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Abstract: The interaction strength of nitrogen dioxide (NO2) with a set of 43 functionalized benzene
molecules was investigated by performing density functional theory (DFT) calculations. The func-
tional groups under study were strategically selected as potential modifications of the organic linker
of existing metal–organic frameworks (MOFs) in order to enhance their uptake of NO2 molecules.
Among the functional groups considered, the highest interaction energy with NO2 (5.4 kcal/mol) was
found for phenyl hydrogen sulfate (-OSO3H) at the RI-DSD-BLYP/def2-TZVPP level of theory—an
interaction almost three times larger than the corresponding binding energy for non-functionalized
benzene (2.0 kcal/mol). The groups with the strongest NO2 interactions (-OSO3H, -PO3H2, -OPO3H2)
were selected for functionalizing the linker of IRMOF-8 and investigating the trend in their NO2

uptake capacities with grand canonical Monte Carlo (GCMC) simulations at ambient temperature for
a wide pressure range. The predicted isotherms show a profound enhancement of the NO2 uptake
with the introduction of the strongly-binding functional groups in the framework, rendering them
promising modification candidates for improving the NO2 uptake performance not only in MOFs
but also in various other porous materials.

Keywords: metal–organic frameworks (MOFs); nitrogen dioxide (NO2); adsorption; density
functional theory (DFT); grand canonical Monte Carlo (GCMC); functional group (FG)

1. Introduction

Nitrogen dioxide (NO2) belongs to a group of highly reactive gases known as nitrogen
oxides (NOx) and primarily gets in the air from the burning of fuels [1]. The NO2 generated
by the exhaust gases of the industries as well as by our private cars become an important
air pollutant, the toxicity of which has an impact on the environment and human health [2].
NO2 is formed in the combustion processes of heating systems. The main pollutant emitted
directly from hydrocarbon combustion is nitric oxide (NO), along with a small proportion
of nitrogen dioxide (NO2). Nitrogen oxide is oxidized by ozone (O3) in the atmosphere,
on a 10 min time scale, to give NO2 [3]. According to the EPA (Environmental Protection
Agency), when NO2 is present in the air, it can be harmful to human health due to the irrita-
tion created in the airways of the human respiratory system [4]. In addition, NO2 and other
NOx molecules can interact with water, oxygen, and other chemicals in the atmosphere to
form acid rain [5,6], whose harmful ecological effects are detrimental and most prominent
in aquatic environments. Due to the serious impacts of nitrogen pollution [2], there are
several separation methods of NO2 from industrial gas mixtures [7] and various adsor-
bents which have been used for the removal of NO2; some of them including zeolites [8],
wood-based activated carbon [9], graphite oxides and iron composites [10]. Zhu et al., in
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an attempt to adsorb NO2 in N-doping activated carbon, observed that N-doping leads
to easier adsorption of NO2 molecules, thus increasing NO2 physisorption energies [11].
After theoretically investigating NO2 adsorption on the surface of a silicon carbide (SiC)
nanotube, Iranimanesh et al. proposed it for NO2 gas pollutant sensing and removal [12].
Lately, the separation of NO2 from industrial gas mixtures through its adsorption has been
clearly identified as a possible application of metal–organic frameworks (MOFs) [13,14].

In the last two decades, there has been a rapid growth of metal–organic frameworks
(MOFs) in the field of porous materials, and their applications vary from adsorption and
separation of gases [15] to catalysis [16] and drug delivery [17]. MOFs are crystalline
materials with extremely high porosity (up to 90% free volume) and a huge internal surface
area extending beyond 6000 m2/g [18]. Due to these properties and considering the
plethora of both inorganic and organic building blocks, MOFs have attracted great research
interest as high-capacity adsorbents to meet various separation demands [18–20]. One of
the important structure-to-property flexibilities of the MOF structures is the potential of
their organic linkers to be modified with the incorporation of various functional groups in
order to tune their interaction with selected molecules [18].

Several previous studies have shown that the introduction of functional groups into
MOFs leads to enhanced gas uptake performance. In the work of Frysali et al. [21],
the introduction of a sulfate anion in the phenyl ring has the highest interaction energy
(−5.4 kcal/mol) with CO2, a value almost two times larger than the corresponding binding
energy for benzene (−2.9 kcal/mol). Klontzas et al. [22] showed that the gravimetric capac-
ity of the Li modified IRMOF-8 was calculated to 10 wt% at 77 K and 100 bar, while the cor-
responding values show great promise also at room temperature with an uptake of 4.5 wt%,
performances significantly enhanced with respect to the unmodified counterpart (up to
three times stronger). For NO2, the theoretical studies made by Fioretos et al. [23] have
shown that NO2 interacts stronger with functionalized benzenes such as aniline, phenol,
and toluene (with binding energies of−2.26 kcal/mol,−1.72 kcal/mol and−2.02 kcal/mol
respectively) than with benzene (−1.67 kcal/mol). The amino (-NH2) substituent can be
particularly beneficial as the interaction of strongly polar molecules, such as NO2, with
the amino-substituted aromatic rings is characterized by the contribution of electrostatic
dipole–dipole forces resulting in enhanced adsorption.

Taking into account that many MOF frameworks have a phenyl group in their organic
linker, together with the effectiveness of the organic linker functionalization strategy for
tuning their interaction with guest molecules, in this work, we investigate the interaction of
NO2 molecules with a series of 43 carefully selected benzene molecules by means of density
functional theory (DFT) calculations. The selection of the functional groups was based
on chemical intuition and findings of previous similar studies [22,24–27]. Subsequently,
in order to verify the effectiveness of the functionalization on the enhancement of NO2
uptake in MOFs, grand canonical Monte Carlo (GCMC) simulations were performed for
the IRMOF-8, modified by the three functional groups that showed the strongest interaction
with NO2.

2. Computational Methods
2.1. Density Functional Theory

To investigate the interaction of NO2 molecules with the organic linkers of MOFs, we
start with the simplified model of a benzene ring. A large set of 43 functional groups was
examined for their binding strength towards the NO2 molecule. The conformations of the
functionalized benzene molecules were optimized using Gershom Martin’s double-hybrid
density functional DSD BLYP in the resolution of identity (RI) approximation [28] along
with the def2-TZVPP basis set and with the corresponding auxiliary basis set for the RI
approximation [29–31], including the D3BJ (Becke–Johnson damping version) empirical cor-
rection term for the dispersion interactions as proposed by Grimme [32–35]. All geometries
were optimized without any symmetry constraints, and the optimized minimum-energy
structures were verified as stationary points on the potential energy surface by performing
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numerical harmonic vibrational frequency calculations. All calculations were performed
with the Orca 4.2 program package [36,37]. The dimer energies were corrected for the basis
set superposition error (BSSE) using the counterpoise (CP) method as proposed by Boys
and Bernardi [38].

The electron density redistribution was calculated as the difference between the elec-
tron density of the functionalized benzene–NO2 (∆D) complex and the electron densities
of the functionalized benzene (D(functionalized benzene)) and NO2 (D(NO2)) molecule
according to the formula:

∆D = D(functionalized benzene-NO2) − D(functionalized benzene) − D(NO2) (1)

All electron densities were calculated at the RI-DSD-BLYP/def2-TZVPP level of theory.
Mathematical operations on the electron densities along with the visualization of the
electron density difference, were done using gOpenMol graphics program [39,40].

2.2. Grand Canonical Monte Carlo

To verify the effectiveness of the strongest interacting functional group candidates
obtained from the DFT calculations to enhance the NO2 uptake in MOFs, we employed
Monte Carlo simulations in the grand canonical ensemble. IRMOF-8 was selected as
the platform for the uptake calculation and was functionalized with the best performing
functional groups, as shown in Figure 1.
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ange spheres, respectively. 

The ΝΟ2 adsorption was calculated for a pressure range up to 1.2 bar at 298 K. Fu-
gacity coefficients for the different thermodynamic states were defined using the Penge–
Robinson equation of state [41]. The framework coordinates were taken from the crystal-
lographic data [42] and a cubic periodic box of size 30.1 × 30.1 × 30.1 Å3 was used for all 
the frameworks, functionalized or parent. Simulations were performed in supercells in-
corporating enough repeat units such that all edge lengths were greater than 25.6 Å, i.e., 
twice the Lennard-Jones (LJ) cut-off radius. For each simulation point, 50,000 cycles were 

Figure 1. The functionalized linker of IRMOF-8 considered in the GCMC simulations; the original
IRMOF-8 linker (a), the -OPO3H2 (b), -OSO3H (c), and -PO3H2 (d) functionalized linker. Carbon,
hydrogen, oxygen, sulfur, and phosphorus atoms are depicted as gray, white, red, yellow, and orange
spheres, respectively.

The NO2 adsorption was calculated for a pressure range up to 1.2 bar at 298 K. Fugacity
coefficients for the different thermodynamic states were defined using the Penge–Robinson
equation of state [41]. The framework coordinates were taken from the crystallographic
data [42] and a cubic periodic box of size 30.1 × 30.1 × 30.1 Å3 was used for all the frame-
works, functionalized or parent. Simulations were performed in supercells incorporating
enough repeat units such that all edge lengths were greater than 25.6 Å, i.e., twice the
Lennard-Jones (LJ) cut-off radius. For each simulation point, 50,000 cycles were performed
for system equilibration, followed by additional 100,000 cycles for sampling over the en-
semble averages. For the description of the interactions between the IRMOF-8 and the NO2
atoms, LJ + Coulomb potentials were used and each atom of the host or the guest was
treated explicitly [43]. The framework of IRMOF-8 was kept rigid during the simulations,
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while NO2 molecules were allowed to translate and rotate. Nitrogen dioxides were treated
as three rigid center molecules with bond lengths between nitrogen and oxygen atoms
held fixed at 1.19 Å. For the electrostatic interactions between NO2 molecules and the host
material, point charges equal to qO = −0.073 and qN = 0.146 were placed at oxygen and
nitrogen sites of NO2, respectively. The framework atoms charges were defined by employ-
ing the CHELPG method [44]. For the van der Waals interactions, potential parameters
according to COMPASS Force Field [45,46] model were used, with ε = 50.36 and σ = 3.24 Å
for Nitrogen atom and ε = 62.51 and σ = 2.93 Å for the oxygen center.

For each MOF framework, the potential parameters were taken from the UFF force
field [47], except for organic linker atoms that were treated separately. Lorenz–Berthelot
mixing rules were used to describe the NO2−IRMOF-8 interactions. For the functionalized
organic linkers, the UFF parameters were found to be inconsistent with DFT interactions. To
correct this, the parameters of the classical potential were fitted to reproduce the quantum
chemical data (SI). All GCMC calculations were carried out with the RASPA software
package [48].

3. Results and Discussion

The interaction of the NO2 molecule with the full set of the 43 strategically functional-
ized benzenes was calculated at the RI-DSD-BLYP/def2-TZVPP level of theory and can
be seen in Table S1 of the SI section. In Table 1, we present the nine functional group
candidates with the highest binding energy together with the non-functionalized benzene
for comparison. In Figure 2, the DFT optimized dimer geometries of the NO2 . . . C6H5-X
systems are shown.

Table 1. Binding energies in kcal/mol of the NO2 . . . C6H5-X systems, calculated at the RI-DSD-BLYP
D3(BJ)/def2-TZVPP level of theory and percentage of binding energy enhancement with respect to
the introduction of the unfunctionalized benzene. All interaction energies are corrected for the BSSE
by the full counterpoise method [39].

System Binding Energy
(kcal/mol)

Binding Energy
Enhancement (%)

NO2 . . . C6H5-OSO3H −5.4 170%

NO2 . . . C6H5-OPO3H2 −4.6 131%

NO2 . . . C6H5-PO3H2 −4.2 110%

NO2 . . . C6H5-OCONH2 −3.4 70%

NO2 . . . C6H5-C(OH)3 −3.4 70%

NO2 . . . C6H5-SO3H −3.4 70%

NO2 . . . C6H5-CONH2 −3.0 50%

NO2 . . . C6H5-SOOH −2.9 44%

NO2 . . . C6H5-COOH −2.9 44%
NO2 . . . C6H5-H −2.0 0%

The highest interaction energy (5.4 kcal/mol) with NO2 was found for phenyl hydro-
gen sulfate (-OSO3H), which is almost three times stronger than the corresponding binding
energy of the unfunctionalized benzene (2.0 kcal/mol).

The energetically most favorable structures are characterized by a weak interaction
between NO2 and organic linkers. More specifically, the acidic protons of the substituents,
especially (-OSO3H, -OPO3H2, -PO3H2, -SOOH, -C(OH)3), tend to interact with NO2

′s
oxygen site with binding distances between 1.89 Å and 2.22 Å. The trend in the best binding
energies is also confirmed by the electron density redistribution plots in Figure 3. Due
to the electrostatic nature of NO2

′s interactions, these plots can serve as a rule of thumb
for predicting the most stable NO2 complexes with organic molecules. The red regions of
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the electron redistribution plots correspond to rich electron areas located around oxygen
atoms, where the blue regions correspond to poor electron areas located mainly around
hydrogen atoms. The electron-rich region of the nitrogen atom of NO2 interacts with the
electron-poor regions of the functionalized benzene, and the electron-rich regions around
oxygen atoms of NO2 interact with the electron-poor regions (around hydrogen atoms) of
the functionalized benzenes.
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To test the effect of the proposed surface modification strategy on the enhancement of
the NO2 capture in MOF structures, we selected IRMOF-08 as the platform and modified its
framework by adding one functional group per linker, as shown in Figure 1. We calculated
the NO2 adsorption isotherms by performing GCMC simulations for the three functional
groups (-OSO3H, -PO3H2, -OPO3H2) with the stronger interactions. From the excess
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volumetric and gravimetric isotherms at 298 K and pressures up to 1.2 bar (Figure 4a,b),
there is a significant enhancement of the uptake due to functionalization. At 1.0 bar, the
corresponding volumetric and gravimetric uptake for the IRMOF-8 with the OSO3H group
was found at 193 cm3 (STP)/cm3 and 15 mmol/g, respectively, a value 12.8% larger than
that of the unmodified IRMOF-8. The corresponding volumetric and gravimetric uptake
for the unmodified IRMOF-8 was found at 7.5 cm3 (STP)/cm3 and 0.8 mmol/g.
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Figure 4. Gravimetric (a) and volumetric (b) NO2 uptake isotherms for IRMOF-8 and IRMOF-8-X
(X: -OSO3H, -PO3H2, -OPO3H2) at 298 K.

Figure 5 shows representative snapshots taken at 0.1 and 1.0 bar for the parent and
the three functionalized frameworks. In both pressures, the modified material hosts
considerably more NO2 molecules than the parent structure due to the stronger binding
sites introduced to the structure by functionalization. This is also verified by the fact that
the NO2 molecules are located closer to the functional groups.
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4. Conclusions

In this work, we studied by means of density functional theory the interaction of a
chemically diverse set of 43 functionalized benzenes with the NO2 molecule.

The highest interaction energy with NO2 (5.4 kcal/mol at the RI-DSD-BLYP/def2-
TZVPP level of theory) was found for phenyl hydrogen sulfate (-OSO3H)—an interaction
almost three times larger than the corresponding binding energy for non-functionalized
benzene (2.0 kcal/mol).

The groups with the highest NO2 binding (-OSO3H, -PO3H2, -OPO3H2) were selected
for functionalizing the linker of IRMOF-8 and investigating the trend in their NO2 uptake
capacities with grand canonical Monte Carlo (GCMC) simulations. GCMC simulations
showed a clear enhancement of the NO2 uptake both gravimetrically and volumetrically
at 298 K and pressures up to 1.2 bar for the functionalized MOF, an enhancement even
more pronounced at low pressures; at 0.1 bar, the volumetric uptake becomes 40 or 60 or
110 times larger than the unmodified IRMOF-08 by introducing -OPO3H2, -OSO3H, -PO3H2
functional groups, respectively. Based on this significant enhancement, we propose our
surface functionalization as a general strategy for improving the NO2 adsorption uptake
not only in MOFs, but also in various other porous materials. Our theoretical results can
serve as high accuracy reference calculations and guide synthesis towards materials with
high NO2 adsorption capacity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27113448/s1, Table S1: Sorted binding energies (kcal/mol)
of the NO2 . . . C6H5-X systems under study, calculated at the RI-DSD-BLYP D3(BJ)/def2-TZVPP
level of theory. All interaction energy values have been corrected for the basis set superposition error
(BSSE) by the full counterpoise method [38]. Percentage of binding energy enhancement with the
introduction of the FG compared to benzene; Figure S1: Global minima geometries and binding
energy values (in kcal/mol) of all the systems in this study; Figure S2: Electron density redistribution
plots of the optimized geometries of the NO2 . . . C6H5-X complexes. With red and blue being the
regions that gain and lose electron density upon the formation of the complex, respectively; Figure S3:
Fitting of the (ε, σ) parameters of the UFF [47] potential on the QM data obtained from the ab-initio
scan of NO2 over benzene; Figure S4: Fitting of the (ε, σ) parameters for the NO2 . . . C6H5-OPO3H2
interaction; Figure S5: Fitting of the (ε, σ) parameters for the NO2 . . . C6H5-OSO3H interaction;
Figure S6: Fitting of the (ε, σ) parameters for the NO2 . . . C6H5-PO3H2 interaction.
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