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Abstract: Due to the partially reduced π-conjugation of the fullerene cage, multi-functionalized
fullerene derivatives exhibit remarkable fluorescent properties compared to pristine fullerenes, which
have high potential for application in organic light-emitting diodes (OLEDs). In this study two multi-
functionalized C70 derivatives, C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2, with excel-
lent fluorescence properties, were designed and synthesized. Compared with C70(OCH3)10 containing
a single kind of functional group, both the C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2

exhibited enhanced fluorescence properties with blue fluorescence emission. The fluorescence quan-
tum yields of the C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2 were 1.94% and 2.30%,
respectively, which were about ten times higher than that of C70(OCH3)10. The theoretical calcula-
tions revealed that the multi-functionalization of the C70 increased the S1–T1 energy gap, reducing
the intersystem crossing efficiency, resulting in the higher fluorescence quantum yield of the C70

derivatives. The results indicate that multi-functionalization is a viable strategy to improve the
fluorescence of fullerene derivatives.

Keywords: fullerene; multi-functionalization; fluorescence

1. Introduction

Fluorescence studies on fullerenes and their derivatives have attracted great interest
from researchers [1–13], who can not only offer vital information on the excited electronic
structures of fullerenes and their derivatives, but can also assess their potential applications in
organic electronic devices [14,15]. Due to the renowned electron-accepting ability and small
reorganization energy of symmetric fullerenes [16,17], the transition from S0 to S1 is forbidden,
and the intersystem crossing (ISC) efficiency from S1 to T1 is very high (close to 100%) [18].
Pristine fullerenes exhibit poor fluorescence properties, such as low-fluorescence quantum
yields (Φ of ca. 0.03% for C60 and ca. 0.06% for C70 in toluene) and short fluorescence lifetimes
(τ of 1.2 ns for C60 and 0.67 ns for C70) [19–22]. The functionalization of fullerene is a valid
way to increase electronic transition forbiddance and the S1–T1 energy gap by lowering the
symmetry of the fullerene. However, the fluorescence of mono-, bis-, and tris-adducts of
fullerene derivatives is still extremely weak, since these adducts cannot effectively destroy the
symmetric structure of fullerenes [23]. Multi-functionalization with higher adducts has been
proven to be an effective methodology to fine-tune the fluorescence properties of fullerene
derivatives. For instance, Rubin et al. reported a hexa-adduct of C60 that exhibited much-
improved fluorescence intensity [24]. Multi-functionalized C60 derivatives with excellent
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fluorescence properties were prepared by Nakamura et al. [25–27]. Compared with the studies
on the fluorescence properties of C60 derivatives, there are few studies on the fluorescence
properties of C70 derivatives [28].

Herein, we report the synthesis and fluorescence properties of two multi-functionalized C70
derivatives, C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2. By carefully controlling
the molar ratio of the reactants, C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2
can be readily synthesized from C70(OCH3)10 by using the Bingel–Hirsch reaction with high
selectivity. Due to the reduced π-conjugated system of C70, the fluorescence quantum yield
of C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2 was about ten times higher than
that of C70(OCH3)10. The results provide a method for synthesizing fullerene derivatives with
excellent fluorescence, offering valuable materials for organic light-emitting diodes.

2. Materials and Methods
2.1. Materials and Synthesis

C70, iodine monochloride (ICl), silver perchlorate, diethyl bromomalonate, and
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) were purchased from commercial suppliers
and used as received without further purification. Solvents were distilled and dried by
standard procedures.

C70Cl10 and C70(OCH3)10 were prepared according to the procedure in the literature [28,29].
C70(OCH3)10[C(COOEt)2]: Diethyl bromomalonate (12 mg, 0.05 mmol) and DBU

(16 mg, 0.1 mmol) were added to a solution of C70(OCH3)10 (58 mg, 0.05 mmol) in an-
hydrous toluene (50 mL). The mixture was stirred overnight under atmosphere at room
temperature. The solvent was removed under reduced pressure and the crude product
was purified by column chromatography over silica gel with toluene/acetate (10:1) as
the eluents to produce C70(OCH3)10[C(COOEt)2] as a pale-yellow solid (22 mg, 33%). 1H
NMR (500 MHz, CDCl3, ppm): δ 4.21 (q, J = 7.0 Hz, 4H), 3.98 (s, 6H), 3.93 (s, 12H), 3.86 (s,
6H), 3.75 (s, 6H), and 1.22 (t, J = 7.0 Hz, 6H). 13C NMR (500 MHz, CDCl3, ppm): δ 163.56,
153.40, 153.07, 151.78, 151.29, 150.78, 150.73, 149.91, 149.40, 148.90, 148.54, 148.42, 148.24,
148.22, 148.11, 147.88, 147.79, 146.61, 146.49, 146.13, 145.41, 145.12, 143.71, 142.96, 139.00,
138.83, 138.58, 137.46, 135.93, 134.20, 129.04, 128.23, 86.18, 81.21, 81.03, 80.81, 80.69, 67.79,
65.89, 63.10, 56.18, 56.11, 55.94, 55.91, 55.85, 43.47, and 14.03. ESI-FT-ICR-HRMS C87H40O14
[M+Na]+ m/z calculated 1331.2310 found 1331.2311.

The C70(OCH3)10[C(COOEt)2]2: Diethyl bromomalonate (48 mg, 0.2 mmol) and DBU
(60 mg, 0.4 mmol) were added to a solution of C70(OCH3)10 (58 mg, 0.05 mmol) in an-
hydrous toluene (50 mL). The mixture was stirred overnight under atmosphere at room
temperature. The solvent was removed under reduced pressure and the crude product
was purified by column chromatography over silica gel with toluene/acetate (5:1) as the
eluents to afford C70(OCH3)10[C(COOEt)2]2 as a light-yellow solid (29 mg, 39%). 1H NMR
(500 MHz, CDCl3, ppm): δ 4.33 (m, 8H), 4.00–3.77 (m, 30H), and 1.38–1.30 (m, 12H). 13C
NMR (500 MHz, CDCl3, ppm): δ 163.70, 163.67, 163.64, 163.21, 154.21, 153.22, 151.89, 151.80,
151.39, 151.34, 150.58, 150.33, 150.00, 149.62, 149.02, 148.90, 148.59, 148.31, 147.83, 147.53,
147.24, 146.91, 146.62, 146.52, 146.44, 146.30, 145.85, 145.60, 145.30, 145.26, 145.01, 144.60,
144.47, 143.67, 142.71, 139.95, 139.66, 139.12, 138.89, 138.14, 137.77, 137.52, 136.59, 136.24,
135.58, 134.38, 133.50, 130.01, 85.49, 84.51, 81.06, 80.94, 80.86, 80.80, 80.76, 80.70, 67.89, 67.80,
63.10, 63.07, 62.94, 62.88, 55.97, 55.93, 55.87, 55.79, 55.71, 55.68, 55.20, 43.44, 41.00, and 14.06.
ESI-FT-ICR-HRMS C94H50O18 [M+Na]+ m/z calculated 1490.3847 found 1490.2916.

2.2. Characterization
1H NMR, 13C NMR, and 2D NMR spectra were recorded using Bruker AVIII500 spec-

trometers (Bruker, Billerica, MA, USA). High-resolution mass spectra (HRMS) were recorded
on Agilent G6545XT mass spectrometers (Agilent, Santa Clara, CA, USA). UV-vis absorp-
tion spectra in solution were recorded using an Agilent Cary 5000 spectrophotometer
(Agilent, Santa Clara, CA, USA). The spectra were measured in quartz glass cuvettes us-
ing spectroscopic grade solvents. Fluorescence spectroscopy in solution was carried out
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with an FLS980 spectrometer (Edinburgh Instruments, Livingston, UK). Time-resolved
measurements were performed with a PS laser diode and a TCSPC detection unit. Single-
crystal X-ray data were collected on a Rigaku Xtalab Synergy diffractometer (Rigaku, Tokyo,
Japan). Using Olex2 [30], the initial structure was solved with the SHELX-XT structure
solution program using direct method and refined with the XL refinement package using
least-squares minimization.

3. Results and Discussion

As shown in Scheme 1, the C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2
were synthesized from C70(OCH3)10 by Bingel–Hirsch reaction. The deca-adduct C70 deriva-
tive C70(OCH3)10 was readily prepared by treating the C70Cl10 with anhydrous methanol in
the presence of silver perchlorate. C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2
can be readily synthesized with high selectivity by carefully controlling the molar ratio of
the reactants. Their molecular structures were confirmed by 1H, 13C NMR spectroscopy
and high-resolution mass spectrometry (Figures S1–S10). The two-dimensional correlated
spectroscopy (COSY) showed that there was mutual coupling of the protons between the
methyl and the methylene in the ethyl malonate of both the C70(OCH3)10[C(COOEt)2] and
the C70(OCH3)10[C(COOEt)2]2 molecules (Figures S4 and S9).
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Scheme 1. Synthesis of C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2.

The structure of the C70(OCH3)10[C(COOEt)2] was unambiguously determined by
X-ray crystallographic analysis (Figure 1 and Table S1). Single crystals were obtained
through the slow diffusion of hexane into a toluene solution of C70(OCH3)10[C(COOEt)2].
As shown in Figure 1, all the methoxy groups were distributed on the equatorial region
of the C70 cage. The malonate group was added to the pole of the C70 cage, and the
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ester groups were pointed in different directions to minimize the steric hindrance. In
the crystalline state, the C70(OCH3)10[C(COOEt)2] molecules displayed ordered pack-
ing in all the directions of the a-, b- and c-axes. Although the single crystal of the
C70(OCH3)10[C(COOEt)2]2 was not obtained, the most favorable structure of
C70(OCH3)10[C(COOEt)2]2 was determined through a series of theoretical calculations
(Figures S11–S13). As shown in Figure S14, the two malonate groups were distributed at
the two poles of the C70 cage. Similarly, all the functionalized groups were oriented in
different directions to minimize the steric hindrance.
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The UV-vis absorption spectra of the C70(OCH3)10, C70(OCH3)10[C(COOEt)2], and
C70(OCH3)10[C(COOEt)2]2 were measured at room temperature. As shown in Figure 2,
the C70(OCH3)10 exhibited two absorption peaks at 435 and 480 nm in the visible re-
gion, and one absorption peak at 315 nm in the ultraviolet region. By contrast, there
was no absorption peak in the visible region, but there was one absorption peak in the
ultraviolet region (313 nm) for C70(OCH3)10[C(COOEt)2], which was slightly blue-shifted
with respect to the C70(OCH3)10. Similarly, the C70(OCH3)10[C(COOEt)2]2 showed an
absorption peak at 305 nm, which was further blue-shifted compared with that of the
C70(OCH3)10[C(COOEt)2]. Moreover, a broad shoulder peak around 370 nm was ob-
served for the C70(OCH3)10[C(COOEt)2]. The blue-shifting of the absorption peaks of both
C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2 was caused by the decrease in
the π-conjugated system of the C70 cage, indicating that the energy gap between the S1 and
S0 became lager.



Nanomaterials 2022, 12, 1426 5 of 10

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 10 
 

 

π-conjugated system of the C70 cage, indicating that the energy gap between the S1 and 
S0 became lager. 

 

Figure 2. UV-vis absorption spectra of C70(OCH3)10, C70(OCH3)10[C(COOEt)2], and 
C70(OCH3)10[C(COOEt)2]2 in a 1.0 × 10−5 mol/L chloroform solution at room temperature. 

To obtain information about the photophysical properties of the C70(OCH3)10, 
C70(OCH3)10[C(COOEt)2], and C70(OCH3)10[C(COOEt)2]2, we measured the steady-state 
fluorescence spectra of these C70 derivatives. As shown in Figure 3, the emission peak of 
the C70(OCH3)10 was 498 nm, with a shoulder peak at 521 nm. The major emission peak at 
498 nm was ascribed to the S1→S0 transition, and the shoulder peak was ascribed to the 
transition involving the vibronic interactions [4,5]. The fluorescence spectra of the 
C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2 were rather similar. The major 
peaks appeared at 451 and 454 nm for the C70(OCH3)10[C(COOEt)2] and the 
C70(OCH3)10[C(COOEt)2]2, respectively, while the shoulder peaks were shown at 480, and 
481 nm. Obviously, the fluorescence emission peaks of the C70(OCH3)10[C(COOEt)2] and 
C70(OCH3)10[C(COOEt)2]2 were blue-shifted compared to those of the C70(OCH3)10, indi-
cating that the Bingel–Hirsch reaction can effectively reduce the π-conjugated system of 
the C70 cage [21]. The fluorescence quantum yields of these fullerene derivatives were 
obtained with integrating spheres. The fluorescence quantum yields of the 
C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2 were 1.94, and 2.30%, respective-
ly, which were about ten times higher than that of the C70(OCH3)10 (0.25%). However, the 
fluorescence quantum yields of both the C70(OCH3)10[C(COOEt)2] and the 
C70(OCH3)10[C(COOEt)2]2 were not particularly high, which made them difficult to use as 
fluorescent labels. 

Figure 2. UV-vis absorption spectra of C70(OCH3)10, C70(OCH3)10[C(COOEt)2], and
C70(OCH3)10[C(COOEt)2]2 in a 1.0 × 10−5 mol/L chloroform solution at room temperature.

To obtain information about the photophysical properties of the C70(OCH3)10,
C70(OCH3)10[C(COOEt)2], and C70(OCH3)10[C(COOEt)2]2, we measured the steady-state
fluorescence spectra of these C70 derivatives. As shown in Figure 3, the emission peak
of the C70(OCH3)10 was 498 nm, with a shoulder peak at 521 nm. The major emission
peak at 498 nm was ascribed to the S1→S0 transition, and the shoulder peak was as-
cribed to the transition involving the vibronic interactions [4,5]. The fluorescence spec-
tra of the C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2 were rather similar.
The major peaks appeared at 451 and 454 nm for the C70(OCH3)10[C(COOEt)2] and the
C70(OCH3)10[C(COOEt)2]2, respectively, while the shoulder peaks were shown at 480, and
481 nm. Obviously, the fluorescence emission peaks of the C70(OCH3)10[C(COOEt)2] and
C70(OCH3)10[C(COOEt)2]2 were blue-shifted compared to those of the C70(OCH3)10, indi-
cating that the Bingel–Hirsch reaction can effectively reduce the π-conjugated system of the
C70 cage [21]. The fluorescence quantum yields of these fullerene derivatives were obtained
with integrating spheres. The fluorescence quantum yields of the C70(OCH3)10[C(COOEt)2]
and C70(OCH3)10[C(COOEt)2]2 were 1.94, and 2.30%, respectively, which were about ten
times higher than that of the C70(OCH3)10 (0.25%). However, the fluorescence quantum
yields of both the C70(OCH3)10[C(COOEt)2] and the C70(OCH3)10[C(COOEt)2]2 were not
particularly high, which made them difficult to use as fluorescent labels.
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Figure 3. Normalized steady-state fluorescence spectra of C70(OCH3)10, C70(OCH3)10[C(COOEt)2],
and C70(OCH3)10[C(COOEt)2]2 at room temperature.

The fluorescent decay profiles of the C70(OCH3)10, C70(OCH3)10[C(COOEt)2], and
C70(OCH3)10[C(COOEt)2]2 in chloroform were recorded using the time-correlated single-
photon counting (TCSPC) method. The fluorescence lifetime of the C70(OCH3)10 was
described by a single-exponential component with τ = 1.16 ns. However, the fluores-
cence lifetime of the C70(OCH3)10[C(COOEt)2] (τ = 1.99 ns) was described by double-
exponential components with τ1 = 1.18 ns (70.9%) and τ2 = 3.95 ns (29.1%). Similarly,
the fluorescence lifetime of the C70(OCH3)10[C(COOEt)2]2 (τ = 1.82 ns) was also de-
scribed by bi-exponential components with τ1 = 1.18 ns (72.0%) and τ2 = 3.44 ns (28.0%)
(Table 1). As shown in Figure 4, the fluorescence lifetimes of the C70(OCH3)10[C(COOEt)2]
and C70(OCH3)10[C(COOEt)2]2 were slightly longer than those of the C70(OCH3)10, which
implies that the number of adducts on fullerene can influence the fluorescence lifetime of
fullerene derivatives [27]. Fullerene derivatives with more adducts may have higher fluores-
cence quantum yields and longer fluorescence lifetimes. Therefore, multi-functionalization
is a promising strategy to improve the fluorescence of fullerene derivatives.
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Table 1. Fluorescence lifetimes of C70(OCH3)10, C70(OCH3)10[C(COOEt)2] and
C70(OCH3)10[C(COOEt)2]2. The values in parentheses represent the fractions of each kinetic lifetime.

τ1 (ns) τ2 (ns) τ (ns) QY (%)

C70(OCH3)10 1.16 (100%) 1.16 0.25
C70(OCH3)10[C(COOEt)2] 1.18 (70.9%) 3.95 (29.1%) 1.99 1.94
C70(OCH3)10[C(COOEt)2]2 1.18 (72.0%) 3.44 (28.0%) 1.82 2.30
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Figure 4. Time-resolved fluorescence decay profiles of C70(OCH3)10, C70(OCH3)10[C(COOEt)2], and
C70(OCH3)10[C(COOEt)2]2.

To gain insight into the mechanisms of the fluorescence enhancements, we carried out
theoretical calculations. Generally, the compounds with high fluorescence quantum yields
had large S1–T1 energy gaps. Furthermore, the larger S1–T1 energy gaps appeared when
the excitation was more localized. As shown in Figure 5, the difference S1/S0 electronic
densities of the C70(OCH3)10, C70(OCH3)10[C(COOEt)2], and C70(OCH3)10[C(COOEt)2]2
were computed through TD-DFT. The excitations of the C70(OCH3)10[C(COOEt)2] and
C70(OCH3)10[C(COOEt)2]2 were similar and spatially localized in the same fragment of the
molecule, which meant a large S1–T1 energy gap. However, the large spatial extension led to
a small S1–T1 energy gap, as with the C70(OCH3)10. Therefore, the further functionalization
of the C70(OCH3)10 increased the S1–T1 energy gap, reducing the intersystem crossing
efficiency, resulting in the higher fluorescence quantum yield of the C70 derivatives.
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and blue, respectively. Each molecule is shown in three orientations: front view, side view, and top view.

4. Conclusions

In summary, two multi-functionalized C70 derivatives, C70(OCH3)10[C(COOEt)2] and
C70(OCH3)10[C(COOEt)2]2, were synthesized from C70(OCH3)10 by Bingel–Hirsch reac-
tion with high selectivity. Compared with the C70(OCH3)10, the UV-vis absorption and
fluorescence of both the C70(OCH3)10[C(COOEt)2] and the C70(OCH3)10[C(COOEt)2]2
were blue-shifted due to the decrease in the π-conjugated system of the C70. More-
over, the C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2 showed blue fluores-
cence, and their fluorescence quantum yield was about ten times higher than that of the
C70(OCH3)10. The TD-DFT calculations indicated that the multi-functionalization of the
C70 increased the S1–T1 energy gap, reducing the intersystem crossing efficiency, resulting
in the higher fluorescence quantum yield of the C70 derivatives. The results reveal that
multi-functionalization is an effective strategy to improve the fluorescence of fullerene
derivatives, providing novel organic electronic materials for organic light-emitting diodes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12091426/s1. Figure S1: 1H NMR spectrum (500 MHz, CDCl3)
of C70(OCH3)10[C(COOEt)2]; Figure S2: 13C NMR spectrum (500 MHz, CDCl3) of
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C70(OCH3)10[C(COOEt)2]; Figure S3: ESI-FT-ICR-HRMS spectra of C70(OCH3)10[C(COOEt)2],
Figure S4: COSY spectra of C70(OCH3)10[C(COOEt)2]; Figure S5: HSQC of C70(OCH3)10[C(COOEt)2];
Figure S6: 1H NMR spectrum (500 MHz, CDCl3) of C70(OCH3)10[C(COOEt)2]2; Figure S7: 13C NMR
spectrum (500 MHz, CDCl3) of C70(OCH3)10[C(COOEt)2]2; Figure S8: ESI-FT-ICR-HRMS spectra of
C70(OCH3)10[C(COOEt)2]2; Figure S9: COSY spectra of C70(OCH3)10[C(COOEt)2]2;
Figure S10: HSQC spectra of C70(OCH3)10[C(COOEt)2]2; Table S1: Crystallographic data for
C70(OCH3)10[C(COOEt)2]; Figure S11: Natural Population Analysis (NPA) charge distribution of
C70(OCH3)10 (A), C70(OCH3)10[C(COOEt)2]-I (B), C70(OCH3)10[C(COOEt)2]-II (C),
C70(OCH3)10[C(COOEt)2]-III (D). And C70(OCH3)10 is shown in three orientations front view, top
view and bottom view (E); Figure S12: Electrostatic potentials on the 0.001 a.u. molecular sur-
faces of C70(OCH3)10 (A), C70(OCH3)10[C(COOEt)2] (B) and C70(OCH3)10[C(COOEt)2]2 (C), cal-
culated at B3LYP-D3BJ/6-31G(d, p) level with toluene solvent; Figure S13: Molecular orbitals
(HOMO-1, HOMO, LUMO, and LUMO+1) of C70(OCH3)10 (A), C70(OCH3)10[C(COOEt)2] (B) and
C70(OCH3)10[C(COOEt)2]2 (C) calculated at B3LYP-D3BJ/6-31G(d, p) level, in toluene;
Figure S14: The most favorable structure of C70(OCH3)10[C(COOEt)2]2. References [31–40] are
cited in supplementary materials.
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