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An image classification 
deep‑learning algorithm 
for shrapnel detection 
from ultrasound images
Eric J. Snider*, Sofia I. Hernandez‑Torres & Emily N. Boice

Ultrasound imaging is essential for non-invasively diagnosing injuries where advanced diagnostics 
may not be possible. However, image interpretation remains a challenge as proper expertise may not 
be available. In response, artificial intelligence algorithms are being investigated to automate image 
analysis and diagnosis. Here, we highlight an image classification convolutional neural network for 
detecting shrapnel in ultrasound images. As an initial application, different shrapnel types and sizes 
were embedded first in a tissue mimicking phantom and then in swine thigh tissue. The algorithm 
architecture was optimized stepwise by minimizing validation loss and maximizing F1 score. The final 
algorithm design trained on tissue phantom image sets had an F1 score of 0.95 and an area under 
the ROC curve of 0.95. It maintained higher than a 90% accuracy for each of 8 shrapnel types. When 
trained only on swine image sets, the optimized algorithm format had even higher metrics: F1 and 
area under the ROC curve of 0.99. Overall, the algorithm developed resulted in strong classification 
accuracy for both the tissue phantom and animal tissue. This framework can be applied to other 
trauma relevant imaging applications such as internal bleeding to further simplify trauma medicine 
when resources and image interpretation are scarce.

Currently, ultrasound (US) imaging is commonly used for both detecting foreign bodies during emergency 
medicine and also assessing internal injuries and traumas faced in remote environments due to its high accuracy, 
portability, and modest power requirements1–3. While higher fidelity imaging modalities are preferred in the hos-
pital setting, this is often not possible in remote settings, such as with combat casualty care. In fact, the Extended 
Focused Assessment with Sonography for Trauma (eFAST) examination protocol is the current standard of care 
on the battlefield when internal injuries are suspected4. In addition, US imaging can be valuable after improvised 
explosive devices (IED) and other blast related injuries have occurred to detect any foreign bodies (i.e., shrapnel) 
embedded in tissue that may cause infections5 or be responsible for internal hemorrhage6.

However, an ultrasound exam is only effective if a trained sonographer procures clear US images in the cor-
rect locations and accurately interprets them. Unfortunately, the utilization of US devices for diagnosing critical 
internal injuries is technically challenging with varying degrees of injury and patient position7, requiring hours 
of end-user training8, and is normally done by a skilled ultrasonography technician. As a result, there is a clear 
need to simplify the US image acquisition and evaluation process so that casualties can be properly assessed for 
internal injuries on the battlefield or remote environments by non-expert providers with limited training.

Ultrasound image interpretation algorithms have been developed for a wide variety of applications, from 
tumor detection9, to thyroid nodules10, and lung pathologies due to COVID-1911. Image classification algorithms 
such as these primarily rely on supervised deep learning convolutional neural networks (CNN) to detect trends 
between positive and negative image sets. Higher fidelity algorithms can move beyond simple classification into 
object detection or segmentation approaches to highlight the abnormality in the tissue12–14 or utilize US video 
footage instead of image sets15–17.

Oftentimes, these algorithms are built via transfer learning to existing algorithm architectures for additional 
applications, such as the existing VGG-1618–20, EfficientNet21–23, and InceptionNet24–26 architectures trained 
on millions of image sets from the ImageNet archive27. However, for such robust performance across 1000s of 
image classification types, these algorithms can be cumbersome and overly complicated when fewer categorical 
image classification tasks are desired. This is especially critical if the ultimate goal is to integrate these algorithms 
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within existing US imaging systems for near real-time diagnoses. Here, we develop and optimize a streamlined 
algorithm specifically for shrapnel detection in ultrasound images, a key step towards developing algorithms for 
automating military or remote medicine relevant US diagnoses.

Methods
Ultrasound image acquisition.  Ultrasound images were collected from gelatin phantom or swine tissue 
using a Sonosite Edge (Fujifilm, Bothell, WA, USA) and HF50 probe (Fujifilm, Bothell, WA, USA). Phantoms 
were tuned for mimicking tissue properties28 and were comprised of a plastic bone, inner muscle layer, and 
outer fat mimicking layer. The inner layer base was 10% (w/v) gelatin with 0.25% (w/v) flour in 2:1 (v/v) water 
to evaporated milk, containing 2% agarose (w/v) solid components with various flour amounts in the agarose to 
heterogeneously adjust the echogenicity. The outer fat-mimicking layer was the same base 10% gelatin solution 
with 0.10% (w/v) flour. Baseline images were captured at varying depths and with longitudinal and transverse 
probe placement before shrapnel insertion. An average of 15 images was taken in each quadrant of the phantom, 
approximately every 90º. After baseline images were collected, we progressively inserted the shrapnel fragments 
(Table 1A) using surgical forceps. An average of 12 images for each of the 7 shrapnel types, per thigh model were 
collected. Shrapnel depth within the phantom varied from 2 cm up to 5.5 cm, where it was almost impacting the 
bone. Due to material properties of gelatin, the shrapnel slid easily into the muscle layer of the phantom. After 
two or three shrapnel pieces had been inserted in the same location, we rotated the thigh between 60–90º, or 
until the US trace of the previous insertion was out of view. In total, we collected baseline and shrapnel positive 
US images from 14 phantom thigh models.

A similar methodology was followed for collecting baseline and shrapnel images from recently euthanized 
swine thighs. All experiments were performed in accordance with a protocol approved by the local Institutional 
Animal Care and Use Committee at the US Army Institute of Surgical Research. All methods were carried out 
in accordance with relevant guidelines and regulations. The authors also complied with the ARRIVE (Animal 
Research: Reporting of In Vivo Experiments) guidelines. Baseline images of the femoral bicep muscle of three 
euthanized porcine subjects were acquired with the same ultrasound setup. An average of 150 images came from 
each animal using a combination of video clips and still images. The overall collection of images had varying 
depths, angles, and bone appearances similar to gelatin phantom image acquisition. Two or three small incisions 
were made on different locations of the euthanized swine’s bicep and the same shrapnel types were inserted. 
An average of 30 images was taken for every shrapnel type changing location of the shrapnel and angles of the 
ultrasound probe. Depths of shrapnel pieces varied from 2 cm up to 4.5 cm into the thigh tissue. All the images 
for both, swine and phantom, were compiled for further image preprocessing.

Image preprocessing.  Ultrasound images were divided into four groups: (i) phantom baseline, (ii) phan-
tom shrapnel, (iii) swine baseline, and (iv) swine shrapnel. To increase the number of images prior to data aug-
mentation and model training, a custom script was used to extract the frames from acquired ultrasound videos 
using the ffmpeg-Ruby tool (version 4.4). Next, all images were cropped to a square aspect ratio to remove the 
settings, file name, and other information included in exported ultrasound images or video frames (Supple-

Table 1.   Overview of shrapnel types used and total number of images for training, validation, and testing. (A) 
Shrapnel were irregularly shaped, so the approximate longest and shortest width of the objects are reported. 
All objects were hyperechoic relative to the phantom or swine tissue. (B) Images were randomly distributed 
between each group for both baseline and shrapnel image classification. The process was repeated for all 
phantom images, all swine images, and a subset of the phantom images to be more similar in number to the 
swine image sets for consistency during final model evaluation.

(A) Object type
Minimum width 
(mm)

Maximum width 
(mm)

Metal 5 16

Ceramic 9 10

Plastic 7 15

Asphalt 4 8

Gravel 5 8

Glass 2 11

Rubber 5 15

Wood 8 20

(B)

Phantom image 
numbers during 
model optimization

Phantom image 
numbers for final 
model

Swine image numbers 
for final model

Baseline Shrapnel Baseline Shrapnel Baseline Shrapnel

Total number of images 954 1132 606 720 554 584

Model training split 611 724 332 395 355 374

Training validation split 152 181 83 98 88 93

Model testing split 191 227 191 227 111 117
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mental Fig. 1). The images were then converted to 16bit and resized to 512 × 512 pixels. All preprocessing was 
performed by batch processing in FIJI29,30.

The four groups of preprocessed images were then randomly split into 80% training/validation and 20% test-
ing sets using Python 3.8 (split-folder 0.4.3 package). The testing set of images was only used for backend testing 
of an optimized model and remained isolated during training. The remaining images were used for training 
and iterative validation during the training process. Within the image classification algorithm, the training set 
was further randomly split into 80% of the images being used for training and the remaining 20% for iterative 
model validation each epoch. As there were more gelatin phantom images than swine images, when compar-
ing the algorithm performance between each image type, the phantom image set numbers were reduced to be 
closer in number to the swine image sets (Table 1B). However, throughout initial model optimization (section 
“Algorithm Stepwise Optimization”), the entire phantom image set was used exclusively. Test image sets were 

Figure 1.   Overview of the Shrapnel Image Classification Framework and Stepwise Optimization Process. (A) 
Process diagram for the image classification algorithm. Images were imported and data augmentation was 
applied prior to feature identification through the 2D CNN layers and corresponding layer activators. Each 
CNN layer was followed by a max pooling layer. After 2D CNN layers, a dropout regularization layer was added 
to mitigate training overfitting. Images were then flattened, and densely connected layers were included until 
only two categorical outcomes could be selected: shrapnel or baseline. The model was compiled for a summation 
of the trainable parameters, followed by training optimization by minimizing loss through each epoch iteration. 
(B) Summary of the stepwise features evaluated during model evaluation. Each step is color-coded to its 
position in the model framework and the parameter variables evaluated are shown.
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used for backend external testing of each model after training using both phantom and swine image sets, as well 
as phantom test images subdivided into the 8 shrapnel types.

Algorithm design.  The deep learning image classification algorithm was designed using TensorFlow/
Keras (version 2.6.0) in Python (version 3.8) using Jupyter Notebook. The TensorFlow framework for importing 
images, loading the neural network architecture, and displaying the results followed readily available resources 
from TensorFlow31 (Fig. 1). Briefly, images were imported, and the validation and training splits were generated 
followed by verification that the proper images were loaded using Matplotlib. The initial architecture of the 
algorithm was designed to include image augmentation and dropout regularization similar to previous research 
efforts to minimize overfitting32 (Fig. 1). The framework for the algorithm applied image augmentation through 
flip, rotation, zoom, and contrast adjustment transformations at specified magnitudes. Next, 2D sparsely con-
nected convolutional neural network layers and layer activators were arranged with 2D max pooling layers. 
Different CNN architectures were evaluated (see “Algorithm Stepwise Optimization”), but after the CNN layers, 
a dropout regularization layer was included with an initial rate of 50%, followed by a flatten layer to reduce the 
images to a 1D array. Then, 2 densely connected layers were included with the final layer rendering only 2 possi-
ble outcomes: shrapnel or baseline. Initially, 100 epochs were run using ADAM as the optimizer minimizing loss. 
Validation and training loss were used to optimize the model through the iteration and plotted to track overall 
model convergence after training was complete.

To optimize the overall model architecture specifically for shrapnel ultrasound image classification, different 
layers and attributes of the algorithm were modified stepwise to determine its effect on overall performance. 
Overall performance was determined by the magnitude of the validation loss averaged over the final five epochs 
and the F1 score from model predictions for test phantom image sets. Seven model features were optimized in 
succession: (1) layer activators, (2) model architecture, (3) optimizers/solvers, (4) trainable parameters, (5) image 
augmentation, (6) dropout rate, and (7) number of epochs (Fig. 1); where each parameter was modified 4 to 6 
ways as shown. One model version was selected before moving onto the next variable until each parameter was 
tuned for shrapnel ultrasound image classification. The final, optimized algorithm architecture used is provided 
in Supplementary File 2.

Performance metrics.  Model prediction in test image sets was performed after the model was trained 
with a separate Python script which loaded the trained model and performed independent predictions on every 
image within the test sets. Class prediction, true category, and prediction confidence were exported for each 
image in the test data set. These results were used to calculate overall trained model performance metrics: accu-
racy, precision, recall, specificity, and F1 score. Receiver Operating Characteristic (ROC) Curves, area under the 
ROC curve (AUC), Confusion Matrices, and Calibration Plots were generated using GraphPad Prism 9 (San 
Diego, California, USA) by exporting the predictions and confidences for the entire set of test images. This pro-
cess was repeated for both phantom and swine test image sets. Lastly, phantom shrapnel type results were evalu-
ated for overall accuracy of prediction and prediction confidence for the eight shrapnel types. After the optimal 
model was identified, three replicate models were trained and tested as described above, using different training-
validation split seeds to introduce training variability and test the robustness of the model’s performance.

Results
Stepwise optimization for ultrasound image classification.  As detailed in Fig. 1, we optimized the 
shrapnel image classification model across seven criteria based on current trends33: (1) layer activators, (2) over-
all CNN architecture, (3) model optimizers, (4) number of trainable parameters, (5) image augmentation, (6) 
dropout regularization, and (7) number of epochs. First, two-layer activation functions, rectified linear activa-
tion function (ReLu) or Sigmoid, were evaluated for the 2D CNN layers and 1D dense architecture layers. ReLu 
and sigmoid activation functions were selected based on their utility in various network architectures, such as 
AlexNet and EfficientNet. Overall, ReLu was selected for the 2D CNN layers and sigmoid was selected for the 
1D dense, fully connected layer (Table 2A). This combination performed slightly better compared to when ReLu 
was used for the dense layers, with a high F1 score, a low validation loss compared to the other layer activator 
configurations. Second, the overall CNN layer architecture was modified but the total trainable parameters were 
fixed at approximately 33 million by keeping the dense layer 2 × the size of the final CNN layer. Overall, the 
higher layer number CNN architectures performed better compared to the fewer layer versions (Table 2B). Per-
formance was slightly improved at the highest layer depth architecture evaluated which was selected for future 
optimization. This architecture, while it did not have the lowest validation loss, had the best F1 score at 0.96.

Third, a total of four different model compilation optimizers were compared from established models, such 
as InceptionV3, EfficientNet, VGG-16, and ResNet34,35: (a) stochastic gradient descent (SGD), (b) RMS Prop, 
(c) ADAM, (d) NADAM. Performance was similar across each with the exception of the RMS prop optimizer 
which resulted in the greatest reduction in validation loss compared to the others and was thus selected as the 
optimizer for future runs (Table 2C). Fourth, the number of trainable parameters was modified by adjusting the 
dense, fully-connected layer architecture size. Overall, parameter number did not impact model performance 
greatly, with approximately 1 million parameters increasing validation loss minimally (Table 2D). However, the 
approximately 17 million parameter setup had slightly improved F1 and validation loss scores and was selected 
as the preferred model architecture.

Next, we investigated the impact of image augmentation on model performance. Image augmentation was 
introduced 4 ways: (1) image flip, (2) zoom, (3) rotation, and (4) contrast. When no augmentation was intro-
duced the validation loss was much higher (0.70), which is further reflected by the training and validation loss 
plot across the epochs, indicating overfitting of the model (Fig. 2A). Overfitting was greatly reduced for all 
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augmentation magnitudes evaluated (Fig. 2B–D). Based on the model’s F1 score and similarity between training 
and validation loss (Fig. 2), 10% augmentation was selected as the optimal augmentation magnitude to prevent 
overfitting while eliminating the introduction of unnecessary noise (Fig. 2C).

An additional approach to reduce overfitting is dropout regularization and a dropout rate of 50% was selected 
as an ideal starting point similar to rates used in AlexNet. Different dropout rates were evaluated from none to 
up to 60% after the final 2D CNN layer in the model. Overall, the dropout regularization magnitude on top of 
the image augmentation already set at 10% had a subtle effect, but improved performance was evident when 
dropout was removed (Fig. 3). The 55% rate was selected as it improved each critical parameter slightly over the 
50 and 60% dropout rate scenarios (Fig. 3D). Lastly, the number of epochs during training was modulated to 
determine its impact on model convergence. As shown from the performance metrics, too few epochs resulted 
in worse performance, but 50 epochs were comparable to 100 epochs. Increasing the number of epochs started to 
show divergence of the validation and training results and resulted in poorer performance (Fig. 3E). As a result, 
100 epochs were kept as the optimal hyperparameter selection. The final model architecture after each stepwise 
optimization is shown in Supplementary Fig. 2.

Performance of the optimized shrapnel classification algorithm.  After stepwise model optimiza-
tion, we evaluated the selected model’s performance across several key criteria and using three different training-
validation random splits to modify training. Using the phantom image sets to train the model, overall classifica-
tion accuracy was approximately 95% among phantom test image sets. Precision and recall were approximately 
93% and 98% respectively, indicating a slightly higher false positive outcome than false negative outcome, which 
was reflected in the confusion matrix and the lower 91% specificity score (Fig. 4A,B). The ROC curve resulted 
in an area under the curve value of approximately 0.94 (Fig. 4C). In addition, a calibration plot was constructed 
by binning the images into different shrapnel (positive) image fractions and calculating the average prediction 
confidence for these various fractions, with a well-trained model having similar prediction confidence to each 
fractional image set. Overall, the predictions had a linear correlation to the fractional splits, but there was an 
offset in performance between the three replicate models (Fig. 4D).

We also separated the shrapnel into 8 types and highlighted the accuracy and prediction confidence for 
each. Overall, all types had high prediction accuracy, but there were differences between the types, with ceramic 
performing well while smaller less echogenic types such as wood were harder to detect (Fig. 5). Representative 
images for each shrapnel type are shown in Supplementary Fig. 3 to highlight the prediction and image vari-
ability for each. Lastly, the phantom trained model was also used to blindly evaluate swine ultrasound images, to 

Table 2.   Summary of performance metrics for stepwise optimization steps. Average validation loss for the 
final 5 epochs during model training and F1 scores calculated from model predictions on gelatin phantom 
image sets are shown for four model optimization parameters: (A) Layer activators for the 2D CNN and 1D 
Dense neural network layers, (B) 2D CNN layer architecture, (C) model optimizer, and (D) total number of 
trainable parameters. Bold text font in each table region represents the selected model architecture that was 
used for subsequent optimization steps.

(A) CNN Dense Validation loss F1 score Accuracy AUC​

ReLu ReLu 0.38 0.94 0.94 0.93

Sigmoid Sigmoid 0.69 0.70 0.54 0.50

ReLu Sigmoid 0.29 0.93 0.93 0.93

Sigmoid ReLu 0.36 0.90 0.88 0.87

(B)CNN architecture Dense nodes Validation loss F1 score Accuracy AUC​

16 32 0.69 0.70 0.54 0.50

16, 32 64 0.69 0.70 0.54 0.50

16, 32, 64 128 0.29 0.93 0.93 0.93

16, 32, 64, 128 256 0.23 0.94 0.94 0.94

16, 32, 64, 128, 256 512 0.29 0.96 0.95 0.95

(C) Optimizer/solver Validation loss F1 score Accuracy AUC​

SGD 0.30 0.94 0.93 0.93

RMS Prop 0.17 0.93 0.93 0.93

ADAM 0.29 0.96 0.95 0.95

NADAM 0.28 0.95 0.95 0.95

(D) Dense nodes Trainable parameters Validation loss F1 score Accuracy AUC​

1024 67,504,546 0.18 0.96 0.96 0.96

512 33,948,578 0.17 0.93 0.93 0.93

256 17,170,594 0.16 0.96 0.96 0.96

64 4,587,106 0.17 0.95 0.94 0.94

8 916,922 0.23 0.95 0.95 0.94
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determine how closely the phantom training approach can be applied to swine image sets without transfer learn-
ing to this new image type. Performance was poor, with overall accuracy at 61% with an F1 score of 0.58 (Fig. 4A).

Performance for swine shrapnel detection using porcine image sets.  Next, the model was 
retrained using entirely different image data sets collected from swine instead of phantom. Swine testing image 
set performance reached as high as 99% accuracy with all performance metrics having a score of 0.98 or better 
(Fig. 6A). False detection rates remained low as shown by confusion matrix and the ROC-AUC reached 0.99 as 
well (Fig. 6B,C). The calibration plot had a strong linear correlation with less noise between the various replicate 
trained models compared to the shrapnel trained model (Fig. 6D). Overall, the model performed well for the 
swine image sets, performing better than the model performed when trained on phantom image sets alone. As 
expected, however, the accuracy to detect shrapnel in the phantom image sets was drastically reduced in this 
scenario with accuracy reduced to 48% (Fig. 6A). Similar poor scores were evident for all other performance 
metrics, with a recall and F1 score being the lowest scoring metrics. This is analogous to poor model perfor-
mance for swine images when the model was exclusively trained on phantom images.

Discussion
Ultrasound imaging is essential for medical diagnostics in emergency medicine and combat casualty care. Unfor-
tunately, image interpretation requires specialized expertise that often is not available in remote environments, 
limiting the utility for medical imaging for critical triage decisions. As a result, lowering the expertise threshold 
is critical for making medical imaging diagnosis accessible in these scenarios. Here, we describe a deep-learning 
algorithm for this purpose. Specifically, the image classification model developed here is optimized for shrapnel 
detection in phantom or animal tissue.

To highlight the effect of various parameters on model performance, we optimized each aspect of the model 
in a stepwise manner. In total, seven categories were tuned, such as number of trainable parameters, and layer 
activators, as well as image augmentation and dropout regularization to combat model overfitting. While there 
are many additional factors that can be optimized and more refined methods such as Bayesian hyperparameter 
optimization are possible36,37, the approach taken helped highlight the effect of each parameter on overall model 

Figure 2.   Effect of image augmentation on model performance. (A–C) Training and Validation loss plots for 
models with (A) no image augmentation, (B) 5% image augmentation and (C) 10% image augmentation for the 
100 epochs. (D) Summary of performance statistics for the different magnitudes of the image augmentation. 
Performance is shown for average validation loss for the last 5 epochs and F1 score from the test phantom 
images. Green text font represents the selected model architecture for subsequent optimization steps.
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performance. For instance, insufficient CNN layers resulted in poor performance as did certain layer activation 
configurations. With the finite number of images used with this model, training was susceptible to overfitting 
when the image augmentation was removed. Overfitting was evident as training loss approached zero while loss 
calculations during validation did not converge and remained high as the model was fit for the specific images 
in training set only. With the benefit of image augmentation, dropout regularization’s effect was not as evident, 
but its effect may have been more evident without image augmentation. A more robust data augmentation meth-
odology such as mixup38–40 can be utilized to further reduce overfitting. Overall, this manual stepwise model 
optimization approach was able to decide on a model tuned to this specific imaging application.

With the model optimized for this application, we highlighted its performance for shrapnel detection for both 
phantom and swine image sets. Optimization was conducted on phantom image sets as they could be acquired 
more easily and in greater number than swine images. The final model reached approximately 95% accuracy for 
test image sets. This was a stronger performance metric than we anticipated in the phantom images as they had 
variable compositions across some of the gelatin phantoms used and far fewer images were used in training the 
model compared to other ultrasound imaging applications41,42. In general, the model had higher false negative 
rates than false positives rates, indicating shrapnel was more likely to be undetected by the algorithm than a 
baseline being incorrectly categorized. From a medical diagnostic perspective, it likely would be preferred to 

Figure 3.   Effect of dropout regularization and number of epochs on model performance. (A–C) Training and 
validation loss plots for models with (A) no dropout regularization, (B) 40% dropout and (C) 55% dropout 
for the 100 epochs. (D, E) Summary of performance statistics for the different magnitudes of (D) dropout 
regularization and (E) number of epochs. Performance is shown for average validation loss for the last 5 epochs 
and F1 score from the test phantom images. Green text font represents the selected model architecture for 
subsequent optimization steps.
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have a higher positive rate to minimize shrapnel embedded in tissue going unnoticed, so a prediction confidence 
threshold below 50% may be needed to produce this result. A range of shrapnel sizes, materials, and shapes were 
evaluated, and performance was similar for most types, indicating the false negative rate was less influenced by 
the shrapnel type and may have been influence by other factors. Interestingly, when the model was trained on 
swine image sets, accuracy for swine images was nearly 99% and the false negative rate was reduced. The phan-
tom designed for this application had more iterations and independent replicates while the swine image sets 
came predominately from US video frames taken from only three animal thighs. This lower image diversity may 
explain the performance differences, but overfitting was not detected with training and validation loss parameters.

Future work can proceed various ways. First, model performance could be further tuned by utilizing Bayes-
ian hyperparameter optimization with the ratio image sets as the training data36,37. This optimization approach 
can tune multiple parameters and logically decide which pairings best can minimize loss or other performance 
metrics. Second, the model type can be reconfigured for object detection to identify the shrapnel location in 
the image17. This may be ideal for further diagnostic purposes and could be used for assisting during surgical 
interventions. Third, the model can be retrained for other injury conditions and anatomical locations relevant 
to austere medicine or combat casualty care. Shrapnel detection is more essential in the abdomen where inter-
nal bleeding may occur and in the eyes where intraocular foreign bodies and open globe injuries can lead to 
loss of vision43–45. Fourth, other image interpretation applications such as for pneumothorax, hemothorax, and 
abdominal hemorrhage will be explored to automate eFAST examination diagnosis for military and emergency 
medicine8. Fifth, future work will compare overall model performance to configurations of widely used networks 
such as InceptionNet46 or EfficientNet47 to highlight strengths or weaknesses of the developed model and to 
confirm that its performance and overall processing speed compare favorably to other models. In conclusion, 
the algorithm developed in this work was optimized for high performance detection for identifying shrapnel in 
both phantom and swine image sets, an important step in simplifying ultrasound image diagnosis on the bat-
tlefield and trauma situations.

Figure 4.   Performance of the Optimized Model using Phantom Image Training. Three replicate models were 
created with different randomized training-validation splits. (A) Tabular statistics for phantom images and 
swine images. Average and standard deviation (SD) are shown for each statistic. Note that the shown swine 
predictions are from a model trained only on a phantom image set. (B) Average confusion matrix performance. 
(C) ROC curve and (D) calibration plots for test data sets.
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Figure 5.   Model Performance for Different Shrapnel Types. (A) Accuracy and (B) prediction confidence for 
test phantom image sets for eight different shrapnel types: Asphalt (n = 33), Ceramic (n = 28), Glass (n = 14), 
Metal (n = 59), Plastic (n = 34), Rubber (n = 10), Rock (n = 29), Wood (n = 23). Results are shown as average 
values, and errors bars denote standard deviation. Representative images for glass shrapnel type for (C) high 
prediction confidence and (D) low prediction confidence. Additional representative images for all other 
shrapnel types are provided in Supplementary Fig. 3.
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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