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Abstract 
      Although Epstein-Barr virus (EBV) is present in the malignant Hodgkin/Reed-Sternberg (HRS) cells of 
a proportion of cases of classical Hodgkin lymphoma (cHL), how the virus contributes to the pathogenesis 
of this disease remains poorly defined. It is clear from the studies of other EBV-associated cancers that the 
virus is usually not sufficient for tumor development and that other oncogenic co-factors are required. This 
article reviews what is known about the contribution of EBV to the pathogenesis of cHL and focuses on 
emerging evidence implicating chronic inflammation as a potential oncogenic co-factor in this malignancy. 
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      Hodgkin lymphoma (HL) is an unusual malignancy that is 
characterized by the presence of a minority of malignant Hodgkin/
Reed Sternberg (HRS) cells surrounded by a non-neoplastic 
inflammatory infiltrate. There are two distinct forms of HL, known 
as classical Hodgkin lymphoma (cHL) and nodular lymphocyte- 
predominant Hodgkin lymphoma (NLPHL), that are separated on the 
basis of morphologic, immunophenotypic, and clinical differences. 
Despite earlier reports to the contrary, recent studies suggest that a 
small proportion of NLPHL cases harbor Epstein-Barr virus (EBV)[1,2]. 
However, this review focuses on cHL where the link with EBV is most 
clearly established.

Origin of HRS Cells in cHL

      The identification of clonally rearranged and somatically mutated 
immunoglobulin genes in single isolated HRS cells provides 
evidence that these cells are malignant and derived from B cells 
that have undergone a germinal center (GC) reaction[3]. However, 
HRS cells lack a functional B-cell receptor (BCR). In some cases, 
this lack of BCR expression is the result of somatic mutations that 
destroy the coding capacity of originally functional immunoglobulin 
genes (so called “crippling” mutations), whereas in others, it can 
be caused by the loss of the immunoglobulin-specific transcription 
factors POU class 2 associating factor 1 (POU2AF1/BOB1), POU 
class 2 homeobox 2 (POU2F2/OCT2), and Spi-1 proto-oncogene 

(SPI1/PU.1) or mutations in the immunoglobulin gene promoter[4-11]. 
Because apoptosis is the normal fate of GC B cells lacking a 
functional BCR, the survival of the BCR-negative HRS cell precursor 
must depend upon the acquisition of novel anti-apoptotic functions. 
      In addition to the loss of a functional BCR, HRS cells also display 
a characteristic loss of B-cell lineage gene expression, including the 
down-regulation of components of the BCR signaling machinery[12]. 
This phenotype has been attributed in part to the overexpression in 
HRS cells of transcription factors such as inhibitor of DNA-binding 2 
(ID2), which has been shown to negatively regulate B-cell-specific 
transcription factors, including transcription factor 3 (TCF3/E2A) and 
paired box 5 (PAX5)[13,14].

EBV and cHL
      EBV was first implicated in the pathogenesis of cHL when it was 
shown that patients had raised antibody titers to EBV antigens and 
that these preceded the development of cHL by several years[15,16]. 
Subsequently, EBV DNA and RNA were detected in HRS cells[17,18]. 
The viral episomes present in HRS cells were also shown to be 
monoclonal, suggesting that infection of the tumor progenitor 
occurred prior to its clonal expansion[19].
      Epidemiologic studies suggest there are three forms of cHL: 
pediatric HL (EBV-positive, mixed cellularity type), HL of young adults 
(EBV-negative, nodular sclerosis type), and HL of older adults (EBV-
positive, mixed cellularity type)[20,21]. The development of EBV-positive 
cHL in children is thought to be a consequence of a rare, abnormal 
response to early primary infection, whereas EBV-positive cHL in 
older adults has been attributed to a decline in EBV-specific immunity 
associated with advancing age[22,23]. Although senescence of EBV 
immunity is also suspected in a related tumor, known as “EBV-positive 
diffuse large B-cell lymphoma (DLBCL) of the elderly,” the defects in 
EBV-specific immunity in these patients have yet to be defined[24,25].
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Contribution of EBV to the Survival of 
HRS Cell Precursors
      As described by Rowe et al .[26], EBV contributes to the 
pathogenesis of Burkitt’s lymphoma (BL) by providing the anti-
apoptotic signals necessary to override c-myc-induced cell death. In 
the case of cHL, anti-apoptotic stimuli are also required, but this time 
to overcome the cell death that would otherwise occur in the absence 
of a functional BCR. Two pieces of evidence support a role for EBV 
in providing this anti-apoptotic function. First, the so-called “crippling” 
mutations in immunoglobulin genes described above are almost 
exclusively found in EBV-positive cases, and second, EBV has been 
shown to immortalize BCR-negative GC B cells in vitro[27-30]. To begin 
to understand how EBV contributes to this anti-apoptotic phenotype, 
we need to revisit the functions of some of the latent EBV genes 
expressed in HRS cells.
      As described by Young et al.[31] in this issue, switching between 
different forms of latency in the B-cell system may allow the virus to 
regulate its own life cycle and redirect the fate of the infected B cells 
towards long-term persistence in the memory pool. Some evidence 
suggests that the EBV-infected GC B cells of asymptomatic virus 
carriers express several virus genes designed to drive their transit 
through a GC reaction and subsequent differentiation into memory 
B cells[32-34]. Critical to this process are the two viral latent membrane 
proteins, latent membrane protein-1 (LMP1) and LMP2A, which 
are commonly expressed in EBV-positive HRS cells[35,36]. LMP1 has 
been shown to replace survival and differentiation signals that are 
similar to those provided by an activated CD40 receptor[37,38]. When 
expressed in the proposed precursor cells of cHL, LMP1 contributes 
up to 25% of the transcriptional changes found in cHL[39]. LMP1 may 
contribute to the survival of apoptosis prone GC B cells by activating 
several survival pathways, including the nuclear factor-kappa B 
(NF-κB), Janus activated kinase/signal transducers and activators 
of transcription (JAK/STAT), and phosphatidylinositol 3-kinase 
(PI3K)/AKT pathways, signaling pathways that have been found 
to be constitutively active in cHL[40-46]. LMP2A, on the other hand, 
mimics an activated BCR signal and is able to drive B cell survival 
in the absence of a functional BCR[47-52]. In transgenic mice, LMP2A 
expression interferes with normal B-cell development and contributes 
to cell survival involving activation of the RAS/PI3K/AKT pathway[53,54]. 

Loss of BCR Functions During the
Evolution of EBV-positive cHL

      Although EBV can provide anti-apoptotic functions that contribute 
to the survival of BCR-negative HRS cell progenitors, it is not clear 
how the loss of a functional BCR is involved in the pathogenesis of 
EBV-associated cHL. To answer this question, we need to return 
to another aspect of EBV biology, namely the regulation of the viral 
replicative cycle.
      In addition to existing in various latent states, EBV can also 
induce its replicative cycle in B cells, a process that eventually 
leads to the production of new viral particles or virions. The 
switch from latency to the replicative cycle is triggered by two 

distinct mechanisms—activation of BCR signaling and plasma cell 
differentiation, and the switch is regulated in part by the two latent 
membrane proteins. By providing a BCR-like signal, LMP2A induces 
entry into the viral replicative cycle[55,56] (Figure 1). On the other hand, 
LMP1 prevents entry into the replicative cycle by suppressing plasma 
cell differentiation[57,58].
      Because virus release results in cell death, eventual completion 
of the EBV replicative cycle is most likely incompatible with tumor 
development[59]. In the context of the development of cHL, the loss of 
a functional BCR could be important because it would be expected 
to prevent BCR-mediated entry into the replicative cycle and thus 
cell death. Although LMP2A can activate EBV replication even in the 
absence of a functional BCR, we have shown that LMP2A cannot 
induce the replicative cycle when essential components of the BCR 
signaling machinery are missing[60]. Thus, the loss of BCR as well 
as of BCR signaling components combine to prevent both BCR- 
and LMP2A-induced virus replication and might explain why cells 
lacking BCR signaling functions are positively selected during the 
development of EBV-associated cHL (Figure 1). However, HRS cells 
retain LMP2A expression, suggesting that this virus protein has BCR-
independent functions that are important for tumor development and/
or maintenance.

Human Immunodeficiency Virus (HIV), 
Chronic Immune Stimulation, and cHL

      Compared to the general population, the incidence of cHL is 5-15 
times higher among people with HIV and acquired immune deficiency 
syndrome (AIDS), and most cases of cHL in HIV-positive patients are 
EBV-positive and of mixed cellularity type[61-64]. However, in contrast 
to other forms of HIV-associated lymphomas, the incidence of cHL is 
the highest when CD4+ T-cell counts are only modestly reduced[63]. 
Furthermore, the incidence of cHL in HIV-positive patients has not 
fallen in the post-highly active anti-retroviral therapy (HAART) era[65-67]; 
indeed, some studies suggest HL risk may be increased in the first 
few months following immune reconstitution on HAART[64,68]. Two 
interpretations might explain these data. First, at very low CD4+ 

T-cell counts, the morphologic presentation of cHL may shift to an 
appearance more similar to non-Hodgkin lymphoma (in which there 
are fewer CD4+ T cells in the tumor microenvironment), resulting in a 
diagnostic misclassification. A second, more likely explanation is that 
CD4+ T cells may be required for the development of cHL. Indeed, 
the inflammatory infiltrate of cHL is known to be rich in CD4+ T cells 
that can promote HRS survival through direct and cytokine-mediated 
interactions[69]. EBV genes, particularly LMP1, have been shown 
to contribute to this microenvironment by producing cytokines and 
chemokines that recruit and modify the chronic inflammatory cells, 
including CD4+ T cells[69-71].
      There is emerging evidence that other aspects of HIV infection, 
in addition to the reduced EBV-specific immunity, might contribute 
to lymphomagenesis. Increased EBV loads are usually observed 
only during the early stages of HIV infection when there is little or 
no T-cell impairment and are attributed to a generalized activation 
by HIV of the B-cell system[72]. The increased risk of BL that occurs 
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in the early stages of HIV infection is thought to be a consequence 
of the expansion of the pool of EBV-infected B-cell precursors that 
results from this chronic B-cell stimulation (reviewed in Ref. [73]). 
This could eventually lead to the development of BL if one or more 
of these infected GC precursors acquires the necessary genetic 
alterations characteristic of BL (reviewed in Ref. [73]). It remains to be 
established if hyper-stimulation of the B-cell system also contributes 
in a similar fashion to the pathogenesis of cHL.

Modulation of EBV Gene Expression 
and Function by the Microenvironment
      There is increasing evidence that the microenvironment of 
the EBV-infected B cell can regulate virus gene expression. The 
regulation of virus latency is of course not only important in dictating 
the fate of the EBV-infected B cell transiting through normal lymphoid 
tissues such as the tonsil but could also be a critical determinant of 
gene expression in tumors in which there is disruption of the normal 
microenvironment. For example, the cytokines interleukin-21 (IL-21) 
and IL-2, along with intercellular interactions such as CD40 ligation, 
all present in the GC of the tonsil, have been shown to down-regulate 
the expression of Epstein-Barr virus nuclear antigen-2 (EBNA2) 
and up-regulate the expression of LMP1, thus imposing a type II 

expression profile similar to that observed in cHL[74,75]. Furthermore, 
our recent data have identified a significant role for Notch ligation 
in the regulation of LMP1[76]. Activated Notch inhibits the initiation of 
LMP1 expression from the conventional LMP1 promoter by EBNA2 
during primary infection of resting B cells. Activated Notch also 
inhibits LMP2A expression during primary B-cell infection but only 
transiently down-regulates LMP2A in established lymphoblastoid 
cell lines (LCLs). This is of particular interest given that LMP2A 
expression is often observed in cHL. LMP2A can apparently induce 
its own promoter, and several reports have demonstrated that LMP2A 
constitutively activates the Notch pathway[77,78].
      In addition to regulating EBV expression, there is emerging 
evidence that the microenvironment can also modulate the function 
of individual virus proteins. For example, we have shown that 
LMP1 can induce the expression of the collagen receptor, discoidin 
domain receptor 1 (DDR1). This is important because collagen is 
a major constituent of the chronic inflammatory microenvironment 
of cHL[79-82]. Ligation of DDR1 by collagen promotes the survival of 
lymphoma cells in vitro, suggesting that the excess collagen present 
in lymphomas could drive some oncogenic functions of LMP1[82] 
(Figure 2). Changes to the microenvironment of the infected B cell 
might help to explain why on the one hand LMP1 expression in the 
asymptomatic host provides only those signals required to drive the 

Figure 1. Loss of viral replication 
functions may promote the deve-
lopment of Epstein-Barr virus (EBV)-
positive classical Hodgkin lymphoma 
(cHL). Upper panel: in normal B cells, 
either B-cell receptor (BCR)- or latent 
membrane prote in 2A (LMP2A) -
mediated signaling can induce the 
EBV lytic cycle, ultimately leading to 
the release of infectious virions and 
eventual cell death. Lower panel: 
Hodgkin/Reed-Sternberg (HRS) cells 
lack not only a functional BCR but 
also essential components of the 
BCR signaling machinery such as Lyn 
and Syk and the transcription factor 
Egr1. Thus, BCR-negative germinal 
center (GC) B cells that also lack 
essential BCR signaling components 
might be positively selected during 
the development of cHL because they 
are protected from entry into the EBV 
replicative cycle and the ensuing cell 
death. LMP2A expression is retained 
in EBV-positive HRS cells, but it is 
not known how LMP2A signals in the 
absence of BCR signaling components.

EBV episome
Virus replication

Virion release

No virus replication

? BCR-independent signalling
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differentiation of EBV-infected GC B cells, yet on the other hand, 
LMP1 has potentially oncogenic functions. An important area of 
future research will be to unravel the complex interactions between 
the EBV-infected B cell and its microenvironment and to determine 
how disruption or modification of these interactions might be tumor-
promoting.

Conclusions 
      EBV is present in a proportion of cHL cases and probably 
provides important anti-apoptotic signals that prevent cell death in 

HRS progenitors lacking a functional BCR. Loss of BCR and of other 
key components of the BCR signaling machinery could be important 
for the pathogenesis of cHL because they might protect HRS 
progenitors from entry into the EBV replicative cycle and subsequent 
cell death. Chronic inflammation in the microenvironment of cHL 
might not only dictate the pattern of EBV gene expression but also 
modulate the oncogenic functions of individual EBV genes such as 
LMP1.
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