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g-Tocotrienol does not substantially protect DS
neurons from hydrogen peroxide-induced
oxidative injury
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Abstract

Background: Down syndrome (DS) neurons are more susceptible to oxidative stress and previous studies have
shown that vitamin E was able to reduce oxidative stress and improve DS neurons’ viability. Therefore, this study
was done to investigate the protective role of g-tocotrienol (gT3) in DS neurons from hydrogen peroxide (H2O2)
-induced oxidative stress. The pro-apoptosis tendency of gT3 was compared to a-tocopherol (aT) in non-stress
condition as well.

Methods: Primary culture of DS and euploid neurons were divided into six groups of treatment: control, H2O2, gT3
pre-treatment with H2O2, gT3 only, aT pre-treatment with H2O2 and aT only. The treatments were assessed by MTS
assay and apoptosis assay by single-stranded DNA (ssDNA) apoptosis ELISA assay, Hoechst and Neu-N
immunofluorescence staining. The cellular uptake of gT3 and aT was determined by HPLC while protein
expressions were determined by Western blot. Comparison between groups was made by the Student’s t test,
one-way ANOVA and Bonferroni adjustment as well as two-way ANOVA for multiple comparisons.

Results: One day incubation of gT3 was able to reduced apoptosis of DS neurons by 10%, however gT3 was
cytotoxic at longer incubation period (14 days) and at concentrations ≥ 100 μM. Pre-treatment of aT and gT3 only
attenuate apoptosis and increase cell viability in H2O2-treated DS and euploid neurons by 10% in which the effects
were minimal to maintain most of the DS cells’ morphology. gT3 act as a free radical scavenger by reducing ROS
generated by H2O2. In untreated controls, DS neurons showed lower Bcl-2/Bax ratio and p53 expression compared
to normal neurons, while cPKC and PKC-δ expressions were higher in DS neurons. On the other hand, pre-
treatment of gT3 in H2O2-treated DS neurons have reduced Bcl-2/Bax ratio, which was not shown in euploid
neurons. This suggests that pre-treatment of gT3 did not promote DS cell survival. Meanwhile gT3 and aT
treatments without H2O2 as well as pre-treatment of gT3 and aT induced changes in cPKC and PKC-δ expression in
DS neurons suggesting interaction of gT3 and aT with PKC activity.

Conclusion: Our study suggests that gT3 pre-treatment are not sufficient to protect DS neurons from H2O2-
induced oxidative assault, instead induced the apoptosis process.
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Introduction
Vitamin E is a generic term for lipid-soluble, chain
breaking antioxidants which consists of four tocopherol
isomers (a, b, g, δ) and four tocotrienol isomers (a, b, g,
δ). The tocopherol and tocotrienol isomers differ in the

number and position of methyl substitutions on the
chromanol head. Although tocopherols and tocotrienols
are closely related chemically, they differ in their biolo-
gical effectiveness [1]. Studies have shown that vitamin
E deficiency impairs cognitive performance in mice sub-
jected to oxidative stress [2]. Meanwhile, one study
found that Down syndrome (DS) children have signifi-
cantly less vitamin E levels than normal children [3];
while another study showed that DS patients with
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dementia have lower plasma levels of vitamin E than
controls without DS [4]. These results suggest that
intake of essential nutrients such as folate, vitamin B6,
vitamin E, selenium, a-lipoic acid might be important in
preventing cognitive deterioration in DS and Alzheimer
disease (AD) [5].
However, intervention studies of antioxidant supple-

mentation in DS and AD have not been conclusive. A
recent randomized controlled trial on antioxidant sup-
plementation, including vitamin E for DS children did
not show any significant difference in developmental
outcome after a two-year research period. There was
also no significant effect of antioxidant supplementation
on the superoxide dismutase and glutathione peroxidase
activities, on the superoxide dismutase to glutathione
peroxidase ratio and on the urinary isoprostane concen-
trations [6]. Another recent review that looked at five
different studies on antioxidants and cognitive functions
revealed that only three studies examining vitamin E
and C supplements gave significantly different results-i.
e. one study found a positive association with specific
cognitive test, while the other two studies showed a link
with global cognitive functions [7]. Other double-blind
studies reported that vitamin E has no benefit in
patients with mild cognitive impairment and Alzhei-
mer’s disease [8]. In all these trials, subjects partake
high doses of vitamin E (2000 IU or 1500 mg) daily,
which is more than the upper tolerable intake level for
vitamin E (1500 IU or 1000 mg per day) [9].
Vitamin E mainly function as free radical scavenger,

but recent studies showed that tocopherols and tocotrie-
nols have other non-antioxidant roles: a-tocopherol
(aT) was shown to modulate signal transduction and
gene expression in various cell lines, while tocotrienols
possess powerful neuroprotective, anti-inflammatory
anti-angiogenic, anti-artherogenic, anti-cancer and cho-
lesterol lowering properties (for a comprehensive review,
refer [10]). Vitamin E has been shown to be neuropro-
tective in various studies: firstly in a landmark study of
neurodegeneration of in vitro culture of DS neurons
[11]; followed by a study that reported that aT was able
to attenuate oxidative stress-induced apoptosis in striatal
neuron cultures via its free radical scavenger function
[12]; while other studies showed that a-tocotrienol pro-
tects neurons from glutamate-induced cell death by the
c-src activation molecular pathway [13]. However, not
many studies have address the possible pro-apoptotic
tendency of vitamin E in neurons, especially tocotrie-
nols, which has shown to have greater apoptotic activity
towards various cancer cell lines such as mammary
tumor cells and prostate tumor cells compared to toco-
pherols [14,15]. Current studies has shown that toco-
pherol and vitamin E analogues were able to induced

apoptosis in murine C6 glioma cell line and Tet21N
neuroblastoma cell line [16,17] but not tocotrienols.
g-Tocotrienol (gT3) was reported to activate the apop-

tosis pathway via the mitochondrial death pathway of
the Bcl-2 family proteins in pancreatic stellate cells [18],
while tocotrienols was shown to be anti-proliferative in
mammary epithelial cells by reducing PKCa (Protein
Kinase C) activation [19]. Our previous studies in pri-
mary rat’s astrocytes and cerebellar neuron cultures
revealed that high dosage of gT3 was cytotoxic and have
a high tendency to induce the expressions of proteins
that were involved in the apoptosis pathway such as
Bax, p53 and p38 MAPK [20,21]. Another study also
showed that high doses of vitamin E and vitamin C
enhanced the toxic effect of H2O2 to cells [22]. Since
most trials of vitamin E supplementations utilized high
dosage of vitamin E for maximum effects, the concern
for the safety of vitamin E supplementation at the mole-
cular and cellular level has yet to be fully addressed. DS
cells are known to be highly susceptible to oxidative
damage compared to normal cells [23]. Genomic and
functional profiling of DS neural progenitor cell line
exposed to S100B suggested that dysregulation of chro-
mosome 21 genes led to increased ROS and thereby
altered transcriptional regulation of cytoprotective genes
in response to oxidative stress [24]. Vitamin E treatment
induced neuroinflammatory processes by increasing
microglial activation in animals overexpressing S100B,
which is involved in the neuropathology of DS and AD
[25]. Therefore, the purpose of this study is to further
investigate the effects of aT and gT3 in the apoptosis
signaling pathway of human DS neurons as a model of
oxidative stress susceptible system, while normal human
neurons were used as control.

Materials and methods
Materials
The Malaysia Palm Oil Board (MPOB) supplied the palm
gT3 and aT isomers of 87% and 80% purity respectively,
which was isolated as described previously [26]. Culture
dishes were from Nunc while antibodies (p53, Bax, Bcl-2,
cPKC, PKC-δ, b-actin) were from Santa Cruz Technolo-
gies. Reagents for 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) assays were from
Promega while single-stranded DNA (ssDNA) Apoptosis
ELISA kits were from Chemicon. All other chemicals and
reagents were from Sigma unless indicated.

Primary cortical neuron cultures from normal and
DS fetal brain
The cultures were established using human cortical
brain tissues obtained from normal euploid and DS leg-
ally aborted fetuses at 14-21 weeks of gestation. The
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permission to use human fetal tissues was obtained from
the ethics committee of the Spanish National Research
Council (CSIC) (Approval date: August 6th, 2009; ref.
no: SAF2009-13093-C02-02). Enriched neuron cultures
were prepared as described elsewhere [27].

Cell culture treatments
Neuron cultures were incubated with varying concentra-
tions of gT3 and aT, with aT as a positive control
based on previous studies showing aT having non-toxic
and neuroprotective effects on neurons [12,21]. Stock
solutions of 0.5 M gT3 and aT (in 100% ethanol) were
first resolved overnight in fetal calf serum at 37°C and
diluted to 100 times the final concentration with culture
media containing 50% ethanol. Final dilution of aT and
gT3 in the cell culture contained 0.5% ethanol, which
did not significantly affect cell survival (data not shown).
All experiments utilized freshly prepared dilutions of
H2O2, aT and gT3.

Cytotoxicity of gT3
The human DS neuron cultures were incubated with
gT3 (1-200 μM) for 24 hours at 37°C. DS neurons were
also given gT3 treatment of 7 days and 14 days to deter-
mine possible cytotoxicity or protective effects of gT3.
Cytotoxicity of gT3 and aT was assessed by propidium
iodide (PI) assay. Briefly, for PI assay, the cultures in 96
wells were stained with PI (7 μM) for one hour prior to
the end of the incubation period (24 h. 7 days and 14
days). At the end of the incubation period, the fluores-
cence intensity was determined and expressed relative to
cultures treated with 0.2% Triton X-100 (to permeabilize
all cells). The fluorescence signal was measured by a
fluorescence plate reader (Molecular Devices, USA) at
530-nm excitation ⁄ 645-nm emission to quantify cell
membrane damage as described elsewhere [28].

Detection of Cell Survival
DS and euploid cortical neurons were pre-treated with
varying concentrations of aT and gT3 (1-100 μM) for
one hour at 37°C, followed by addition of H2O2 (100
μM) to the cells and a further incubation for 24 hours
at 37°C before cell viability and apoptosis were assessed.
Cell viability was assessed using MTT assay. Briefly, the
cell culture media was loaded with 0.5 mg/mL MTT to
detect any decrease in the cell metabolic activity using
MTT reduction assay following standard procedures
[29]. Meanwhile, the rate of apoptosis was measured
using the ssDNA ELISA kit as described previously [20].
In addition, cell viability was also assessed utilizing the
PI assay as described above. For cell imaging, DS neuron
cultures were stained with of Neu-N (neuron- specific
nuclear protein) antibody to confirm the results shown
by the MTT and ssDNA ELISA assay. Briefly, cells were

fixed with 4% paraformaldehyde before being permeabi-
lized with 0.25% Triton in PBS for 30 mins. The cells
were then washed with PBS, followed by incubation
with goat serum at room temperature to block unspeci-
fic binding site, and incubation with mouse Neu-N
antibody (Chemicon, USA) in 1:200 dilution overnight
at 4°C. Subsequently, cultures were washed with PBS
and incubated with anti-mouse Alexa Fluor 488 (Mole-
cular Probes, The Netherlands) in 1:2000 dilution for 1
hr at room temperature. After washing with PBS,
nuclei were counterstained with Hoescht before visuali-
zation under fluorescence microscope (Nikon, Japan) at
40× magnification. The intracellular production of ROS
was determined using DCFH-DA assay. Non-fluores-
cent DCFH-DA was permeable to cell membrane and
oxidation of hydroperoxides produced fluorescent 2’,7’-
dichlorofluorescein (DCF), which was detected by
fluorescence plate reader at 485 nm excitation/530 nm
emission [30].

Determination of Vitamin E Uptake by HPLC
The uptake of gT3 and aT was analyzed using reverse-
phase high performance liquid chromatography (HPLC)
Fluorescent EM 330 nm, EX 294 nm detector (Shi-
madzu, Japan) as described previously [20]. Concentra-
tion peaks of the samples were compared with
tocotrienol rich fraction (TRF) standard and the concen-
trations of aT and gT3 uptake in cells were calculated
as μM/106 cells.

SDS-PAGE and Western Blot
Western blot of DS and euploid (normal) cortical neu-
rons in various treatment groups were used to elucidate
the expression of proteins involved in the apoptosis sig-
naling pathway including p53, Bax, Bcl-2, cPKC (for
detection of common isoforms PKC-a, PKC-b and
PKC-g) and PKC-δ; while b-actin were used as house-
keeping protein and loading control. A maximum pro-
tective dosage of 10 μM gT3 and aT was used to test if
this concentration could induce apoptosis in DS and
euploid neurons. The western blots were performed as
previously described.

Statistical Analysis
Each experiment of cultures in microplates was carried
out in triplicate wells with at least three independent
cultures. The data were reported as mean ± SD of at
least three experiments. Comparison between groups
was made by the Student’s t test, one-way ANOVA and
Bonferroni adjustment as well as two-way ANOVA for
multiple comparisons. p < 0.05 was considered as statis-
tically significant for Student t-test whereas p < 0.0001
was considered as statistically significant for multi-factor
comparisons.
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Results and discussion
From the PI assays, 1 μM and 10 μM of gT3 and aT
maintained cell viability but did not improve cell survi-
val when it was added to the DS culture for 14 days,
gT3 was cytotoxic to DS cortical neurons at concentra-
tion ≥ 100 μM compared to aT, with increased apopto-
sis of 25-35% and 5-8% respectively [Figure 1 (a)]. For
neurons incubated with gT3, more apoptotic cells were
observed at 50 μM, and at 100 μM almost all of the
cells undergo apoptosis. From Figure 1 (b), a short 1
day incubation of gT3 at 10 μM and 100 μM in DS neu-
rons was only able to reduced apoptosis by 10%. The

previous landmark study has shown that aT was able to
attenuate apoptosis and improve cell viability [11],
whereas prolonged incubation time of gT3 up to 14
days increased membrane damage and apoptosis to DS
neurons, as detected from the PI assay at a dose depen-
dent manner. Similar to our previous studies, long term
incubation of gT3 was shown to be cytotoxic to neurons
at high dose (≥ 100 μM) while aT showed minor toxic
effects to human neurons as illustrated in Figure 1 (a)
and Figure 1 (b)[20,21]. Fluorescence detection of DCF
showed that gT3 act as a free radical scavenger by redu-
cing ROS generated by H2O2 in a dose dependent
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Figure 1 (a) The effects of a-tocopherol (aT) and g-tocotrienol (gT3) towards DS neuronal cell death for 14 days in vitro as detected
by Propidium Iodide (PI) assay. *Denotes P < 0.05 compared to control while # denotes P < 0.05 when gT3 was compared to aT at their
corresponding concentration. The data are presented as mean ± SD, n = 6. (b) The effects of gT3 at various incubation periods (1 day, 4 days
and 14 days). *Denotes P < 0.05 compared to the control, while # denotes P < 0.05 compared to day 1 and $ denotes P < 0.05 compared to
day 4. The data are presented as mean ± SD, n = 3. (c) The effects of gT3 on ROS generated by H2O2 in DS neurons with intracellular
accumulation of hydroperoxides after one hour exposure to the indicated concentration of H2O2 measured by DCFH oxidation to DCF. *Denotes
P < 0.05 compared to control while # denotes P < 0.05 compared to 10 μM gT3. The data are presented as mean ± SD, n = 3. (d) Uptake of a-
tocopherol (aT) and g-tocotrienol (gT3) in human cortical neurons measured by HPLC. The cellular uptake of gT3 and aT was significantly higher
than the untreated control, with the uptake of gT3 significantly higher than that of aT. *Denotes P < 0.05 compared to the control, while #
denotes P < 0.05 when gT3 uptake of gT3 incubated cultures were compared with aT uptake of aT incubated cultures. The data are presented
as mean ± SD, n = 3.
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manner at concentration ≤ 1000 μM of gT3 after one
hour H2O2 exposure [Figure 1 (c)]. The HPLC analysis
revealed that the uptake of gT3 was higher compared to
the uptake of aT in neurons [Figure 1 (d)]. The absorp-
tion of aT had been associated to ATP-binding cassette
(ABC) transporter (MDR1) which acts as a cellular
exporter of tocopherols to ApoA-I and HDL by
ABCA1-dependent and ABCA1-independent processes
[31,32]. Hence, this may explain why high doses of aT
did not exhibit toxicity to neurons, as aT was effluxed
from the cells by ABC transporter 1 (MDR1) to elimi-
nate excess aT. On the other hand, gT3 was not selec-
tively transported by TTP. Thus, excess gT3 was not
being effluxed from the cells, leading to the accumula-
tion of gT3 that might exacerbate cell death and contri-
bute to the possible toxicity of gT3 at high dose.
In both DS and euploid neurons, the pre-treatment of

gT3 and aT at concentration ≤ 50 μM was able to
reduce cell death induced by H2O2 [Figure 2 (a) and
Figure 3 (a)] and increase cell viability [Figure 2 (b) and
Figure 3 (b)]. Figure 2 (c) and Figure 3 (c) shows that
both pre-treatments of up to 10 μM gT3 and 50 μM aT
were able to attenuate apoptosis in H2O2-induced DS
and euploid neurons respectively. However, the effec-
tiveness of gT3 and aT pre-treatment was more pro-
nounced in euploid neurons compared to DS neurons,
as two-way ANOVA analysis showed that vitamin E iso-
mer type and concentration contributed significantly to
cell viability and apoptosis rate in euploid neurons but
not in DS neurons. This indicated that the protective
effect of the vitamin E in euploid neurons is dose and
isomer type dependent, while protective effects of vita-
min E in DS neurons is not dependent on dose and iso-
mer type. Figure 4 shows the morphology of H2O2-
treated DS neurons as stained by Neu-N, a marker for
differentiated neurons [33] which had undergone apop-
tosis; pre-treatment with 10 μM of aT or gT3 retained
some of the neurons’ viability but cell morphologies
were not fully maintained. Reduced Neu-N expression
in differentiated neurons indicated perturbed cell mor-
phology induced by H2O2 assault, which pre-treatment
of either aT or gT3 were not substantial enough to pro-
tect cells from oxidative assault. However, comparatively
aT seems to be more protective to the DS neurons than
gT3 as more cells were stained with Neu-N, although
the staining was dim. This is not surprising since the
previous study has shown that in vitro DS cortical neu-
ron culture had higher sensitivity to H2O2-induced oxi-
dative damage compared to euploid neurons [27]. H2O2

directly induces cellular damage and has been reported
to induce parallel apoptosis and autophagy [34], making
it more difficult for aT and gT3 to protect the cells
especially if the pre-treatment incubation period was
short. Since our previous studies have shown that high

dose of vitamin E compounds the toxic effect of H2O2,
here we further investigate whether non-lethal doses of
high concentration aT and gT3 will further exacerbate
the detrimental effects of H2O2 via the mitochondrial
Bcl-2 family pathway or the PKC signalling pathway as
both cPKC and PKC-δ are redox sensitive and were
reported to be involved in the initiation of apoptosis sig-
nalling [35,36].
From our investigation, euploid neurons showed a

completely different protein expression profile compared
to DS neurons. In the control group, DS neurons were
shown to have lower Bcl-2/Bax ratio and p53 expression
compared to euploid neurons, while cPKC and PKC-δ
expressions were higher in DS neurons. Figure 5 (a) (i),
Figure 5 (a) (ii) and Figure 6a revealed that for DS neu-
rons, pre-treatment of gT3 followed by H2O2 has signifi-
cantly lower Bcl-2/Bax ratio than the controls, whereas
other treatment showed changes which were not statisti-
cally significant. This result suggests that gT3 does not
contribute to the survival of DS neurons under H2O2

assault via the Bcl-2/Bax heterodimer complex forma-
tion. However, the analysis of Western blot for the
euploid neurons in Figure 5 (b) (i), Figure 5 (b) (ii) and
Figure 6 (a) showed a different picture: Bcl-2/Bax ratio
increased significantly in euploid neurons when neurons
were pre-treated with either gT3 or aT followed by
H2O2 which suggested that gT3 pre-treatment attenu-
ated apoptosis and improved cell survival of normal
euploid neurons. However, p53 expression was not sig-
nificantly different across various treatments in both DS
and euploid neurons, as depicted in Figure 5 (a) (iii),
Figure 5 (b) (iii) and Figure 6 (b). Nevertheless, the
comparison of p53 expression between DS and euploid
neurons showed lower p53 expression in DS neurons
for these treatment groups: control, H2O2, gT3 followed
by H2O2 and gT3 treatments only. Taking it all together,
these results show that lower Bcl-2/Bax ratio DS neu-
rons in the untreated groups, was in agreement with the
results from previous study which reported that fetal DS
neurons had increased Bax and p53 expressions
mediated by the transcription factor est-2 when treated
with H2O2 [37]. On the other hand, another study
reported that APO-1, caspase-3 and Bcl-2 protein
expression levels were unaltered in the fetal DS neurons
[38]. A previous study also stated that incubation of aT
induced the up-regulation of Bcl-2 as preventive effects
from neuronal cell death [39]. Thus, treatment of only
aT and gT3 without the presence of H2O2 in human
neuron did not show pro-apoptosis tendency (from the
Bcl-2/Bax ratio and p53 expression) compared to rat
cerebellar culture as reported previously [21].
Aberrant expression of PKC signalling has been

reported in fetal DS post-mortem tissues [40], while DS
patients’ fibroblast was reported to be hyposensitive to
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PKC [41]. However, both studies did not specify the
location of PKC isoforms involvement. From previous
study, cPKC was shown to be activated when exposed
to oxidative stress in neuronal death induced by ische-
mia, hypoxia and exitotoxicity [42], whereas other stu-
dies revealed that an increase in PKC-δ expression was
needed for glutamate-induced neuronal death [43], Par-
kinson’s disease model [44] and AGE-induced neuronal
death [45] as well as H2O2-induced oxidative stress [46].
Across the various treatment groups, the expression of
cPKC was higher in DS neurons compared to euploid
neurons. However, the cPKC expression of DS neurons
was down-regulated in all other treatment groups (gT3
followed by H2O2, gT3, aT followed by H2O2, and aT),
as shown in Figure 5 (a) (iv) and Figure 6 (c). From Fig-
ure 5 (a) (v) and Figure 6 (d), DS neurons showed a 2-

fold increase of PKC-δ expression in H2O2-treated neu-
rons, suggesting an accumulation of PKC-δ in the cyto-
sol, which signified pro-apoptotic activities in neurons
[44] were suppressed by the pre-treatment of gT3, while
the pre-treatment of aT did not alter PKC-δ expression.
In normal euploid neurons, H2O2 induced increased
cPKC expression [Figure 5 (b) (iv) and Figure 6 (c)] but
suppressed PKC-δ [Figure 5 (b) (v) and Figure 6 (d)].
Pre-treatment of gT3 suppressed the cPKC expression
but elevated the PKC-δ expression; while the pre-treat-
ment of aT was found to increase the cPKC expression
but down-regulated PKC-δ expression [Figure 6 (c) and
Figure 6 (d)]. aT has been known to inhibit PKC-a
activities [47,48] which was not shown in euploid neu-
rons pre-treated with aT in Figure 5 (b) (iv) and Figure
6 (c). Meanwhile a high concentration of aT (500 μM)

*  *          *  *          *  *         *  *          *  *         *  * 
†                                                           

 *  *           *              *  *          *  *         *  *     
 †  †           †              †              † 

(a) (b)

                              †                             †   †          †   †           †   † 

(c)

Figure 2 The effects of a-tocopherol (aT) and g-tocotrienol (gT3) against H2O2-induced cell death in human DS neuron cultures,
whereby (a) the cell death was determined using propidium iodide (PI) assay, (b) the cell viability was determined using MTT assay,
(c) the apoptosis assay was determined using ELISA kits for ssDNA. The neurons were pre-treated with varying concentrations of aT and
gT3 for one hour before the exposure to 100 μM H2O2 for 24 hours at 37°C. *Denotes P < 0.05 compared to control, † denotes P < 0.0001
compared to H2O2. The data are presented as mean ± SD, from 3 independent experiments of triplicate wells (n = 9). One-way ANOVA showed
that there are significant differences between groups, F13, 83 = 14.47, P < 0.001. Meanwhile, two-way ANOVA showed both types of vitamin E
isomer and vitamin E concentration are not significant factors contributing to the cell survival and no significant interaction between types of
vitamin E isomer and vitamin E concentration (F5, 71 = 0.45).
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Figure 3 The effects of a-tocopherol (aT) and g-tocotrienol (gT3) against H2O2-induced cell loss in human euploid neuron cultures,
whereby (a) the cell death was determined using propidium iodide (PI) assay, (b) the cell viability was determined using MTT assay,
and (c) the apoptosis assay was determined using ELISA kits for ssDNA. The neurons were pre-treated with varying concentrations of aT
and gT3 for one hour before the exposure to 100 μM H2O2 for 24 hours at 37°C. *Denotes P < 0.05 compared to control, † denotes P < 0.0001
compared to H2O2. The data are presented as mean ± SD, from 3 independent experiments of triplicate wells (n = 9). One-way ANOVA showed
that there are significant differences between groups, F13, 83 = 9.81, P < 0.001. Two-way ANOVA showed both types of vitamin E isomer and
vitamin E concentration are significant factors contributing to the cell survival and no significant interaction between types of vitamin E isomer
and vitamin E concentration (F5, 71 = 27.15, P < 0.0001).

Control H2O2 T3 + 
H2O2 

T + 
H2O2 

Apoptotic bodies 

Control H2O2 T + 
H2O2 

T3 + 
H2O2 

Hoechst
stain 

NeuN

Figure 4 Fluorescence image of DS neurons stained with anti Neu-N antibody in various treatments: control, 100 μM of H2O2 only, 10 μM of aT
or gT3 pre-treatment followed by H2O2 exposure
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has been shown to inhibit PKC-δ activation in AGE-
induced neuronal death [45] in which lower dose of aT
pretreatment in euploid neurons showed similar result
[Figure 5 (b) (v) and Figure 6 (d)]. However, the incuba-
tion of only gT3 also showed a decrease in cPKC,
similar to a previous study which showed that gT3 sup-
pressed PKC-a expression [19]. This suggests that
besides functioning as an antioxidant, gT3 might also
play a role in modulating PKC-δ expression as PKC-δ is
a redox sensitive molecule.

Conclusion
This study revealed that in DS neurons, even though
gT3 pre-treatment provided initial slight improvement
in neuron viability, the protection from both aT and
gT3 pre-treatment was not substantial to protect DS
neurons from H2O2 assault. Furthermore, pre-treatment
of gT3 would reduce the Bcl-2/Bax ratio that indicates
cell survival while aT pre-treatment did not suppress
pro-apoptotic PKC-δ expression in the cells. However,
in non-oxidative stress condition, aT and gT3 did not
exert strong pro-apoptosis tendency in human DS and
euploid neurons compared to our previous studies in rat
neurons [21]. DS neurons has been shown to have
chronic overexpression of S100B, in which oxidation of
S100B preferentially induced the neurotrophic processes
(which is beneficial for cell survival and differentiation)
over neuroinflammation processes. However treatment
with antioxidants such as vitamin E interrupts this feed-
back and leads to increase glial activation and cell death
[25]. This may explain the reason why in DS neurons,
aT and gT3 at the concentrations used in this study
may aggravate cellular damages in a highly susceptible

neuronal cell model subjected to oxidative stress. Our
present results further underlie the importance of more
study to be done on the safety of vitamin E supplemen-
tation in neurodegenerative diseases such as DS and
AD. Although gT3 act as a free radical scavenger which
could quench ROS generated from H2O2, it may also
synergistically induce apoptosis and autophagy through
the mitochondrial death pathway, including the Bcl-2
family proteins [49]. Meanwhile, our study also showed
that aT has a different mechanism of action compared
to gT3, which remains to be further elucidated.
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Figure 5 Bcl-2, Bax, p53, cPKC and PKC-δ were differentially
expressed in euploid and DS neurons which were given
various treatments in the following fashion: untreated control,
incubation of neurons with H2O2 for 24 hours (H2O2),
incubation of neurons with gT3 (10 μM) for 24 hours (gT3), one
hour of gT3 (10 μM) pre-treatment in neurons followed by
H2O2 incubation for 24 hours (gT3 + H2O2), incubation of
neurons with aT (10 μM) for 24 hours (aT) and one hour of aT
(10 μM) pre-treatment in neurons, followed by H2O2

incubation for 24 hours (aT + H2O2). (a) Western blot of Bcl-2,
Bax, p53, cPKC and PKC in DS neurons; (b) Western blot of the
same proteins in euploid neurons.

Figure 6 Densitometric analysis of Bcl-2 and Bax as Bcl-2/Bax
ratio in (a), p53 in (b), cPKC in (c) and PKC-δ in (iv). * Denotes
to P < 0.05 compared to control, † denotes P < 0.05 compared to
H2O2-treated neurons, ‡ denotes P < 0.05 compared to cells pre-
incubated with gT3 or aT followed by H2O2 treatment while
# denotes P < 0.05 compares to euploid neurons.
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