of phosphatase and tensin homolog (PTEN) and 
Krüpple-like factor (KLF)-9 knockout [196, 232].

AC-specific nitric oxide (NO) production could be the 
vital progenitor of mobile  Zn2+ accumulation within ACs 
after optic nerve injury. Upon RGC axon injury, ACs are 
initially hyperactivated followed by  Ca2+ influx [197], 
which in turn initiates NO generation through activating 
the NO synthetase [233–235]. Reactive nitrogen species 
are then produced and induce intracellular oxidative stress, 
thereby leading to the liberation of  Zn2+ from metallothio-
neins and elevation of mobile  Zn2+ in ACs [236, 237].

Current Puzzles and Future Directions of Synaptic 
Interactions

As stated above, the majority of the experimental out-
comes supporting the hypotheses were from retinal regen-
eration models of non-mammals, which have not been 
proven in mammals with optic nerve injury. That is to 
say, more studies are needed to provide more solid theories 
of the mechanisms behind synaptic interaction after optic 
nerve injury. Moreover, it seems feasible and promising 
to draw lessons from other CNS pathways. Some research 
has shown that the transected axons from mammalian spi-
nal interneurons could spontaneously regenerate [238]; 

therefore, elucidating the underlying mechanisms that 
allow these axons to regrow might enlighten us on some 
new hypotheses. Additionally, we still could not fully 
understand how ACs are instantly hyperactivated after 
the axons of RGCs are injured. A theory is proposed that 
 Cl− gradient dysregulation in the interneurons after optic 
nerve injury leads to positive feedback circuits between 
BCs and ACs, which in turn results in early hyperacti-
vation of ACs [9, 239]. Apart from ACs, little is known 
about the role of BCs in axon regeneration. How do they 
respond to optic nerve injury? How do they interact with 
RGCs under traumatic circumstances? More answers are 
needed to the above-mentioned and subsequent questions.

Conclusion

To date, we have already identified abundant extracellular 
molecules, such as Nogo, MAG, OMgp, CSPGs, sema-
phorins, tenascins, and many neurotrophic factors; they 
all bind to specific receptors on RGCs, the process that is 
classified as “non-synaptic interactions.” Various interven-
tions targeting these ligands or their receptors have been 
shown to promote axon regeneration over past decades. 
Meanwhile, we intend to focus more on the role of “syn-
aptic interactions” in optic nerve regeneration. Interfering 
with the synaptic connections between ACs and RGCs has 
been shown to be a powerful strategy to enhance axon 
regenerative ability. We have already proposed several 
theories that may elucidate this process to a certain extent. 
The exploration of different intercellular interactions with 
RGCs after optic nerve injury could help us better under-
stand the initial and subsequent responses in the complex 
retinal circuit and lead to new therapeutic strategies for 
axon regeneration.

Prospects

Remarkable progress in RGC axon regeneration has been 
achieved over the past two decades, and the optic nerve 
is now considered one of the principal models for axon 
regeneration investigation in the CNS. However, com-
pared with the rapid progress achieved in basic research, 
few clinical treatments have been proved to markedly res-
cue certain forms of blindness in patients. A great deal 
of obstacles remains to be overcome to achieve clinically 
meaningful visual recovery.

One of the greatest challenges is the lack of long-dis-
tance axon regeneration since functional visual recovery 
is based on an adequate amount of RGC axons regener-
ating across the optic chiasm and reinnervating specific 
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targets in the brain [240]. In this regard, more research 
should focus on axon guidance signals that are capable of 
navigating axon growth during development or after injury 
(e.g., ephrins, netrins, and semaphorins) [84, 241–243]. In 
addition, combined treatments have always been found to 
promote a more substantial regeneration effect than indi-
vidual treatments [240]. The next challenge is to extend 
the therapeutic window in clinical practice by increasing 
RGC survival rate while promoting axon regeneration. 
Axon regeneration apparently requires intact RGC soma 
with full function, especially in the case of glaucoma, 
when RGC degeneration and irreversible loss are key fac-
tors in the pathological process. Preliminary studies have 
uncovered various methods to protect RGCs from neuron 
death in rodent models of acute and chronic glaucoma 
[244–246]. Furthermore, it is of great necessity to find 
optimized animal models that could better bridge the gap 
of clinical translation. Currently, the rodent ONC model 
is one of the most widely used animal models for RGC 
survival and axon regeneration research. However, this 
surgically easy and highly reproducible animal model can-
not fully imitate complicated clinical conditions related to 
optic nerve injury. Nonhuman primate models could be the 
solution to this problem. A growing number of research-
ers have been dedicated to uncovering the molecular and 
cellular processes that underline nonhuman primates in 
various retina and optic nerve diseases through recently 
developed multi-omics approaches [247–249].

Collectively, the field of optic nerve regeneration and 
vision recovery is not only challenging but also full of hope. 
Transplantation of RGCs is starting to emerge as a realistic 
approach to reverse certain forms of blindness. Researchers 
attempt to replace damaged RGCs after optic nerve injury 
with neonatal ones differentiated from embryonic stem cells 
or induced pluripotent stem cells, and promising progress 
has been achieved [250–256]. Even the theory of RGC trans-
plantation from deceased donors into recipients’ eyes has 
been supported in rats with successful integration and axon 
projection after allogeneic RGC transplantation [257]. Prom-
isingly, both basic and translational studies possess great 
potential to achieve long-distance axon regeneration and full 
recovery of visual function for some time to come.
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