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 Abstract: Background: Amyotrophic lateral sclerosis (ALS) is a motor neuron disease (MND) that 
typically causes death within 3-5 years after diagnosis. Regardless of the substantial scientific 
knowledge accrued more than a century ago, truly effective therapeutic strategies remain distant. 
Various conventional drugs are being used but are having several adverse effects.  

Objective/Aim: The current study aims to thoroughly review plant-derived compounds with well-
defined ALS activities and their structure-activity relationships. Moreover, the review also focuses 
on complex genetics, clinical trials, and the use of natural products that might decrypt the future and 
novel therapeutics in ALS.  

Methods: The collection of data for the compilation of this review work was searched in PubMed 
Scopus, Google Scholar, and Science Direct.  

Results: Results showed that phytochemicals like-Ginkgolides, Protopanaxatriol, Genistein, epigal-
locatechingallate, resveratrol, cassoside, and others possess Amyotrophic lateral sclerosis (ALS) ac-
tivity by various mechanisms.  

Conclusion: These plant-derived compounds may be considered as supplements for conventional 
(ALS). Moreover, further preclinical and clinical studies are required to understand the structure-
activity relationships, metabolism, absorption, and mechanisms of plant-derived natural agents. 
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1. INTRODUCTION 

Amyotrophic lateral sclerosis (ALS), also termed as Lou 
Gehrig’s disease, is an idiopathic, fatal cumulative neuro-
degenerative disease initiated by motor neurons dysfunction 
in the spinal cord and brain within weeks or months, which 
progresses into paralysis and finally death [1, 2]. There is no 
treatment available to cure this destructive disease. The ma-
jority of the deaths in ALS patients occur due to respiratory 
failure within 3 to 5 years from the onset of various signs 
and symptoms [3, 4]. The incidence of ALS in Western Eu-
ropean countries is 2-3 in 100,000 individuals per year and 
has a prevalence of 4.6 per 100,000 [5-7]. ALS is more 
commonly found in men than women, affecting 1.2–1.5 men  
 
*Address correspondence to these authors at the Department of Pharmacy, 
Faculty of Chemical & Life Sciences, Abdul Wali Khan University Mardan, 
Pakistan; E-mail: haroonkhan@awkum.edu.pk 
Pharmacognosy & Phytochemistry, Department of Pharmaceutical Sciences, 
University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India;  
E-mail: zabhat@kashmiruniversity.ac.in 
#These authors contributed equally to this work. 

for every woman [8]. Evidence indicates that the incidence 
and prevalence are lesser in mixed ancestral origin popula-
tions than European people, with differences in age of onset 
in genetically heterogeneous populations [9]. Compared to 
Alzheimer’s disease, the maximum occurrence of the disease 
is between the age of  50 to 75 years and decreases after that 
[7]. However, chances of lower incidences among non-
Caucasian populations or American Indians and Eskimos are 
still controversial, but most epidemiological studies accord 
with insignificant male/women predominance of 1.2-1.5/1 
[10-12].  

The etiology of ALS is highly multifactorial [1, 13]. It is 
associated with multiple cellular pathologies that are restrict-
ed to oxidative stress, loss of neurotrophic factors, gluta-
mate-induced excite-toxicity, inflammation, insufficient pro-
tein quality control, accumulation and misfolding of proteins, 
and mitochondrial dysfunction [14, 15]. The clinical mani-
festations of sporadic amyotrophic lateral sclerosis (sALS) 
and familial amyotrophic lateral sclerosis (fALS) are almost 
very similar, and the median age of onset of sALS is around 
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60 years, and the age of onset for fALS is about ten years 
earlier than sALS. In juvenile ALS (JALS) families, muta-
tions in ALS2 and SETX genes have been reported [16, 17].  

Due to the secondary phenomena, deficiencies in a few of 
these pathways occur. To identify the primary pathophysio-
logical processes underlying ALS, genetics would be the 
rational primary perspective. The ALS shows genetic predis-
position, about 5-15% of patients diagnosed with ALS have 
a family history of the disease. A single defect in genetics is 
believed to lead ALS [18, 19]. While most people lack fami-
ly background of ALS, in such cases, it is accepted that both 
genetic and environmental risk factors contribute to the de-
velopment of disease [20]. Several genetic risk factors have 
been recognised that are involved in sporadic ALS. Howev-
er, environmental risk factors exploration has been less suc-
cessful. Many genetic and molecular pathways are most like-
ly responsible for developing and progressing neurodegener-
ative changes in ALS.  

Several pathological pathways have been suggested, yet 
no authenticated target for researchers while designing new 
molecules to impact the disease has been evidenced. To date, 
various molecules have failed in clinical trials so far while 
targeting the above-mentioned potential pathways. Thus, 
attempts carried in this field so far have not provided any 
success in new drug development [15]. Therefore, to suc-
cessfully develop new medicine that will change the motor 
neuron degeneration process, several pathways need to be 
targeted due to the involvement of multiple pathways. De-
spite various preclinical and clinical studies, the accurate 
pathway of pathogenesis and progression of ALS is still not 
fully known. Thus, the development of successful and tar-
geted therapy is challenging and is a major problem faced by 
scientists to treat ALS. Over the past two decades, the only 
FDA approved drug is riluzole, an anti-glutamatergic agent 
that acts by blocking glutamatergic neurotransmission in the 
CNS.  However, riluzole’s efficacy is questionable, without 
any effects on disease symptoms and nominal therapeutic 
benefits of about 2-3 months of survival increase in ALS 
patients [21, 22]. After 22 years, another drug, edaravone, a 
free radical scavenging agent, was approved by FDA in May 
2017, which was found to be effective in slowing ALS pro-
gression but its mechanistic pathway in ALS is not fully 
known yet [23, 24].  

2. MATERIALS AND METHODS 

2.1. Data Sources and Search Strategy 

Databases like Scopus, Science Direct, Pubmed, Google 
Scholar, Web of Science were used to collect literature for 
the compilation of the present review by searching the terms 
including plant-derived bioactive compounds against (excita-
tory amino acid toxicity, neuroinflammation, calcium cyto-
toxicity and oxidative stress) in amyotrophic lateral sclerosis, 
traditional herbal medicines and. 

3. PLANT-DERIVED NATURAL COMPOUNDS FOR 
THE TREATMENT OF AMYOTROPHIC LATERAL 

SCLEROSIS 

Regardless of the fact that drug design and discovery 
have a high reliance on synthetic chemistry, the contribution 

of natural products cannot be ignored [25-30]. WHO's list of 
essential drugs consists of 252, of which 11% are of plant 
origin [31]. So, there is an absolute chance of finding a natu-
ral molecule having desired ALS activity. The phytochemi-
cals, including flavonoids, alkaloids, terpenes, and saponins 
from plant sources may instill positive change, which re-
searchers are looking for, as they possess unique chemical 
diversity. Some of these cannot be synthesized by currently 
known methods [30, 32]. As a result, these natural com-
pounds as novel drug molecules for ALS treatment remain 
untapped. Different scientific reports have focused on the 
validation of the phytoconstituents isolated from various 
medicinal plants. Scientific investigations claiming various 
phytochemicals as ameliorative agents in ALS are limited. 
However, some key findings have demonstrated flavonoids, 
alkaloids, terpenes, and saponins isolated from multiple me-
dicinal plants exhibit ALS activity. In this review, we have 
discussed the potential of various plant origin phytochemi-
cals for the treatment of ALS. This review will try to under-
stand the mechanism of action of selected molecules (Fig. 1), 
and in vivo and in vitro activities of these Phytoconstituents 
will also be covered. 

3.1. Phytochemicals Acting against Oxidative Stress 

Oxidative stress imparts a major role in the process of 
neurodegeneration and is one of the most common pathways 
of all neurodegenerative diseases [33-36]. The death of neu-
rons occurs mainly due to increases in the reactive oxygen 
species (ROS) generation and malfunctioning of the anti-
oxidative system [37]. Herbal medicines impart a prospec-
tive role in oxidative stress regulation by improving the anti-
oxidant activity of various enzymatic and non-enzymatic 
systems, decreasing the levels of (ROS) and maintaining the 
expression and regulation of various genes involved in ALS 
[38, 39]. Madecassoside, isolated from Centella asiatica is a 
triterpenoid saponin. It has been reported that in ALS involv-
ing transgenic SOD1-G93A mice model, madecassoside 
safeguards the motor neurons from degeneration and in-
creases the survival time of mice. In another study, it was 
revealed that madecassoside reduces malondialdehyde levels 
and enhances the activity of SOD in the brain. In ALS mouse 
model, madecassoside protects the neurons from apoptosis 
due to free radicals by increasing the antioxidant activity. It 
has also been reported that madecassoside improves the LPS 
mediated neurotoxicity in rats by upregulating the Nrf2-HO 
pathway [40-44]. Ampelopsin, isolated from Ampelopsis 
grossedentata, belongs to the flavonoid class and exhibits 
prominent antioxidant activity. It has been reported that am-
pelopsin showed neuroprotective effects against H2O2-
induced apoptosis in PC 12 cells by suppressing the ROS 
generation, upregulating the expression of HO-1 protein and 
hampering the expression of caspase-3. Moreover, in PC-12 
cells, 1/2 (ERK1/2) and Akt-dependent signalling pathways 
play a role in the HO-1 protein upregulation. The studies 
suggested that ampelopsin could be a strong candidate in the 
ministration of various neurodegenerative diseases, including 
ALS [45-48]. Epigallocatechin gallate (EGCG), isolated 
from green tea, is its main constituent and is a water-soluble 
polyphenolic compound. It was reported to have strong anti-
oxidant activity, besides acting as a radical scavenger medi-
ating antioxidant activity in various neurodegenerative dis-
eases, including ALS. The antioxidant activity of (EGCG) 
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Fig. (1). Plant derived natural compounds for the treatment Amyotrophic Lateral Sclerosis. (A higher resolution/colour version of this figure 
is available in the electronic copy of the article). 
 
against ALS was further evaluated in transgenic SOD1 mice, 
where it slows down the beginning of symptoms and pro-
longs the lifespan. Moreover, upregulation of Bcl-2 gene, 
which is an anti-apoptotic gene, was also detected with 
(EGCG), suggesting the antioxidant activity of (EGCG) in 
ALS is associated with the upregulation of Bcl-2 gene [49-
56]. Picroside-II, isolated from Picrorhi zarhizoma is a type 
of iridoid glycoside that is widely found in Tibet as well as 
in India. It was reported that in PC-12 cells, picroside-II 
strengths nerve growth factor (NGF) mediated neurite out-
growth besides acting synergistically against oxidative stress. 
Due to their synergistic effect, they are used to manage vari-
ous nervous disorders, including ALS. Moreover, the neuro-
protective activity against oxidative stress of picroside-II was 
also evaluated in various models, including in vitro model of 
glutamate-treated PC12 cells and in vivo model of AlCl3-
induced male mice. Picroside -II also enhances the SOD lev-
els in the brain of mice which results in suppression of ROS 
generation depicting picroside-II protects the brain from a 
neuronal injury that occurs due to oxidative stress [57-60]. 
Morroniside, isolated from Cornus officinalis is a type of 
iridoid glycoside reported to have a strong neuroprotective 
activity against oxidative stress. It was also reported that in 
SH-SY5Y cells, when exposed to H2O2-mediated cytotoxici-
ty, Morroniside elevates the levels of cellular GSH and re-
duces the levels of lactate dehydrogenase (LDH), besides 
maintaining the Matrix metalloproteinases (MMP) and cell 

stability. Moreover, it suppresses the intracellular activity of 
SOD and ROS generation. In addition, Upregulation of Bcl- 
2 genes was also reported, which confirms the anti-apoptotic 
and anti-oxidative activity of this compound [61-65]. 
Astragaloside IV, a saponin isolated from Radix astragali, 
is generally used for ALS treatment in China and is reported 
to have a strong antioxidant activity in various In-vitro and 
in-vivo studies. Astragaloside IV also showed a protective 
role against H2O2 mediated oxidative stress in PC-12 cells. 
Moreover, it also improves the viability of PC-12 cells, acti-
vation of HO-1, suppresses the intracellular production of 
ROS as well as apoptotic cell death [66-70]. Diallyl trisul-

fide (DATS), an active monomer of allicin isolated from 
bulbs of Liliaceae allium, was reported to exhibit diverse 
pharmacological activity owing to its capability to pass 
through the (BBB). It was reported that (DATS) acts as an 
inducer of phase II enzymes resulting in the amelioration of 
oxidative stress besides safeguards the activity of various 
antioxidant enzymes, thus imparting an important role in 
ALS. Diallyl trisulfide acts via multiple pathways in ALS, 
including activating the heme oxygenase-1 (HO-1), down-
regulating the expression of glial fibrillary acidic protein, 
activating the antioxidant activity of various enzymes [71-
76].The various plant-derived phytochemicals (Fig. 2), along 
with their diverse mechanistic insights against oxidative 
stress, are shown in Table 1. 
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Table 1.  Phytochemicals along with their diverse mechanistic insights against oxidative stress in ALS. 

Phytochemical  

Constituent 

Study Type 

Cellular/Animal/ 

Clinical 

Study Description Mechanism Refs. 

 

 

 

Madecassoside (1) 

 

 

 

In-vivo (Transgenic mice 
SOD1-G93A) 

Two dissimilar doses 

of 61.1 ± 11.0 and 185.6 
±18.7mg/kg/day, 

markedly increased 

the time of survival in mice by 11 and 9 
days, respectively 

Increase the mice survival time and 
reduces the malondialdehyde lev-
els, and enhances the SOD activity 

in the brain 

[40] 

 

 

 

Ampelopsin (2) 

 

 

In-vitro 

(PC12 cells) 

 

Ampelopsin Neuroprotective effect 

against H2O2-induced cell death in 
PC12 cells is well observed. 

Suppressing the production of 
ROS, upregulating the expression 

of HO-1 protein and hampering the 
expression of caspase-3 

 

 

 

[45, 47] 

 

 

 

Epigallocatechin gallate 

(EGCG) (3) 

 

 

In-vivo Transgenic mice 
SOD1-G93A 

EGCG given in doses of 1.5, 2.9, 5.8 
µg/g body weight after 60 days of age 
suggest that it significantly delays the 

disease onset by 1.4weeks 

and prolongs the survival time by 1.8 
weeks. 

 

upregulation of Bcl-2 gene 

 

 

 

 

 

 

[49] 

 

 

Picroside-II (4) 

In-vitro PC12 cells 

 

In-vivo mice 

AlCl3-induced 

toxicity 

Neuroprotective action 

of picroside-II has been observed in 
glutamate-treated PC12 cells and  

improved SOD activity in the 

brain of mice 

Enhances the SOD levels in the 
brain of mice, suppression of ROS 

generation 

 

[58] 

 

 

 

 

Morroniside (5) 

 

 

In-vitro 

SH-SY5Y cells 

Morroniside exhibits both anti-
oxidative and 

anti-apoptotic properties 

against oxidative stress-induced cell 
damage 

Elevates the levels of cellular GSH 
and reduce the levels of (LDH), 

Upregulation of Bcl- 2 genes 

 

 

 

[62] 

 

 

Astragaloside IV (6) 

 

 

In-vitro 

PC12 cells 

It enhances neuronal cellular 

viability in vitro, decreases intracellular 
production of ROS 

induced by H2O2 and improves cell 
survival. 

Activation of HO-1 

suppresses the intracellular produc-
tion of ROS 

 

 

 

[66] 

 

 

Diallyl trisulfide (DATS) 

(7) 

In-vivo 

Transgenic mice SOD1-
G93A 

A dose of 80 mg/kg/day significantly 
improves 

life span by 1week 

Activating the heme oxygenase-1 
(HO-1) 

Downregulating the expression of 
glial fibrillary acidic protein 

 

 

[72] 

 
3.2. Phytochemicals Acting against Neuroinflammation 

A strong correlation exists between inflammation and 
various CNS disorders, particularly ALS. Microglia cells in 
the CNS impart an essential role in ALS pathogenesis due to 
their primary role in the release of various pro-inflammatory 
factors, including (TNF-α), (iNOS), (COX-2). So, one of the 
targets for ALS involves decreasing the activation of micro-
glia cells, which in turn, inhibits neuroinflammation [77-80]. 
Celastrol, isolated from Tripterygium wilfordii, is a triterpe-
noid pigment that inhibits cancer cell proliferation and in-

flammation-related various auto-immune diseases. In trans-
genic mice, SOD1-G93A model of ALS, Celastrol suppress-
es (TNF-α) and (iNOS) expression, decreased the expression 
of CD40 and glial fibrillary acidic protein in the lumbar spi-
nal cord section of mice, resulting in delayed onset of disease 
and improvement in the motor function. Moreover, it was 
observed that celastrol at the molecular level inhibits LPS 
mediated activation of mitogen-activated protein ki-
nase/ERK1/2 signaling pathway and (NF-kB), which plays a 
vital role in the damage to cells and stress. So celastrol sup-
presses the activation of microglia cells that further 
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Fig. (2). Phytochemicals against oxidative stress in ALS (1) Madecassoside (2) Ampelopsin (3) Epigallocatechin gallate (EGCG) (4) Picro-
side-II (5) Morroniside (6) Astragaloside IV (7) Diallyl trisulfide (DATS). 
 
decreases the generation of pro-inflammatory cytokines [81-
86]. Resveratrol, mainly isolated from Veratrum nigrum and 
Rhizoma polygoni, is a type of flavonoid (polyhydroxy) di-
phenyl ethylene, and  has intense antioxidant activity due to 
various hydroxyl groups. Studies also revealed that resvera-
trol inhibits the release of pro-inflammatory cytokines insti-
gated by LPS in mouse N-9 microglial and rat cortical mi-
croglia cells, besides inhibiting the degradation of IkBα and 
iNOS N-9 microglial cells expression, disclosing the role of 
resveratrol in the amelioration of various neurodegenerative 
disease including ALS [87-94]. Curcumin, isolated from 
Curcuma longa, is a polyphenolic monomer known for its 
neuroprotective and anti-inflammatory activity. In LPS stim-
ulated microglia cells, curcumin suppresses the release of 
nitric oxide and iNOS expression. Moreover, curcumin also 
upregulates the expression of (Nrf-2) and (HO-1), exhibiting 
strong neuroprotective activity during inflammatory stress. 
The neuroprotective role of curcumin in ALS has also been 
reported due to the downregulation of NF-kB signaling 
pathway, which suppresses the pro-inflammatory cytokines, 
including IL-6, IL-1, and TNF-α [39, 95-100]. Isorhyncho-

phylline (IRN), isolated from Uncaria rhynchophylla, has 
been reported to exhibit strong neuroprotective activity due 
to its ability to inhibit cytokine release like IL-6, IL-1, and 
TNF-α in LPS stimulated microglial cells. Moreover, the 
synthesis of inflammatory mediators and expression of 
mRNA and iNOS has also been reduced by IRN, which im-
part an essential role in various neurodegenerative disease, 
including ALS [101-103]. Obovatol, isolated from Magnolia 
officinalis leaves, is a type of neolignan. The neuroprotective 

activity of obovatol has been examined in various models of 
neuroinflammation mediated by LPS. It has also been report-
ed that obovatol suppresses the release of NO and iNOS in 
microglial cells by inhibiting the signaling pathways of mi-
togen-activated protein kinase and NF-kB, besides one of the 
primary molecular targets of obovatol in microglia is Perox-
iredoxin 2 (Prx2), which played an essential role in the vari-
ous signalling pathways of neuroinflammation [104-106]. 
Paeonol, isolated from the bark of Paeonia suffruticosa, acts 
as a neuroprotective agent by inhibiting inflammation medi-
ated by microglia as well as oxidative stress. In LPS induced 
inflammation in cortical neurons, paeonol downregulates the 
expression of COX-2 and iNOS, which results in reduced 
production of ROS and NO. Moreover, the phosphorylation 
of ERK induced by LPS was also suppressed by paeonol, 
which results in an increase in cell viability [107-109]. 
Wogonin, isolated from the Scutellaria root, acts as a neu-
roprotective agent by inhibiting the NO, TNF-α, and IL-6 
production. Furthermore, wogonin also shows neuroprotec-
tive activity in LPS induced microglia injury by suppressing 
the various mediators of inflammation [110-112]. The vari-
ous plant-derived phytochemicals (Fig. 3), along with their 
diverse mechanistic insights against neuroinflammation, are 
shown in Table 2. 

3.3. Phytochemicals Acting against Calcium Cytotoxicity 

One of the prime factors that are involved in ALS is cal-
cium toxicity. When the calcium channels are opened up, a 
massive influx of calcium via NMDA receptors piles up in 
the nuclear cell membrane. This results in nerve cell damage 

1 
2 

3 
4 5 

6 
7 
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Table 2.  Phytochemicals along with their diverse mechanistic insights against neuroinflammation in ALS. 

Phytochemical con-

stituent 

Study type 

Cellular/Animal/clinical 
Description of Study Mechanism Refs. 

 

 

    Celastrol (8) 

G93A SOD1 transgenic 
mouse model of ALS 

Transgenic mice were transfected with NSC34 
cells and then treated with hydrogen peroxide and 

celastrol at different doses 

Activation in MEK/ERK 
and PI3K/Akt pathway 

 
 

 

 

[82, 113, 
114] 

Transgenic mouse model of 
ALS 

Celastrol was administered to the mice at 30 days 
of age, and reduction in body weight, improve-

ment in motor function along with delayed onset 
of ALS was achieved. 

Suppresses the TNF-α and 
iNOS expression   Down-
regulated the expression of 

CD40 

SH-SY5Y neuronal cell 
model 

There was Increased induction of Heat shock 
proteins (HSPs) after Co-application of celastrol 

and arimoclomol 

 

 

Activation of HSPF1. 

 

 

Resveratrol (9) 

Rat cortical neuron cell 
model 

Cell survival increased up to 75 % on the applica-
tion of RSV with protection against neurodegen-

eration 

 

 

 

Inhibits the release of pro-
inflammatory cytokines 

 

 

[88, 91, 93, 
115-118] 

VSC 4.1 hybrid cell line 

Mutant SOD1 expression was induced in the cell 
line, and on administration of RSV, the cell sur-
vival was enhanced with respect to dose, and at 
highest dose of RSV, cell survival was fully re-

stored.  

Transgenic SOD mice 
model 

Intraperitoneal administration of RSV led to a 
significant reduction in motor neuron death along 

with increased survival rates  

 

 

Curcumin (10) 

Motor neuron Cell model  
Cell line transfected with mutant Q331K and wild 

TDP43 was treated with curcumin that led to 
altered membrane permeability of neurons. 

 

 

 

Upregulates the expression 
of (Nrf-2) and (HO-1) 

 

 

[39, 99, 
119] 

Double-blind therapeutic 
trial for 42 patients 

Patients were divided into Group A & B. group A 
received a placebo for three months followed by 
curcumin for other three months, while Group B 

received curcumin for six months 

Isorhynchophylline 

(IRN) (11) 

 

 

BM-hMSCs model 

Regulation of the intracellular pluripotency 
mechanisms was examined. 

Regulation of mitochon-
drial function, NMDA 
subunit, FGFβ levels, 

BDNF, OXTR, ATP, BM-
MSC proliferation and 

differentiation. 

 

[101, 102, 
120, 121] 

Mouse N9 microglial cells 
Inhibitory tendencies of RIN and IRN against 

cytokines and NO were a point of focus 

Inhibits the pro-
inflammatory cytokines 

release in LPS stimulated 
microglial cells 

 

 

Obovatol (12) 

Microglia BV-2 cell line 

LPS induced stimulation was carried out in the 
cell line to mark changes with respect to NO, 
cytokines, along with activation of signalling 

cascades. 

Suppresses the release of 
NO and iNOS in microgli-

al cells 

 [104, 122, 
123] 

 

 

Paeonol PAE (13) 

N9 microglia cell model 

Role of PAE in  the production of pro-
inflammatory markers in LPS stimulated micro-
glia cells and proteins formed in immune signal-

ling cascade were observed 

Downregulates the COX-2 
and iNOS expression. In-

volvement of TLR4 signal-
ling pathway to reduce the 

expression of TRAF6, 
MAPK molecules, etc. 

 

 

[107, 109] 

 

Wogonin (14) 

SH-SY5Y cells 
Aβ changes were observed in the cell line with 

treatment by wogonin. 

GSK3β inhibition via the 
mediation of mTOR sig-

nalling pathway 
 

 

[110, 124, 
125]    Microglia cell 

Lps stimulated microglial cells were subjected to 
treatment to monitor changes with regard to TNF, 

NO and IL-6. 

Inhibiting the NO, TNF-α, 
and IL-6production. 
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Fig. (3). Phytochemicals against neuroinflammation in ALS (8) Celastrol (9) Resveratrol (10) Curcumin (11) Isorhynchophylline (IRN) (12) 
Obovatol (13) Paeonol (14) Wogonin. 
 
and even death of cells. Nowadays, the focus shifts to herbal 
medicines to find a phytochemical that can be beneficial in 
treating ALS [126-128]. Paeoniflorin, isolated from Paeo-
niae radix, has an essential role as a neuroprotective agent in 
ALS management by inhibiting the influx of calcium in cy-
toplasm in PC12 cell-injury models. Moreover, it also inhib-
its the extra intracellular level of calcium which is generated 
due to glutamate and suppresses the apoptosis in PC-12 cells. 
Further, in PC-12 cells, Paeoniflorin shows its neuroprotec-
tive effect by suppressing NMDA induced neurotoxicity 
[129-134]. Ligustrazine, isolated from Rhizoma 
chuanxiong, is known for its neuroprotective activity by 
blocking calcium channels. It has been reported that in SH-
SY5Y cells, ligustrazine blocks L-type calcium channels, 
which impart a vital role in neurotoxicity development in 
ALS [135, 136]. Gastrodin, isolated from Gastrodia elata, 
can cross the (BBB) and exert its effect on CNS. In SH-
SY5Y cells, Gastrodin was reported to limit calcium entry 
via acting on voltage-gated calcium channels, inhibiting the 
degeneration of neurons due to calcium toxicity [137-139]. 
Muscone, obtained from natural muskies, is its principal 
active component. In PC12 cells stimulated with glutamate, 
muscone administration exhibits its neuroprotective activity 
by reducing the intracellular accumulation of calcium [140]. 
The various plant-derived phytochemicals (Fig. 4), along 
with their diverse mechanistic insights against calcium cyto-
toxicity, are shown in Table 3. 

3.4. Phytochemical Acting against Excitatory Amino Acid 
Toxicity 

The primary excitatory neurotransmitter in the CNS is 
glutamate. To maintain the optimum level of glutamate, var-
ious metabolic enzymes, as well as transporters, are availa-
ble, failure in the function of which leads to excessive accu-
mulation of glutamate in the CNS resulting in various nerv-

ous disorders, including ALS [141-143]. Different phyto-
chemicals are involved in maintaining the optimum level of 
glutamate in CNS, which include: β-Asarone, isolated from 
Acorus tatarinowii, acts as a neuroprotective agent due to its 
ability to cross the (BBB). It was reported that in ALS, β-
Asarone suppresses (NMDA) or produces glutamate-induced 
excitotoxicity. Moreover, in PC-12 cells, β-Asarone increas-
es the survival rate of cells, reduces the leakage of LDH, 
apoptosis ratio, and intracellular accumulation of calcium 
[144-147]. Huperzine-A, isolated from Huperzia serrata, is 
a novel alkaloid commonly used in the treatment of Alz-
heimer’s disease due to its ability to block glutamate-
mediated neurotransmission. (Hup A) also inhibits glutamate 
toxicity by blocking NMDA receptors. In patients with ALS, 
(Hup A) acts as a neuroprotective agent by preventing dam-
age to motor neurons [56, 148-150]. Catalpol, isolated from 
Rehmannia glutinosa, acts as a neuroprotective agent in var-
ious neurological disease, including ALS, by suppressing 
glutamate excitotoxicity. Moreover, it also increases the via-
bility of cells, protects the neurons from various damages 
mediated via NMDA receptors [151-153]. Selaginellin, iso-
lated from Saussurea pulvinata, exhibits neuroprotective 
activity in PC-12 cells by suppressing glutamate toxicity. It 
also decreases the ROS generation and expression of klotho 
gene [154-156]. Ferulic acid, a phenolic acid monomer 
mainly present in Chinese herbs, including angelica and Sze-
chwan, crosses the BBB with ease. It shows its neuroprotec-
tive activity by preventing damage to neurons due to gluta-
mate excitotoxicity and apoptosis in cortical neurons. Fur-
thermore, it also protects the In-vitro PC-12 cells from hy-
poxia, free radicals, and excitatory amino acids [157-160]. 
Cryptotanshinone, isolated from Salvia miltiorrhiza, sup-
presses glutamate toxicity by activating phosphoinositide 3-
kinase signalling pathway and inhibiting the downregulation 
of Bcl-2, an anti-apoptotic protein. The PI3K/Akt pathway 
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Table 3.  Phytochemicals along with their diverse mechanistic insights against calcium cytotoxicity in ALS. 

Phytochemical Constituent 
Study Type 

Cellular/Animal/clinical 
Study Description Mechanism Refs. 

 

Paeoniflorin (15) 

In-vitro 

PC12 cells 

Paeoniflorin reverses the 

amplified intracellular levels of calcium 
level caused by excitatory 

glutamate and reduced 

PC12 cell death in a dose-dependent 
manner 

Suppressing NMDA induced 
neurotoxicity 

 

 

[129] 

Ligustrazine (16) 
In-vitro 

SH-SY5Y cells 

Whole-cell patch-clamp 

technique demonstrated that in the nerv-
ous system, there is 

inhibitory action on the calcium 

channel due to ligustrazine 

Blocks L-type calcium 

channels 

 

[135] 

 

Gastrodin (17) 

In-vitro 

SH-SY5Y cells 

The free calcium accumulation can be 
suppressed by Gastrodin, 

inhibits the enhanced 

glutamate to protect neurons 

Restricted the entry of calci-
um by acting on voltage-
gated calcium channels 

 

 

[139] 

 

Muscone (18) 

In-vitro 

PC12 cells 

It suppresses the calcium overload-
induced by 

glutamate and prevents neuronal cell 
death 

Reducing the intracellular 
accumulation of calcium 

 

 

[140] 

 

 
Fig. (4). Phytochemicals against calcium cytotoxicity in ALS (15) Paeoniflorin (16) Ligustrazine (17) Gastrodin (18) Muscone. 
 
plays an important role in controlling the pathogenesis of 
ALS [161, 162]. The various plant-derived phytochemicals 

(Fig. 5), along with their diverse mechanistic insights against 
excitatory amino acid toxicity, are shown in Table 4. 

CONCLUSION 

There is currently only one drug available in the market 
approved by FDA in the treatment of ALS. However, various 
attempts have been carried out to develop an efficient thera-
peutic agent against ALS. Majority of the drugs passed the 
preclinical animal studies, but the results are not promising 
in human clinical trials. Herbal medicines, on the other hand, 
act as an alternative and complementary medicinal approach 
for ALS treatment. The phytochemicals, including flavo-
noids, alkaloids, terpenes, and saponins from plant sources 
may instill positive change, which researchers are looking 
for, as they possess unique chemical diversity. Some of these 
cannot be synthesized by currently known methods. As a 

result, these natural compounds as novel drug molecules for 
ALS treatment remain untapped. Different scientific reports 
have focused on the validation of the Phytoconstituents iso-
lated from various medicinal plants. The phytochemicals 
isolated from herbal medicines act via multiple pathways, 
including an antioxidant, anti-inflammatory and an anti-
apoptotic agent in ALS. The requirement of natural products 
to be used in the treatment of ALS has increased because of 
their safety and efficacy compared to conventional drugs as 
an alternative treatment measure. The review explains that 
natural products could be used as a new approach in reliev-
ing the intensity of various ALS symptoms. In addition, the 
review mentions that natural antioxidant compounds with 
multi targets, multi links, or multi pathways that can be used 
in the modern pharmacology of ALS. However, all these 
data underline the importance of testing the tolerability and 
efficacy of natural products to ameliorate the symptoms or 
disease progression in ALS in the context of controlled clini-
cal trials. 
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Table 4.  Phytochemicals with diverse mechanistic insights against excitatory amino acid toxicity in ALS. 

Phytochemical  

Constituent 

Study type 

Cellular/Animal/Clinical 
Description of Study Mechanism Refs. 

 

β-Asarone (19) 

In-vitro 
Cultured rat cortical cells 

Anti-excitotoxicity effect of isolated α 
& β asarone as compared to commer-

cially available asarone. 

Suppresses (NMDA) or 
glutamate-induced exci-

totoxicity  

 

[44, 144, 145, 
163] 

In-vivo 
PD rat model 

6-OHDA was used to induce Parkin-
son’s disease in rats that were divided 
into different groups like untreated, l-

dopa, β-asarone and co-administered l-
dopa and β-asarone. 

Downregulation of NSE 
and improved levels of 
DA, l-DOPA, DOPAC 
and HVA in striatum. 

 

 

Huperzine-A (20) 

In-vitro 
NSC34 and rat spinal cord or-

ganotypic culture 

Inducers like staurosporine, hydrogen 
peroxide, CCCP, THA etc. were used 

in a cell line, and the effects of hupera-
zine A were noted  

Inhibits glutamate tox-
icity by blocking NMDA 

receptors 

 

 

[149] 

 

 

Catalpol (21) 

In-vitro 
PC12 cell lines 

Effect of catalpol was observed against 
Cell injury induced by glutamate  

Protects the neurons 
from various damages 
mediated via NMDA 

receptors 

 

 

[44, 120, 151, 
152] 

 

 

 

Selaginellin (22) 

In-vitro 
PC12 cells 

Glutamate induced excitotoxicity in 
PC12 cells was exposed with selaginel-

lin administration 

Decreases the ROS 
generation and expres-

sion of klotho gene 

 

 

 

[155, 164] 

 

 

 

 

 

 

Ferulic acid (23) 

In-vitro 
PC12 cells 

The protective effects against hypoxia 
and excitotoxicity were monitored. 

Preventing the damage 
to neurons due to gluta-
mate excitotoxicity and 

apoptosis in cortical 
neurons. 

 

 

[44, 157, 165] 
In-vivo 

Male Sprague Dawley rat  

Protective effects of ferulic acid 
against hypoxia-induced cerebral inju-

ry was the focus of the study 

TLR and MyD88 path-
ways inactivation 

 

Cryptotanshinone (24) 

In-vitro 
Rat cortical neurons 

Glutamate was used to entice neurotox-
icity in a cell line. 

Activating phospho-
inositide 3-kinase  path-
way and inhibiting the 
downregulating  Bcl-2, 

an anti-apoptotic protein 

 

 

[120, 161, 
162] 

 

 
Fig. (5). Phytochemicals against excitatory amino acid toxicity in ALS (19) β-Asarone (20) Huperzine-A (21) Catalpol (22) Selaginellin (23) 
Ferulic acid (24) Cryptotanshinone. 

19 20 21 
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