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Objective: It has been argued that the incidence of multiple step saccades

(MSS) in voluntary saccades could serve as a complementary biomarker for

diagnosing Parkinson’s disease (PD). However, voluntary saccadic tasks are

usually difficult for elderly subjects to complete. Therefore, task difficulties

restrict the application of MSS measurements for the diagnosis of PD. The

primary objective of the present study is to assess whether the incidence of

MSS in simply reactive saccades could serve as a complementary biomarker

for the early diagnosis of PD.

Materials and methods: There were four groups of human subjects: PD

patients, mild cognitive impairment (MCI) patients, elderly healthy controls

(EHCs), and young healthy controls (YHCs). There were four monkeys

with subclinical hemi-PD induced by injection of 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) through the unilateral internal carotid artery and

three healthy control monkeys. The behavioral task was a visually guided

reactive saccade.

Results: In a human study, the incidence of MSS was significantly higher

in PD than in YHC, EHC, and MCI groups. In addition, receiver operating

characteristic (ROC) analysis could discriminate PD from the EHC and MCI

groups, with areas under the ROC curve (AUCs) of 0.76 and 0.69, respectively.

In a monkey study, while typical PD symptoms were absent, subclinical hemi-

PD monkeys showed a significantly higher incidence of MSS than control

monkeys when the dose of MPTP was greater than 0.4 mg/kg.

Conclusion: The incidence of MSS in simply reactive saccades could be a

complementary biomarker for the early diagnosis of PD.
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Introduction

Saccades are rapid eye movements that redirect the fovea
from one object of interest to another. A typical saccade
consists of a primary saccade that covers all or most of the
distance between the fixation point and the target location,
which might be followed shortly by a small amplitude saccade
(corrective/secondary saccade) if required. Corrective saccades
(CS) have been frequently observed in children and young and
elderly healthy subjects (Cohen and Ross, 1978; White et al.,
1983). Thus, it has been well accepted that CS is a physiological
behavior (Troost et al., 1974).

However, eyes do not always jump with the typical
form and sometimes they engage in a series of at least
two smaller amplitude (hypometric) saccades–namely, multiple
step saccades (MSS) (Troost et al., 1974). Although MSS is
occasionally observed in healthy subjects (Kimmig et al., 2002;
Van Donkelaar et al., 2007), it is clearly more pronounced
in Parkinson’s disease (PD) patients (Jones and DeJong, 1971;
Corin et al., 1972; Troost et al., 1974; Teräväinen and Calne,
1980; White et al., 1983; Hotson et al., 1986; Lueck et al., 1990,
1992; Van Gisbergen et al., 1992; Kimmig et al., 2002) and
non-human primates with dopamine depletion (PD monkeys)
in the basal ganglia (Brooks et al., 1986; Kato et al., 1995).
Thus, MSS is assumed to be a non-physiological behavior
(Troost et al., 1974).

A consistent finding among previous studies is that the
incidence of MSS in PD patients is significantly higher than that
in elderly healthy controls (EHCs) during voluntary saccades
such as memory guided saccades (Teräväinen and Calne, 1980;
Crawford et al., 1989; Lueck et al., 1992; Van Gisbergen et al.,
1992; Kimmig et al., 2002; Ying et al., 2008; Blekher et al.,
2009). Furthermore, it has been argued that the incidence of
MSS in memory guided sequential saccades could serve as
a biomarker for the diagnosis of PD (Blekher et al., 2009).
However, practically, memory guided sequential saccade tasks
are usually difficult for elderly subjects to perform, particularly
for neurodegenerative patients, because participants need to
inhibit the reactive saccades to the onset of visual stimulus
and then generate saccades based on their memory (Gaymard
et al., 1998). Previous studies have found that PD patients
made significantly more errors in memory guided saccade
tasks (Crawford et al., 1989; Van Gisbergen et al., 1992). Such
task difficulties restrict the clinical application of measuring
MSS in the diagnosis of PD. Thus, a critical question is
whether the incidence of MSS in simple saccade tasks, such
as reactive saccades, could provide useful information for the
diagnosis of PD.

While the reported incidences of MSS are consistent for
memory guided saccades among previous studies, the results
are inconsistent for reactive saccades. Some studies reported
that, compared with elderly healthy subjects, the incidences

of MSS are significantly higher in both PD patients (Jones
and DeJong, 1971; Corin et al., 1972; White et al., 1983) and
PD monkeys (Brooks et al., 1986; Tereshchenko et al., 2015),
but others reported no significant difference (Crawford et al.,
1989; Lueck et al., 1990, 1992; Van Gisbergen et al., 1992;
Kimmig et al., 2002; Blekher et al., 2009). We think that a
possible reason for such inconsistency might be the different
definitions of MSS. Some previous studies excluded CS from
the analysis of MSS (Troost et al., 1974; Bötzel et al., 1993;
Van Donkelaar et al., 2007), while others considered CS as a
part of MSS (Becker and Fuchs, 1969; Oliva, 2001). To make
a comparison with previous studies, we firstly analyzed the
incidence of mixed MSS and CS, and then dissociate CS from
MSS for data analysis.

It has been noticed that the impairments of vertical saccades
are more severe than horizontal saccades in PD patients
(Lemos et al., 2016; Jung and Kim, 2019). One study argued
that the characteristics of vertical saccades could serve as a
complementary biomarker for the diagnosis of PD (Waldthaler
et al., 2019). To the best of our knowledge, no study has
compared the incidence of MSS between vertical and horizontal
saccades. Therefore, one of the objectives of the present
study was to address whether the incidence difference of MSS
between vertical and horizontal saccades could also serve as a
complementary biomarker for PD diagnosis.

To assess the usefulness of MSS in reactive saccades
for the diagnosis of early PD, we studied the incidence of
MSS in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-
induced subclinical hemi-PD monkeys, because it is rare to see
early PD patients in the hospital where we collected data of
PD patients. In addition, since MPTP selectively damages the
dopaminergic neurons in the substantia nigra pars compacta
(Langston, 2017), the function of dopaminergic circuit in basal
ganglia is impaired after MPTP injection (Israel and Bergman,
2008). Moreover, the substantia nigra pars reticulata directly
sent output to the intermedia and deep layers of superior
colliculus–a saccadic center in brain (Hikosaka et al., 2014), the
superior colliculus is dysfunctional in PD monkeys (Rolland
et al., 2013). Therefore, this study could help to understand
the role of basal ganglia-superior colliculus circuit in the
development of MSS.

Furthermore, to the best of our knowledge, previous studies
have only compared the incidence of MSS between PD patients
and EHC, but no one has investigated whether there is a
difference in MSS between PD and mild cognitive impairment
(MCI) patients. Thus, the specificity of MSS for the diagnosis
of PD is unclear. To address this knowledge gap, we compared
the incidence of MSS between PD and MCI patients. We set
MCI patients as a control in the present study for the following
consideration. PD and MCI are two common neurodegenerative
diseases and share certain pathological changes (Xu et al., 2012;
Tosto et al., 2015).
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Materials and methods

Participants in the human study

We recruited four groups of participants in the present
study. These four groups included PD patients (n = 37), MCI
patients (n = 37), age-matched EHCs (n = 37), and young
healthy controls (YHCs) (n = 37). The demographic data and
clinical scores were shown in Table 1. All participants had
normal or corrected-to-normal vision. All participants have
written informed consents to take part in the study. The
experimental protocols were approved by the Ethics Committee
of Beijing Normal University and the Chinese PLA General
Hospital (Medical School of Chinese PLA).

All participants except the EHC completed the Folstein
mini-mental state examination (MMSE) and Montreal
Cognitive Assessment (MoCA) for cognitive function
evaluation. Considering the fact that it is rare to see the
real healthy participants in hospital, we recruited young and
elderly healthy participants in the college community and the
residential community, respectively. To make the present study
more practical, data collection was carried out by different
experimenters in different places. For PD and MCI patients,
their cognitive function was evaluated by neurologists in
hospital. For YHCs, their cognitive function was evaluated
by using MMSE and MoCA tests in university. For EHCs,
their cognitive function was evaluated by using MMSE in
residential community. For PD patients, MMSE, and MoCA
were performed after medication on-state (approximately
1 h after taking levodopa and/or amantadine); the Part 3 of
the Movement Disorders Society-revised Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS-motor scores), Hoehn
and Yahr scale (H&Y stage) were administered during the
medication off-state (approximately 4 h after taking the
medicine). The UPDRS was administered only to PD patients.
The data of saccadic eye movements were collected from PD
patients during the medication off-state.

TABLE 1 Demographic and clinical characteristics of
the human subjects.

YHC EHC MCI PD

N (male/female) 37 (20/17) 37 (27/10) 37 (28/9) 37 (24/13)

Age in yearsa 22.68± 2.92 62.76± 7.13 75.24± 8.88 62.49± 6.97

MMSEa 29.49± 0.64 25.77± 4.31 23.38± 3.94 25.95± 3.73

MoCAa 29.52± 0.61 – 23.38± 3.94 21.95± 4.83

MDS-UPDRSa – – – 56.81± 13.41b

H-Y scalea – – – 2.62± 0.39b

aMean± SD.
bMDS-UPDRS III and H-Y scale were evaluated only for PD patients. The table shows
the scores in medicine off state.

Mild cognitive impairment patients meet the diagnosis
criteria of MCI according to the National Institute on Aging
Alzheimer’s Association workgroups in 2011 (Albert et al.,
2011). The main diagnostic criteria were as follows: (1) Concern
regarding a change in cognition; (2) Impairment in one or
more cognitive domains by cognitive assessment (MMSE and
MoCA tests); (3) Preservation of independence in functional
abilities; (4) Not demented. MCI patients continued their
regular medication routine.

Participants in the non-human primate
study

Seven male rhesus monkeys were recruited in the present
study, including four subclinical hemi-PD (9–12 kg, 12–14 years
old) and three healthy control monkeys (10–12 kg, 12–14 years
old). Four subclinical (prodromal) hemi-PD monkeys were
modeled by injection of MPTP (dissolved in saline with
concentration of 0.12 mg/ml) through the unilateral internal
carotid artery (Bankiewicz et al., 1986) by a peristaltic pump
(RWD Life Science Co., Ltd., Shenzhen, China) with flow rate
1.54 ml/min. The doses of MPTP injection were referred to the
previous study (Ovadia et al., 1995) with 0.38, 0.40, 0.41, and
0.43 mg/kg for the four hemi-PD monkeys, respectively. All
monkeys were housed in separate cages with a 12 h light/dark
cycle. Before training, each monkey was surgically implanted
with a head post and two eye coils. The experimental protocols
and surgical procedures were approved by the Ethics Committee
of Beijing Normal University.

Experimental task

We used a visually guided reactive saccade task to study
MSS. We collected eye movement data from one block of trials
for each participant.

The task in the human experiment consisted of 40 or
60 trials in a block according to individual participant’s
affordability. Since some PD and MCI patients had difficulty
performing 60 trials in a block we reduced the number of trials
to 40 for PD and MCI patients, while for YHCs and EHCs the
number of trials in a block was 60. To balance the trial numbers
among different groups, we randomly picked up 40 trials from
each block of healthy controls for further data analysis.

As for monkey studies, the trial number was varied from 100
trials to 800 trials among blocks. To balance the trial numbers
among blocks, we randomly picked up 100 trials form blocks
with trial numbers larger than 100. It cost about 5 min for
monkeys to perform 100 trials in a block.

Visually guided reactive saccade task (Figure 1A). Each trial
began with a white cross (fixation point) appearing at the center
of the screen for 800 ms. Simultaneously, with the disappearance
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FIGURE 1

Schematic illustration of saccadic tasks and methods of quantifying saccades. (A) The paradigm of the visually guided reactive saccade task:
White cross and circle represent fixation point and target, respectively. Dashed squares indicate the location of fixation. Dashed circles indicate
other potential locations of the target. The white arrow represents the required saccade. (B) Exemplified eye trace of a PD patient. The X-axis
represents the time aligned with the saccadic target onset. The Y-axis represents the eye position. Different colors denote different types of
saccadic events. (C) The distribution of intersaccadic intervals. Dotted lines represent two unimodal distributions. The blue line is the cross point
of the two unimodal fitting curves. The red line is the right zero point of the right unimodal fitting curve. (D) The distribution of primary/largest
saccadic amplitudes. Two dotted lines indicate two unimodal distributions. (E) The distribution of secondary saccadic amplitude in which the
first responsive saccadic amplitude is ≥7◦. The vertical line indicates the mean + 2 × STD of the distribution. (F) Illustration of classifying
different types of saccadic events.

of the fixation point, a white dot (target) appeared in one of four
peripheral locations randomly (right, left, up, and down, with
eccentricity of 10◦). The size of the fixation points and target
were 1◦ in length or diameter, respectively. Participants were
instructed to fixate at the central cross (check window 4◦ in
radius) and then make a saccade toward the target as accurately
and fast as possible. The target disappeared after the eye entered
and was maintained in the check window (4◦ in radius) for
300 ms. A blank screen was interposed between trials with an
interval of 800 ms. It only took 3–4 s per trial, so each participant
in the human study spent approximately 4 min on this test.

Data acquisition

In human experiments, eye movements were monitored at
1 kHz with a head-restrained infrared video-based eye tracker
(Eye Link 1000 desktop mount, SR Research Ltd., Kanata,
ON, Canada; EM-2000R, Jasmine Science and Technology
Ltd., Beijing, China). Participants were seated in a dark
room 57 cm away from the monitor (XL2720-B; resolution:
1920 × 1080; 27-inch; refresh rate: 100 Hz). The system was
calibrated prior to the experiment by having the participants
make saccades to nine targets forming a rectangle (3 × 3
targets). The online check window (maximum calibration error)
of the eye tracker is 2◦ in radius. The average calibration
error was 1.65◦. The background luminance of the monitor

was 0.08 cd/m2, and the luminance of visual stimuli was
23.9 cd/m2. Stimuli presentation and behavioral data collection
were controlled by MATLAB (R2009b; MathWorks, Natick,
MA, United States) with Psychtoolbox (PTB-3) running on a
Windows system PC (HP).

For the monkey experiment, eye position signals were
recorded using the scleral eye coil technique (Crist Instrument
Company, Hagerstown, MD, United States), and data were
sampled at 1 kHz. Visual stimuli were displayed on a 27-inch
screen (XL2720-B, resolution: 1920× 1080, refresh rate: 144 Hz)
that was placed 57 cm in front of the monkeys’ eyes. The
background luminance of the monitor was 0.25 cd/m2, and
the luminance of the visual stimuli was 341 cd/m2. We used a
Windows PC system (DELL) to control the visual display and to
run the real-time data acquisition system (Monkey Logic; NIH,
Bethesda, MD, United States). The calibration procedure of the
monkeys was similar to that in the human experiments. The
recorded eye movement data were analyzed offline in MATLAB
(R2017b; MathWorks, Natick, MA, United States).

Trials in which participants blinked after the target onset
were excluded from further analysis. The average number of
analyzable trials per participant group were 37, 36, 34, and 32
for YHC, EHC, MCI, and PD groups, respectively. Error trials,
including fixation breaks and incorrect directions, were also
excluded from further analysis. Overall, the excluded percentage
of trials in the human study was 3.1, 6.7, 8.4, and 14.7% in the
YHC, EHC, MCI, and PD groups, respectively. The excluded
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percentage of trials in the monkey studies was 3, 12, 17, and 26%
for four hemi-PD monkeys and 1% for three control monkeys.

Quantitative measures of saccades

A velocity threshold was set to find all responsive saccades
from target onset to the end of the trial. The velocity threshold
is the mean velocity ± 2.58 × STD (99% confidence interval)
during a time interval of 200 ms prior to the target onset.
The first responsive saccade was defined as a saccade with a
minimum amplitude of 2◦ and a minimum latency of 30 ms,
and its direction was toward the target location. While we
plotted the eye traces, we found that there were different types
of saccades with varied spatiotemporal properties (Figure 1B).
To well classify the different types of saccades, we combined
all responsive saccades within a trial together as one saccadic
event if the intersaccadic intervals between adjacent saccades
were within the two boundaries (blue and red vertical lines) of
the distribution, as shown in Figure 1C (an example of the EHC
group). We made the two unimodal fitting curves by employing
maximum likelihood estimation. The blue line is the cross point
of the two unimodal fitting curves. The red line is the right zero
point of the right unimodal fitting curve. Since the distributions
of intersaccadic intervals are different among the four groups of
participants, the boundaries are varied.

From the exemplified eye traces shown in Figure 1B, it
is obvious that there are different types of saccadic events,
including typical saccades (a single saccade and a single saccade
followed by a CS, black and red traces) and MSS with 2 or
3 steps (green and blue traces). The amplitude distribution
of primary/largest saccades contains two separated unimodal
distributions (Figure 1D, data of EHC), which supports at the
population level that there are two different types of saccades,
i.e., typical saccades and MSS. We will classify CS (a possible
component of typical saccades) and MSS by the following
criteria for further data analysis.

We first classified CS based on previous findings (Cohen
and Ross, 1978). It has been reported that for a 10◦ required
saccade, if the amplitude of the primary responsive saccade is
≥7◦, the probability of generating CS is high (Cohen and Ross,
1978). Thus, we analyzed our data about the distribution of the
amplitudes of secondary saccades for each group of participants
(Figure 1E, EHC data), while the amplitudes of the first
responsive saccades were ≥7◦. CS is defined as the amplitude
of secondary saccade in a saccadic event being less than a
threshold, i.e., the mean amplitude + 2 × STD of secondary
saccades and the direction is toward the target location.

We then classified MSS if a saccadic event met any one
of the following criteria: (1) The number of saccades within
a saccadic event is ≥3; (2) The number of saccades within a
saccadic event is two, and the amplitude of the first responsive
saccade is <7◦; (3) The number of saccades within a saccadic

event is two, the amplitude of the first responsive saccade is
≥7◦, and the amplitude of the secondary saccade is ≥ the
threshold. The directions of all mentioned saccades are the
same. To help understand the logic and process of classification
of the saccadic events, we schematically summarized the
aforementioned definitions in Figure 1F.

To ensure that there was a sufficient number of correct trials
for data analysis, the incidence of MSS was calculated when the
correct rate of a session was≥70%. In addition, the incidence of
MSS in horizontal and vertical saccades was calculated when the
correct rates of the two directions were≥ the mean− 1.5× STD
(minimal trial number was 10) of each group of participants.

Statistical analysis

The Kruskal–Wallis test (a non-parametric approach to
one-way ANOVA) was applied to determine the significant
difference among four independent groups of participants based
on the incidence of MSS and CS. This was corrected by
the Bonferroni correction. If there were significant differences
among the four groups of participants, a post-hoc test was
performed to determine the significance between each pair of
participants either by the Wilcoxon rank-sum for unpaired tests
or by the Wilcoxon signed-rank for the paired test. The alpha
level was set to 0.05.

Furthermore, we employed a curve fitting tool (MATLAB,
cftool function) to examine the relationship between MSS/CS
and scores of UPDRS motor, MMSE and MoCA in PD group.
We justified the goodness of fit curves based on the statistical
results of the fitting function, including the sum of squares
due to error (SSE), the root mean squared error (RMSE),
the coefficient of determination (R-square), and the degrees-
of-freedom adjusted coefficient of determination (adjusted
R-square).

According to our results, we considered two useful
parameters, i.e., the incidence of MSS and the incidence
difference of MSS between vertical and horizontal saccades, that
might help discriminate PD from the EHC or MCI group. We
first applied a logistic regression model to predict the probability
of PD by using the two parameters. The formula of this model is
logit (PPD) = a0 + a1x1 + a2x2 + ε, where x1 is the incidence of
MSS, x2 is the incidence difference of MSS between the vertical
and horizontal saccades, a0 is a constant, a1 is the coefficient
of x1, a2 is the coefficient of x2, ε is the random error, and
PPD is the probability of being diagnosed with PD. a0, a1, a2,
and ε were determined by maximum likelihood estimation. We
set the alpha level of the regression model to be 0.05. We next
obtained the distribution of PPD for each group of participants.
Finally, we used PPD to plot the receiver operating characteristic
(ROC) curve and calculated the area under the curve (AUC),
which indicates the ability to discriminate PD from the EHC and
MCI groups by using the logistic regression model. We justify
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the predictors by the AUC which is the output of the logistic
regression model.

Results

Results of the human experiment

Incidence of multiple step saccades and
corrective saccades

We first compared the incidence of MSS among four
groups of human participants. If the CS was not excluded
from MSS analysis, the incidence of multiple saccades in PD
was significantly higher than that in both the EHC and YHC
groups (p < 0.001, Wilcoxon rank-sum test, Figure 2A), which
is consistent with some previous findings (Jones and DeJong,
1971; Corin et al., 1972; White et al., 1983). However, while
MCI patients also showed significant differences comparing
to EHC and YHC (p < 0.001, Wilcoxon rank-sum test),
there was no significant difference between the PD and MCI
patients (p > 0.05, Wilcoxon rank-sum test). Considering that
MSS and CS might reflect non-physiological and physiological
behaviors (Troost et al., 1974), we dissociated CS from MSS
and compared their incidence among the four groups of
participants, respectively (Figure 2B). First, the incidence of
MSS in PD was significantly higher than that in YHC, EHC, and
MCI groups (p < 0.05 for all comparisons); the incidences of
MSS in the MCI and EHC groups were not significantly different
(p > 0.05), while the incidences of MSS in the MCI and EHC
groups were higher than those in the YHC group (p < 0.001 for
all comparisons). Second, regarding the incidence of CS, only
the MCI group showed a higher incidence of CS than the EHC
and YHC groups (p < 0.05), whereas there was no significant
difference among the EHC, YHC, and PD groups (p > 0.05,
Kruskal–Wallis test, Bonferroni correction, alpha = 0.05/6).

Correlation between incidence of multiple step
saccades/corrective saccades and scores of
unified Parkinson’s disease rating scale motor,
mini-mental state examination, and Montreal
Cognitive Assessment, respectively

We have shown that the incidence of MSS in the PD
group was significantly higher than that in YHC, EHC, and
MCI groups, whereas the incidence of CS was not significantly
different between the PD group and YHC, EHC, and MCI
groups. Here, we hypothesized that the incidence of MSS rather
than CS might increase as the motor deficits of PD patients
become more severe. To test this hypothesis, we analyzed the
correlation between UPDRS motor scores and the incidence of
MSS and CS. After data selection by the correct rate >70%,
the number of PD patients in this analysis was 32. While
the incidence of MSS and UPDRS motor scores showed a
modestly positive correlation (R-square: 0.087) (Figure 3A), the
incidence of CS and UPDRS motor scores showed no significant
correlation (R-square: 0.023) (Figure 3B). Moreover, to test the
relationship between MSS/CS and the scores of MMSE and
MoCA, we did the same correlation analysis. The results showed
that the incidence of MSS was not significantly correlated with
the scores of MMSE and MoCA (R-squares: 0.0019 and 0.012)
(Figures 3C,E), whereas the incidence of CS showed a modestly
positive correlation with the scores of MMSE and MoCA,
respectively (R-squares: 0.11 and 0.041) (Figures 3D,F). Such
results support the argument that MSS might be a pathological
behavior whereas CS be physiological behavior.

Incidence of multiple step saccades in
horizontal and vertical saccades

While CS was not excluded from MSS analysis, the
incidences of MSS were not significantly different between
vertical and horizontal saccades in YHC, EHC and PD groups
(p > 0.05, Figure 4A). In MCI group, the incidence of MSS

FIGURE 2

Incidence of MSS and CS in the human study. (A) The incidence of MSS including CS. There was no significant difference in MSS incidence
between PD and MCI. (B) The incidence of MSS and CS, respectively. The incidence of MSS in PD was significantly higher than that in YHC, EHC,
and MCI participants. Error bars show the standard error of the mean; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, n.s., no significant difference
(Wilcoxon rank-sum test).
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FIGURE 3

The correlation between the incidence of MSS, the incidence of CS and the UPDRS motor scores, scores of cognitive tests of PD patients. The
incidence of MSS is modestly and positively correlated with UPDRS motor scores, as shown in panel (A), while the incidence of CS has a slightly
negative correlation with UPDRS motor scores, as shown in panel (B). The incidence of MSS is not correlated with MoCA (C) and MMSE (E)
scores, while the incidence of CS has a modestly positive correlation with MoCA (D) and MMSE (F) scores. SSE, the sum of squares due to error;
RMSE, the root mean squared error; R-square, the coefficient of determination; Adjusted R-square, the degrees-of-freedom adjusted
coefficient of determination.

in horizontal saccades was higher than in vertical saccades
(p < 0.01, Figure 4A). However, while CS was excluded from
MSS analysis, the incidence of MSS was significantly higher in
the vertical saccade group than in the horizontal saccade group

in the PD and MCI groups (p < 0.01, p < 0.05 for the PD
and MCI groups, respectively, Figure 4B). Moreover, while the
incidence of MSS in vertical saccades was the highest in the
PD group (p < 0.05 for the comparisons of PD vs. EHC and
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PD vs. YHC, respectively Figure 4C), the incidence of MSS in
horizontal saccades was not significantly different both between
the PD and EHC groups and between the PD and MCI groups
(p > 0.05, Figure 4C). Such results indicate that the incidence
of MSS in vertical saccades provides more reliable information
than in horizontal saccades for the diagnosis of PD.

Logistic regression model and receiver
operating characteristic analysis for
discriminating Parkinson’s disease from elderly
healthy control and mild cognitive impairment
groups

Thus far, our results have shown that the incidence of MSS
in the PD group is significantly higher than that in YHC, EHC,
and MCI groups, and it occurs more frequently in vertical
saccades than in horizontal saccades. To test the likelihood
of discriminating PD from the EHC and MCI groups, we
first performed logistic regression analysis (detailed information
given in Section “Statistical analysis”). The distributions of the
probability of being PD are shown in Figures 5A,B for PD
vs. EHC and PD vs. MCI, respectively. It is obvious that the
distributions between the PD group and EHC, MCI groups were
different. To further measure the ability to discriminate PD
from EHC and MCI by employing the probability of PD, we
then plotted the ROC curve and obtained AUCs of 0.76 and
0.69 for the PD vs. EHC and PD vs. MCI groups, respectively
(Figure 5C). Such results indicate that the incidence of MSS in
reactive saccades could be a complementary biomarker for the
diagnosis of PD.

Results of the monkey experiment

To investigate whether the incidence of MSS could serve
as a complementary biomarker for the diagnosis of PD in
the early stage, we compared the incidence of MSS between

four subclinical hemi-PD monkeys and three healthy monkeys.
Despite the fact that these four monkeys did not show any
typical PD motor symptoms, we are able to confirm the
effect of MPTP injection by the following observations. Firstly,
immediately after MPTP injection, the pupil size of ipsilateral
injection side became significantly smaller comparing to the
contralateral side which is consistent to the previous report
(Metzger and Emborg, 2019). However, about 30 min later,
the pupil size reversed between ipsilateral and contralateral
sides. Secondly, as soon as the start of MPTP injection, the
rate of heartbeat increased about 10–20%. Thirdly, after MPTP
injection, monkeys lost appetite and reduced weight about
10–20%. Since the stage of subclinical PD is prior to the
early stage of PD regarding the natural progress of PD and
considering the fact that the severity of behavioral impairments
(symptoms) increases following the development of PD, thus,
the phenomenon of increased MSS in subclinical PD will
also be observed in the early stage of PD. Before MPTP
injection, two hemi-PD monkeys were trained to do some
saccadic tasks, whereas other two monkeys were naïve to
the saccadic tasks.

Incidence of multiple step saccades in
the monkeys

As shown in Figure 6A, when the injection dose of MPTP
was ≥0.4 mg/kg, three subclinical hemi-PD monkeys showed
a significantly higher incidence of MSS than three control
monkeys and one hemi-PD monkey SG (p < 0.001, Wilcoxon
signed-rank test). We next compared the incidence of MSS
before and after the MPTP injection in monkey PK. It is clear
that the incidence of MSS significantly increased after MPTP
injection (Figure 6B).

Since our PD monkeys were induced by unilateral injection
of MPTP, it is interesting to see whether the incidence of MSS

FIGURE 4

The incidence of MSS in horizontal and vertical saccades. (A) The incidence of MSS combined with CS between horizontal and vertical
saccades. There was no significant difference in MSS incidence between vertical and horizontal saccades in any of the four groups of
participants. (B) The incidence of MSS between the horizontal and vertical saccades. There was a significant difference between the vertical and
horizontal saccades in PD and MCI patients. (C) The comparison of the MSS incidence among the four groups of participants. The incidence of
MSS in vertical saccades was significantly higher in PD than in YHC, EHC, and MCI participants. Error bars show the standard error of the mean;
*p < 0.05, **p < 0.01, ***p < 0.001, n.s., no significant difference (Wilcoxon rank-sum and sign-rank tests).
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FIGURE 5

Logistic regression and ROC analysis of the PD vs. EHC and PD vs. MCI groups. (A,B) The distributions of the probability of PD based on the
logistic regression analysis are shown in panels (A,B) for the PD vs. EHC and PD vs. MCI groups, respectively. Blue and red curves represent the
two unimodal distributions of the PD and EHC/MCI groups, respectively. (C) ROC curve of the probability of PD between the PD and EHC and
MCI groups. The X-axis represents 1-specificity, and the Y-axis represents sensitivity. The AUCs of PD vs. EHC (blue curve) and PD vs. MCI (red
curve) were 0.76 and 0.69, respectively. The dotted line is the diagonal line.

FIGURE 6

Incidence of MSS in healthy and subclinical hemi-PD monkeys. (A) Comparing the incidence of MSS between healthy and subclinical hemi-PD
monkeys. The incidence of MSS was significantly higher in the three hemi-PD monkeys with MPTP dose larger than 0.4 mg/kg. Please be aware
that the dosage of MPTP increases from left to right. (B) The incidence of MSS before and after MPTP injection in one hemi-PD monkey (PK).
The X-axis is the time (w: week, m: month). The incidence of MSS increased significantly after MPTP injection. Error bars show the standard
error of the mean; ∗∗∗p < 0.0001, n.s., no significant difference (Wilcoxon rank-sum test).

is different between ipsilesional and contralesional saccades.
To make it visible, we randomly picked up 10 trials from left
and right saccades, respectively, in two exemplified sessions
one before and one after MPTP injection. The horizontal
eye positions were plotted in Figures 7A,B. It clearly showed
that the number of trials with MSS (gray traces) increased
after MPTP injection. Moreover, the incidence of MSS in
ipsilesional saccades was higher than that in contralesional
saccades (Figure 7B). The population results showed that the
mean incidences of MSS in four PD monkeys were higher in
ipsilesional saccades than in contralesional saccades, in which
the difference was statistically significant (p < 0.001, Figure 7C
Wilcoxon signed-rank test) in monkey PK and HD who received
bigger dose of MPTP injection. Such results are opposite to
our expectation, i.e., the impairment of saccades should be
more serious in contralesional direction than in ipsilesional

direction. One possible explanation is that the dopaminergic
system in basal ganglia over compensates with its function after
being damaged in certain level, with the similar mechanisms
after damaging of cerebral cortices (Dennis et al., 2010). Such
results indicate that the incidence of MSS could serve as a
complementary biomarker for the diagnosis of early PD even
though typical motor symptoms are absent.

Discussion

Although PD has been detected and studied for more than
200 years (Dorsey et al., 2018), objective and reliable biomarkers
for the diagnosis of PD, particularly for its early diagnosis, are
still lacking (Waninger et al., 2020). Saccadic eye movement
might be a valuable behavioral biomarker because it reflects
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FIGURE 7

Comparison of the incidence of MSS between ipsilesional and contralesional saccades in subclinical hemi-PD monkeys. (A,B) Exemplified
horizontal eye traces of monkey PK before and after MPTP injection. The X-axis represents the time aligned with the saccadic target onset. The
Y-axis represents the eye position. Black traces denote one step saccades, or one primary saccade followed by a corrective saccade. Gray
traces denote MSSs. The incidence of MSS is greater in ipsilesional saccades than that in contralesional saccades. (C) The incidence of MSS in
population level between the ipsilesional and contralesional saccades. There is a significant difference between the ipsilesional and
contralesional saccades in monkey HD and PK who received bigger dose of MPTP injection. Error bars show the standard error of the mean;
∗∗∗p < 0.001, n.s., no significant difference (Wilcoxon rank-sum and sign-rank tests).

the physiological and cognitive functions of the brain and
shows high test–retest constancy (Bargary et al., 2017). Indeed,
previous studies have found that PD patients exhibit significant
changes in certain saccadic parameters, such as the multiple-
step pattern (Blekher et al., 2009) and vertical saccadic gain and
error rate (Chehrehnegar et al., 2019; Irving and Lillakas, 2019;
Waldthaler et al., 2019) in various oculomotor tasks. Researchers
have argued that some changes in saccadic parameters could
serve as complementary biomarkers for the diagnosis of PD
(Chan et al., 2005; Armstrong, 2015; Patel et al., 2019). However,
since most previous studies employed voluntary saccadic tasks,
such as antisaccade and memory-guided saccade were usually
difficult for elderly subjects to complete, particularly for patients
with neurodegenerative diseases (Walker et al., 2000), the task
difficulty highly restricted the application of measuring saccades
in the diagnosis of PD. If the incidence of MSS in simply
reactive saccades shows a significant difference between PD and
control subjects, it might extend the application of MSS in the
diagnosis of PD.

The incidence of multiple step
saccades in reactive saccades could
serve as a complementary biomarker
for the diagnosis of early Parkinson’s
disease

In the present study, we applied a visually guided reactive
saccade task, which is the easiest oculomotor task and only takes
approximately 4 min to complete. The majority of participants
completed the reactive saccadic task well (with average correct
rates of 96.9, 93.3, 91.6, and 85.3% for the YHC, EHC, MCI,
and PD groups, respectively). PD patients had significantly more
MSS than YHC, EHC, and MCI participants (Figure 2). In
addition, the incidence difference of MSS between vertical and
horizontal saccades was significantly greater in PD patients than

in YHC, EHC, and MCI participants (Figure 4). Such results
indicate that the incidence of MSS in reactive saccades could
serve as a complementary biomarker for the diagnosis of PD,
with AUCs of 0.76 and 0.69 for discriminating PD from EHC
and MCI, respectively.

Although the number of male and female participants
is not perfectly balanced in the present study, it has been
reported that there is no significant difference between male
and female participants in performing visually guided saccade
task (Bonnet et al., 2013). Thus, the unbalanced gender does
not alter our results. Moreover, the age of MCI group was
significantly older than PD group. Our results have shown that
the incidence of MSS is significantly higher in EHC than in
YHC (Figure 2), which indicates that aging would increase the
occurrence of MSS. Nevertheless, the incidence of MSS in PD
group is significantly higher than MCI group, which supports
our argument that MSS could serve as a behavioral biomarker
for the diagnosis of PD.

In addition, the correct rates of all monkeys but one
(monkey PK: 74%) were >83%. The results of the monkey
study show that the incidence of MSS was significantly higher
in the three subclinical hemi-PD monkeys with MPTP injection
doses ≥0.4 mg/kg than in healthy control monkeys (Figure 6).
Such results indicate that the incidence of MSS could serve as
a complementary biomarker for the diagnosis of early PD even
though typical motor symptoms are absent.

Discrimination between Parkinson’s
disease and mild cognitive impairment
indicating acceptable specificity by
employing multiple step saccades to
diagnose Parkinson’s disease

Since previous studies only compared the incidence of
MSS between PD patients and EHC participants, the question
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regarding the specificity of MSS for the diagnosis of PD among
other neurodegenerative diseases remains. It is important to
evaluate the specificity of MSS for the diagnosis of PD because
other neurodegenerative diseases also show abnormal saccadic
behavior, e.g., MCI patients exhibit decreased saccadic latency,
accuracy and velocity in reactive saccades (Chehrehnegar et al.,
2021). Theoretically speaking, it is possible that the incidence
of MSS might increase in MCI patients. Our results show that
PD patients had significantly more MSS than MCI patients
(Figure 2B), and we could discriminate PD from MCI with an
AUC of 0.69 in the ROC analysis (Figure 5).

Possible reasons for the significantly
higher multiple step saccades
incidence in vertical saccades than in
horizontal saccades in Parkinson’s
disease and mild cognitive impairment
patients

For the first time, we showed that the incidence of MSS in
vertical saccades was significantly higher than that in horizontal
saccades in PD and MCI patients (Figure 4B). For PD patients,
such results share certain commonalities with previous studies
that reported a more severe impairment of saccades in the
vertical direction (Rottach et al., 1996; Antoniades and Kennard,
2015; Lemos et al., 2016; Jung and Kim, 2019). An elongated
saccadic latency (Lemos et al., 2016) and shortened saccadic
amplitude (hypometria) in the vertical direction have been
reported in PD patients (Jung and Kim, 2019). Here, we
provide additional evidence to support the argument that the
impairment of vertical saccades is more severe than that of
horizontal saccades in PD. Since vertical and horizontal saccades
are controlled by different brain regions and neural networks
(Lemos et al., 2016; Takahashi and Shinoda, 2018; Irving and
Lillakas, 2019), an intuitive thinking is that such directional
differences in saccades might be due to the asymmetric
impairment between these brain structures. Such an assumption
is supported by a functional magnetic resonance imaging (fMRI)
study, which shows that in PD patients, vertical reactive saccades
cause higher activity in the right frontal eye field, cerebellar
posterior lobe, and superior temporal gyrus than horizontal
saccades (Lemos et al., 2016).

We are also, for the first time, able to report a higher
incidence of MSS in vertical saccades than in horizontal
saccades in MCI patients. The possible reason for this behavioral
phenomenon might be the similar pathological alterations in
MCI and PD patients, both of which are neurodegenerative
diseases. Although there is no direct evidence to support this
assumption, it is well known that MCI is the early stage of
Alzheimer’s disease (AD) (Morris et al., 2015). According to the
findings of previous studies, approximately 80% MCI patients

develop to dementia in 6 years (Petersen et al., 2001). Moreover,
PD and MCI are two common neurodegenerative diseases
that share certain pathological changes such as alteration of
neurotransmitter receptors and accumulation of misfolded
proteins (Xu et al., 2012; Tosto et al., 2015).

The possible neural mechanisms
underlying the generation of multiple
step saccades

Despite the advanced knowledge about the neural control
of saccades, (Gaymard et al., 1998) there are few studies of
the neuronal mechanisms underlying the generation of MSS.
Thus, it is not clear how the brain develops MSS. Nonetheless,
previous studies have found that some brain regions, i.e., the
frontal cortex, basal ganglia and cerebellum, are involved in the
generation of MSS (Avanzini et al., 1979; Kimmig et al., 2002;
van Donkelaar et al., 2009). Stimulating the frontal eye field and
supplementary eye field with transcranial magnetic stimulation
(TMS) increased the incidence of MSS (van Donkelaar et al.,
2009). Loss of dopaminergic neurons in the basal ganglia
increased the incidence of MSS, as observed in PD patients
(Kimmig et al., 2002; Blekher et al., 2009) and PD monkeys
(Tereshchenko et al., 2015). Lesions in the cerebellum caused an
increase in MSS incidence in human and non-human primates
(Avanzini et al., 1979). Considering that the abovementioned
brain regions have either direct or indirect (via the superior
colliculus) anatomical connections with premotor circuits
(comprised of omnipause and burst neurons) in the brainstem,
(Munoz and Wurtz, 1995) the function of these regions in
MSS generation is very likely to be a modulator rather than
a generator. It is well known that the interinhibition between
omnipause and burst neurons in premotor circuits causes pulse
(saccade) and step (fixation) patterns of eye movements (Munoz
and Wurtz, 1995). Moreover, a previous study found that
electronically stimulating omnipause neurons during execution
of a saccade immediately stopped the movement of the eyes
and froze the eyes midway (Bergeron and Guitton, 2002).
After releasing the electronic stimulation in omnipause neurons,
the saccade resumed. Such a pattern of eye movement highly
resembles MSS. Therefore, we assume that the lower oculomotor
structures in premotor circuits of the brainstem are the
generator of MSS, whereas the higher oculomotor structures in
cortical and subcortical regions are the modulators of MSS.

Limitations and future study

First, since the incidence of MSS has been studied only in
one type of reactive saccade, i.e., the visually guided step saccade
task (Figure 1A), it is interesting to study the incidence of MSS
in other types of reactive saccades, such as the visually guided
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gap saccade task. Second, although the specificity of using MSS
to diagnose PD is evaluated by comparing the incidence of
MSS between PD and EHC and MCI, more studies are required
to compare the incidence of MSS between PD and other
neurodegenerative diseases, particularly movement disorder
diseases such as essential tremor and Progressive Supranuclear
Palsy. Third, PD patients were not in a full off-state in the
present study and they were also combined with some cognitive
deficits which might affect the comparison between PD and
MCI patients. Fourth, although studies of subclinical hemi-PD
monkeys directly explore the role of the basal ganglia in the
generation of MSS, more studies are needed to systematically
explore the neural mechanisms of MSS, such as single neuron
recordings from oculomotor structures in the brain.

Conclusion

Multiple step saccades in visually guided reactive saccades
could be the biomarker for the early diagnosis of PD. In
addition, the results from hemi-Parkinson monkeys indicate
that the dopaminergic system in basal ganglia plays an
important role in the development of MSS.
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