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Abstract

Background: Behavioral laterality is known for a variety of vertebrate and invertebrate animals. Laterality in social
interactions has been described for a wide range of species including humans. Although evidence and theoretical
predictions indicate that in social species the degree of population level laterality is greater than in solitary ones, the origin
of these unilateral biases is not fully understood. It is especially poorly studied in the wild animals. Little is known about the
role, which laterality in social interactions plays in natural populations. A number of brain characteristics make cetaceans
most suitable for investigation of lateralization in social contacts.

Methodology/Principal Findings: Observations were made on wild beluga whales (Delphinapterus leucas) in the greatest
breeding aggregation in the White Sea. Here we show that young calves (in 29 individually identified and in over a hundred
of individually not recognized mother-calf pairs) swim and rest significantly longer on a mother’s right side. Further
observations along with the data from other cetaceans indicate that found laterality is a result of the calves’ preference to
observe their mothers with the left eye, i.e., to analyze the information on a socially significant object in the right brain
hemisphere.

Conclusions/Significance: Data from our and previous work on cetacean laterality suggest that basic brain lateralizations
are expressed in the same way in cetaceans and other vertebrates. While the information on social partners and novel
objects is analyzed in the right brain hemisphere, the control of feeding behavior is performed by the left brain hemisphere.
Continuous unilateral visual contacts of calves to mothers with the left eye may influence social development of the young
by activation of the contralateral (right) brain hemisphere, indicating a possible mechanism on how behavioral lateralization
may influence species life and welfare. This hypothesis is supported by evidence from other vertebrates.
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Introduction

Distinct roles of the brain hemispheres in processing of

information are now well known as the basis for asymmetric

reactions to various stimuli positioned to the sides of an individual

[1–3]. These asymmetric reactions are usually aligned to one side

in most individuals in populations, representing lateralized biases

for a number of animal behaviors. Such population level

behavioral lateralizations are well documented for a wide range

of vertebrates from fish to mammals (for reviews see [1,4]), and

even found in a number of invertebrates, showing a gradual

evolution of lateralizations from flatworms to vertebrates (reviewed

in [5]). At least for the latter a common pattern of brain and

behavioral lateralization is now well recognized [1,6]. Likely, from

the earliest steps of vertebrate evolution two main alternative

functions were divided between the hemispheres: the left brain

predominantly controls the behavior in routine situations, while

the right brain specializes in responding to unpredictable changes

in the environment [7]. If focusing specifically to the functions of

the right cerebral hemisphere, it is preferentially involved in the

control of a number of ecologically significant situations, such as

various inter- and intraspecific interactions. Lateralized reactions

to a model alarming stimulus demonstrated in a wide range of

species are striking examples of right hemisphere specialization in

control of danger detection [8–12].

Social interactions are important for the survival and welfare of

humans along with that of most other animal species. Accumu-

lated evidence demonstrates that lateralization does exist in

different aspects of social behavior too, such as agonistic

interactions, gregarious behaviour, or individual recognition

(reviewed in [13]). For example, in tetrapods, but not in fish,

more intraspecific aggressive reactions are directed to the
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conspecifics on the left than on the right side of an individual [14–

17]. In fish, however, opposite to other vertebrates, aggressiveness

is usually directed to the right [18]. However, a number of teleost

fish species [19,20] and anuran tadpoles [21] prefer to observe

their own mirror reflections with their left eye, what indicates the

prevalent role of the right hemisphere in recognition and

responding to conspecifics. Strikingly, tadpoles not only react to

their mirror images asymmetrically, but this continuous observa-

tion of conspecifics influences positively their growth and

development [22,23].

In birds and mammals the same right hemispheric specialization

is reflected in perception of even more complex social stimuli.

Recognition of familiar vs. unfamiliar conspecifics in chicks

[24,25], or individual face discrimination in monkeys and sheep

[26,27] is realized mainly in the right brain hemisphere. A type of

human behavior, where laterality in perception may play a role, is

the left-directed visual attention due to a preference by most

women to hold their infants in their arms so that the infant’s face is

in their left visual hemifield [28]. These data clearly demonstrate

existence of population-level lateralization in various social

behaviors in a range of vertebrate species, suggesting a biological

significance of such a phenomenon. Interestingly, in social species

of fish the overall level of lateralization in different tasks may be

higher than in solitary ones [29,30]. The analogous prediction for

lateralization in insects also stands for social vs. non-social species

[31,32]. These facts make a basis for a recently prevailing

hypothesis on the origin of population-level lateralization in

vertebrates [7,13], which implies its relation to the need to

maintain coordination among asymmetrical individuals in social

behaviours [33] (but see [34] for a differing hypothesis).

Mathematical modelling indeed shows that during prey–predator

or intraspecific (competitive and cooperative) interactions, popu-

lation-level lateralization can in principle arise as an evolutionarily

stable strategy [35,36]. However, there have been very few

behavioral observations of laterality in social contacts provided

under natural conditions in any vertebrate species. Hence, a

particular role of laterality in visually guided natural social

behavior is not fully understood.

Visual laterality in social interactions is easier to assess in

animals with laterally placed eyes. Cetaceans are especially

suitable for this kind of research for three reasons: high level of

sociality and interactions between individuals, stronger isolation of

brain hemispheres due to relatively less developed corpus

callosum, and transfer of all the visual information from an eye

first to the contralateral brain hemisphere [37–40]. In beluga

whale (Delphinapterus leucas), in which, as in all whales and humans,

a strong bond between mother and young remains for some years

[41], social contacts are of great significance for the calf’s survival.

Here, we show that during social interactions between the calf and

the mother, calves of this whale species use their visual system

asymmetrically. We further propose a mechanism by which

the behavioral lateralization can influence the animal life and

welfare.

Results and Discussion

We videotaped the social interactions of 29 individually

identified wild beluga’s calf–mother pairs. With one exception,

the individual calves swam or rested significantly longer on a

particular side of the mother (Chi-square tests 7.87 to 1140.09,

P,.005), with significantly more calves showing a right-side than a

left-side preference (26 out of 28; G1 = 24.41, P = .0001; Fig. 1A,

Video S1). For the entire group, the mean percent of time

swimming and/or resting also was significantly longer on the right

of the mother during the whole period (81,464.87 (mean 6 MSE);

t28 = 6.45, P,.0001) and the first minute of video recordings

(86.3265.17; t28 = 7.03, P,.0001). The right-side calf-to-mother

position also was preserved during mother and calf joint diving

(non-identified pairs), as revealed by underwater video recordings

(Fig. 2C) in 33 out of 43 episodes (77%).

Figure 1. Position of calves in calf-mother pairs. (A) The distribution of 29 individually identified pairs depending on the percent of time spent
by calf to the right of the mother (image insertion shows a view from the observation tower on two calves surfacing to the right of their mothers; see
also Video S1). (B) Number of non-identified pairs registered during scans of the sea from the observation tower in two successive years (*G1 = 9.3,
P = .0023; **G1 = 22.22, P,.0001).
doi:10.1371/journal.pone.0013787.g001
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The number of left- and right-positioned calves in individually

non-identified pairs simultaneously present in the observation area

has shown a highly significant right-side population bias in two

successive years (Fig. 1B). Randomized observations from 80 non-

identified pairs made in 2001 [41] also revealed a right-side

population bias in the time spent by calf (%) relative to the mother

(73.4063.36 (mean 6 MSE); t79 = 6.96, P,.0001). This bias

evidently represents the contributions of a very high percentage of

individuals, all of them significantly lateralized in the same

direction. To ensure that the observer position or direction of sea

current do not affect calf’s position, we analyzed randomly chosen

10-second video fragments for each pair of those recorded

swimming both directions along the shore (N = 14), which would

show the pair swimming leftward and rightward. The ratio

between the total time the calves spent on the mothers left or right

side during these leftward and rightward swims were analyzed

using two-sample F-test for variance. Since no significant

differences were found (F(1,27) = 1.18, P = .2870) the data were

further analyzed regardless of the particular direction of swimming

of a pair.

For correct interpretation of the results, it is necessary to

understand whether the calf or the mother is responsible for the

positional asymmetry in a pair. Frame by frame analysis revealed

that the positional asymmetry is definitely a result of the calf’s, not

the mother’s, preference for observing the other with one eye. The

beluga calf always takes the lead in choosing the position near the

mother, e.g., after a rapid change of the direction of the pair’s

swimming. Observations of the pairs at rest revealed that the calf

often continues to swim around the mother, while the latter stays

motionless and probably sleep (Video S2). In such situations

registered for 9 individually identified pairs in 2010, in all pairs the

calf swam at the right side of the resting mother significantly longer

time, than at the left side (Chi-square tests ranging from 5.24 to

124, P,.022). These observations testify in favor of the calf’s

prevailing role in choosing the position in relation to the mother.

Although one can not exclude the possibility that the mother may

monitor the calf with her right eye, it is nonetheless unlikely that

the overall bias is due to the mother’s tendency to keep the calf to

one of her sides. Indeed, in dolphins these are calves that prefer

certain positions to mother when frightened, threatened, or tired

[42]. Unlike terrestrial vertebrates they demonstrate a higher

degree of independence in deciding when and where to move [43]

and perform most of the approaches and leaves in the calf-mother

pairs [44]. Although dolphin mothers seem to be partially

responsible for maintaining proximity to their calves, displaying

more approaches than leaves in the pair [44], there is no evidence

that mothers in either dolphins or belugas use just eye monitoring

of the calves for that.

Furthermore, much like in belugas, dolphin mother-calf pairs

maintain continuous visual contact with one another [45].

Remarkably, during monocular sleep, the eye that the dolphin

calf directs toward the mother is open more often than is the other

eye. This suggests that visual contact in calf-to-mother interactions

is more important than tactile contact. That the beluga calf more

often demonstrated activity (climbing on to the mother’s back,

rolling along the longitude axis, or touching the mother with the

pectoral flipper while keeping the mother in its left visual hemifield

(Fig. 2D; 61 of 74 cases, 82%, Chi-square test 31.135, P,0,0001),

is further evidence of a calf visual preference. For flipper-to-body

contacts this seems to be the case also in another species, the

bottlenose dolphin, Tursiops aduncus [46]. A remarkable exclusion

from this rule is found in sperm whale, Physeter macrocephalus [47].

Sperm whale calves peduncle diving is laterally asymmetrical with

a bias to the left, and not to the right side of the escorting adult.

This lateralization, however, may be a result of a unique nasal

structure in this species (the blowhole is displaced to the left, while

the right nostril is skinned over), and as a consequence, a probable

nasal suckling [47], since such a leftward bias was only registered

during calves’ diving to reach the peduncle. In any case, this

example also demonstrates the prevalent role of the calf in the

choice of the side near to the mother.

From two weeks of age on beluga calves periodically leave their

mothers and form transient associations with other individuals in

the aggregation [41]. In dolphins such mother and calf separations

was showed to play an important role in calf’s socialization [43].

Obviously, during these contacts a calf displayed interest in and

Figure 2. Aspects of the field study of lateralization in belugas. (A) Observation area in front of the observation tower is marked, but not
restricted to the red elipse. (B) Characteristic markings on the body of a characteristic female used for individual identification marked with red arrows
(from left to right: carvings, indent on the dorsal fin, scratches of different colour). (C) A young calf swimming with the mother in the view of
underwater video camera. (D) A young calf rolling along the axis to the right of the mother. Red spiral arrow shows the direction of rolling.
doi:10.1371/journal.pone.0013787.g002
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approached elders and thus chose the location as regards to the

group. Importantly, when escorting long-lasting groups of much

elder young whales young calves also exhibit the right-sided

positional asymmetry of similar level as when escorting their

mothers (24 out of 29 episodes, 83%, Chi-square test 12.448,

P = 0.0004). The fact that beluga calves prefer to keep at the right

of elder calves and possibly observe them with the left eye,

indicates that the laterality effect occurs not exclusively in response

to the mother but may extend to other socially significant objects.

A further plausible suggestion is that elder calves or may be even

adults of this and other species may also prefer to approach one

another from right to form a group or to join a preexisting group.

This hypothesis can be checked in future in whales possessing well

recognized natural individual marking (belugas, killer whales).

Recently, a number of reports has shown the right eye/left

hemisphere advantage for certain visually guided tasks in dolphins,

particularly in a test for numerical abilities and in a multiple

pattern discrimination task [48–50]. In contrast, our data, showing

a left eye preference during calf-mother interactions in belugas,

together with an earlier report on left-sided bias in dolphin’s

flipper-to-body contacts [46] indicate that the analysis of socially

significant visual information occurs in whales in the right brain

hemisphere. This is in accordance with what is known for other

vertebrates, e.g., chick [51–52], or fish [53]. As we have shown

recently, left eye – right hemisphere system is also involved in

discrimination of novel objects in beluga whales [54], again

demonstrating a similarity to other vertebrates [55–57]. In

addition, several studies of foraging dolphins [58] and whales

[59] under natural conditions revealed a number of right-sided

preferences suggesting a complementary role of the left hemi-

sphere for feeding behavior. Previously the same bias was found in

a number of both land [60–62], and aquatic vertebrates

[31,63,64]. Hence, processing of information on social partners

or novel objects vs. food correspondingly in the right and the left

brain hemispheres in whales is, therefore, in line with the

stimulus–specific pattern of brain lateralization common to all

vertebrates [1,4,13,65]. Hence, these basic left/right hemisphere

specializations are expressed in the same way in cetaceans and

other vertebrates. The existing disagreement [48–50] might be a

matter of different possible interpretations or experimental design

and needs further investigation.

The occurrence of striking population–level lateralization in

such a highly social species as beluga whale is consistent with a

mathematical model, predicting that animals with prevalence of

synergistic over antagonistic interactions should display most

strong population bias [36]. However, the exact mechanism,

which governs the alignment of the behavioral asymmetry in

population, is not known. We believe that continual unilateral eye

contacts of beluga whale calves first to their mothers and later to

other conspecifics may promote the development of cognitive-

communicational skills via preferential activation of the right

hemisphere. Hence, the calves with the left eye/right hemisphere

preference receive more chances for better performance and

survival. The same could be true for primate infants (and actually,

not necessary restricted to them) who, being held by their mothers

preferentially on the left, spend more time looking at the mother’s

face with the left eye than with the right [66–68]. A number of

hypotheses have been put forward in order to explain left-sided

bias in cradling the infants in humans and its possible influence on

development of handedness in children [66,67]. However, it is still

unclear why such a bias exists and what might be its benefits for

the mother or for the infant. Although more often and

straightforward explanations relate it to the handedness of the

mother, which may influence in this or that way the handedness of

the infant, it is more credible that multiple causes may act here.

Among others a role might have the emotional state of the mother

attending the socially significant object (the infant) [28,67], a

preference of the child to listen the mothers heart beat [69–71] or

even to observe the mother’s face with the left eye [72]. Indeed, as

hypothesized by the latter authors, left-side cradling may probably

facilitate perceptual communication between mother’s and infant’s

right cerebral hemispheres [72]. More important is that regardless

of its particular reason, the side of cradling may indeed influence

the overall development of the young by means of its already

established brain asymmetry, i.e., by activating one of the

differently specialized hemispheres (the right one). Interestingly,

a real phenomenon of right hemisphere activation with unilateral

eye stimulation in experiments with non-primate mammals was

explicitly shown by others [73,74]. For example, cows, which

chronically receive food from the left, which thus appear first in

their left visual hemifield and is analyzed in the right hemisphere

improve their lactation and breeding performance. Similarly,

tadpoles of frogs, which prefer to observe their mirror images and

conspecifics with the left eye, grow faster and develop better in

mirrored aquaria than in those with the opaque walls [22,23]. All

these facts together indicate an important mechanism by which

the left eye/right brain hemisphere system may influence the

species’ life and welfare.

Materials and Methods

1. Region and season of field work; observation
conditions

Observations on whales were conducted at one of the greatest

belugas’ breeding aggregation at the Beluzhiy Cape (35.52N

65.07E) of the Solovetskiy Island (Onega Bay, Southern part of the

White Sea). The observations on belugas here have been

performed since 1995, so that the whales are aware of presence

of humans and demonstrate natural behavior. This aggregation is

formed mostly by females with calves of various ages [75]. The

aggregation is uniquely close to the shore (12–25 m) so that the

observations are possible either directly from the shore line, or

from the observation tower (12 m height; Fig. 2A). The

observations were carried out every time belugas came to the

studied area, i.e., once or twice a day at low-tide [76], except

adverse weather conditions. Data on individually identified

mother–calf pairs and underwater recordings of unidentified

animals were collected in July–August 2009; population scans (see

below) have been repeatedly made in 2008 and 2009. Data on

individually non-recognized pairs were also collected in June-

August 2001. Additional observations on calves’ behavior, when

escorting mothers and elder calves were made in July–August

2010.

Ethics statement. This study does not include any study of

human subjects or non-human primates, thus does not need any

specific adherence to the Declaration of Helsinki or Weatherall

report. As for the work with other subjects, this work, which only

implies pure observations on animals, did not require any

permission according to local rules and laws in Russia.

2. Individually identified mother–calf pairs
The individual identification of adult belugas and mother-calf

pairs was carried out using natural markers (coloration pattern,

scars, and fin injuries, Fig. 2B). 17 pairs were observed once (during

one day) each in the studied area, 8 pairs – twice, two pairs – three

times, and two pairs – four times. We continually video recorded

mother–calf pairs while they were joint swimming (within 4 m one

from the other) or resting in the observation area directly from the
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shore as long as possible. For each pair the time spent by calf to the

left or to the right of the mother was scored. Near to one half of all

the individually identified pairs were observed more than one time

(one low-tide). Heterogeneity chi-square tests were performed to

allow pooling data from different days (low-tides). The first minute

of video from each pair was included into analysis; the data from

pairs recorded for less than 1 minute were discarded. Mean

population time spent on one or the other sides of the mother were

compared using paired Student’s t-test (N = 29). Analysis at the

individual level was performed throughout all recording time using

Chi-square tests. Thereafter the number of calves displaying

individual preference to swim to the left side of the mother was

compared with the number of calves significantly preferred to swim

to the right side using the log-likelihood ratio chi-square test (G-test).

Tactile contacts initiated by the calf in each calf-mother pair were

scored separately.

3. Individually non-identified calf-mother pairs
To register the position of the calf in individually non-

recognized pairs we scanned the observation area from the tower.

The scanning was performed three times per low-tide period at

approximately 30–40 minute intervals. All visible mother–calf

pairs swimming in the observation area were registered and the

calf’s position was scored.

To check whether position of the calf preserves when diving, a

digital camera in waterproof box was installed 15 m off the shore,

at the depth 5 m and directed towards the main area, where

whales usually swam. Located on the observation tower camcorder

recorded the video receiving from underwater camera. Left or

right calf-to-mother position was scored every time a pair got into

the camera capture field (totally 43 episodes). Individual

identification was impossible due to light insufficiency. The total

number of left and right sided calf-to-mother registrations was

scored, and the population bias was estimated using G-test.

Supporting Information

Video S1 Mother-calf joint surface swimming. This video

illustrates a typical episode of a calf swimming to the right of the

mother, along with other activities of the calf, i.e., tactile contacts

described in the main text.

Found at: doi:10.1371/journal.pone.0013787.s001 (10.04 MB

AVI)

Video S2 Mother-at-rest and calf surface interactions. This

video illustrates a typical behavior of a calf swimming along the

resting and mostly motionless mother.

Found at: doi:10.1371/journal.pone.0013787.s002 (10.17 MB

AVI)
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50. Kilian A, von Fersen L, Güntürkün O (2000) Lateralization of visuospatial

processing in the bottlenose dolphin (Tursiops truncatus). Behav Brain Res 116:

211–215.

51. Regolin L, Vallortigara G, Zanforlin M (1995) Detour behaviour in the domestic
chick: Searching for a disappearing prey or a disappearing social partner. Anim

Behav 50: 203–211.

52. Daisley JN, Mascalzoni E, Rosa-Salva O, Rugani R, Regolin L (2009)
Lateralization of social cognition in the domestic chicken (Gallus gallus) Phil

Trans R Soc B 364: 965–981.

53. Sovrano VA, Bisazza A, Vallortigara G (2001) Lateralization of response to
social stimuli in fishes: A comparison between different methods and species

Physiol Behav 74: 237–244.

54. Karenina KA, Giljov AN, Malashichev YB, Baranov VS, Bel’kovich VM (2010)

Visual lateralization in wild: perceiving of novel object in Beluga Whale
(Delphinapterus leucas). J Asymmetry 4: 3–12.

55. Regolin L, Vallortigara G (1996) Lateral asymmetries during responses to novel-

coloured objects in the domestic chick: A developmental study. Behav Proc 37:
67–74.

56. Sovrano VA (2004) Visual lateralization in response to familiar and unfamiliar

stimuli in fish. Behav Brain Res 152: 385–391.
57. Robins A, Rogers LJ (2006) Complementary and lateralized forms of processing

in Bufo marinus for novel and familiar prey. Neurobiol Learn Memory 86:
214–227.

58. Silber GK, Fertl D (1995) Intentional beaching by bottlenose dolphins (Tursiops

truncatus) in the Colorado River Delta, Mexico. Aquat Mamm 21: 183–186.
59. Woodward BL, Winn JP (2006) Apparent lateralized behavior in gray whales

feeding off the central British Columbia coast. Mamm Sci 22: 64–73.
60. Mench JA, Andrew RJ (1986) Lateralization of a food search task in the

domestic chick. Behav Neural Biol 46: 107–114.
61. Robins A, Chen P, Beazley LD, Dunlop SA (2005) Lateralised predatory

responses in the ornate dragon lizard (Ctenophorus ornatus). NeuroReport 16:

849–852.
62. Robins A, Rogers LJ (2004) Lateralised prey catching responses in the toad (Bufo

marinus): Analysis of complex visual stimuli. Anim Behav 68: 767–775.
63. Miklosi A, Andrew RJ (1999) Right eye use associated with the decision to bite.

Behav Brain Res 105: 199–205.

64. Miklosi A, Andrew RJ, Gasparini S (2001) Role of right hemifield in visual
control of approach to target in zebrafish. Behav Brain Res 122: 57–65.

65. Malashichev YB, Deckel AW, eds (2006) Behavioral and Morphological
Asymmetries in Vertebrates. Texas: Landes Biosciences. 193 p.

66. Harris LJ, Cardenas RA, Spradlin MP, Jr., Almerigi JB (2009) Adults’
preferences for side-of-hold as portrayed in paintings of the Madonna and

Child. Laterality 14: 590–617.

67. Harris LJ (2010) Side biases for holding and carrying infants: Reports from the
past and possible lessons for today. Laterality 15: 56–135.

68. Damerose E, Vauclair J (2002) Posture and laterality in human and nonhuman
primates: Asymmetries in maternal handling and the infant’s early motor

asymmetries. In: Rogers LJ, Andrew M, eds. Comparative Vertebrate

Lateralization. Cambridge, UK: Cambridge University Press. pp 306–362.
69. Salk L (1960) The effects of the normal heartbeat sound on the behavior of the

newborn infant: Implications for mental health. World Mental Health 12:
168–175.

70. Salk L (1970) The critical nature of the post-partum period in the human for the
establishment of the mother–infant bond: A controlled study. Diseases Nerv

System 31: 110–116.

71. Salk L (1973) The role of the heartbeat in the relations between mother and
infant. Sci Amer 228: 24–29.

72. Sieratzki JS, Woll B (1996) Why do mothers cradle babies on their left? The
Lancet 347: 1746–1748.

73. Rizhova LY, Kokorina EP (2005) Behavioural asymmetry is involved in

regulation of autonomic processes: Left side presentation of food improves
reproduction and lactation in cows. Behav Brain Res 161: 75–81.

74. Rizhova LY, Vershinina E, Balashov YG, Kulagin DA, Kokorina EP (2006)
Chapter 13. Relation of Behavioral Asymmetry to the Functions of

Hypothalamus-Pituitary-Adrenal and Reproductive Systems in Vertebrates.
In: Malashichev YB, Deckel AW, eds. Behavioral and Morphological

Asymmetries in VertebratesTexas: Landes Biosciences. pp 160–176.

75. Krasnova VV, Bel’kovich VM, Chernetsky AD (2009) Formation of behavior in
the White Sea beluga calf, Delphinapterus leucas, during early postnatal

ontogenesis. Russ J Mar Biol 35(1): 53–59.
76. Bel’kovich VM, Chernetskii AD, Kirillova OI (2002) Biology of Beluga

(Delphinapterus leucas) in the SouthernWhite Sea. In: Aristov AA, Bel’kovich VM,

Zemskii VA, Vladimirov VA, Smelova IV, eds. Morskie mlekopitayuschie,
Rezultaty issledovanii, provedyonnykh v 1995–1998 gg. 1. pp 53–78.

Visual Asymmetry in Whales

PLoS ONE | www.plosone.org 6 November 2010 | Volume 5 | Issue 11 | e13787


