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Cytoskeletal filaments are structures of utmost importance to biological cells and organisms due to their
versatility and the significant functions they perform. These biopolymers are most often organised into
network-like scaffolds with a complex morphology. Understanding the geometrical and topological
organisation of these networks provides key insights into their functional roles. However, this non-
trivial task requires a combination of high-resolution microscopy and sophisticated image processing/
analysis software. The correct analysis of the network structure and connectivity needs precise segmen-
tation of microscopic images. While segmentation of filament-like objects is a well-studied concept in
biomedical imaging, where tracing of neurons and blood vessels is routine, there are comparatively fewer
studies focusing on the segmentation of cytoskeletal filaments and networks from microscopic images.
The developments in the fields of microscopy, computer vision and deep learning, however, began to
facilitate the task, as reflected by an increase in the recent literature on the topic. Here, we aim to provide
a short summary of the research on the (semi-)automated enhancement, segmentation and tracing meth-
ods that are particularly designed and developed for microscopic images of cytoskeletal networks. In
addition to providing an overview of the conventional methods, we cover the recently introduced,
deep-learning-assisted methods alongside the advantages they offer over classical methods.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Imaging is an indispensable tool for discovery/diagnostics in
biology and biomedicine. It is also a fast-evolving field, with fre-
quent emergence of novel techniques that focus on specific ques-
tions. Bioimaging techniques can be broadly categorized into two
groups: i) optical and electron microscopy-based techniques for
micro- and nano-scale imaging, and ii) magnetic resonance (MR)-
based techniques for tissue- and organ-scale imaging. These tech-
niques are further sub-branched into multiple modalities, each
depending on its own set of instruments and software. Conse-
quently, the different modes of image acquisition generate images
with inherently different features (e.g., point spread function, noise
distribution, spatiotemporal resolution). These acquisition-based
differences, as well as the diverse structural and dynamic proper-
ties of the biological specimens have restricted the widespread
adoption and utilisation of generic methods in bioimage process-
ing/analysis. Rather, researchers often need to devise individual
project- and question-based solutions for their analyses. Automa-
tion has therefore been an important challenge in the field of
bioimage analysis.

Automation is particularly important for image segmentation, a
technique that is central to many image analysis pipelines. Manual
segmentation of objects from images is tedious and prone to user-
to-user variability. Recent advances in the field of computer vision
have made an impact on bioimage analysis with the introduction
of a number of segmentation tools that found widespread use
among biologists. These tools have a higher degree of automation
compared to classical segmentation methods owing to the higher
extent of generalising power they acquire through training with
large amounts of image data.

In the process of designing a segmentation pipeline, the struc-
tural properties of the objects to be segmented play an important
part. Particularly in the field of cell biology, the redundancy of cer-
tain morphological features (blobs, tubules, vesicles, etc.) prompts
scientists to develop automated object detection and segmentation
algorithms that are tailored to capture these patterns. Curvilinear-
ity is one such redundant morphology. Networks of curvilinear
objects are ubiquitous in biology, ranging from the cytoskeletal fil-
aments at micro- and nano-scale to blood vessel networks at tis-
sue/organ level. The prevalence of this type of morphology across
scales in biological systems suggests that it provides certain func-
tional advantages. As a result, one focus of the image processing
efforts in biology and biomedicine is on the automation of segmen-
tation and tracing of curvilinear structures. In the context of vascu-
lar and neuronal networks, a large body of literature addresses this
topic (reviewed in [1,51,59,29,71]). The algorithms and methods
developed in these studies are in principle applicable to micro-
scopic images of cytoskeletal filaments due to their similar mor-
phology. In practice, however, the microscopic images of
cytoskeletal networks often require more customised techniques,
since i) the different imaging techniques and modalities generate
different signal distributions, ii) the cytoskeletal filament thickness
is smaller than the resolution limit of most microscopy methods, a
point that has to be addressed during the segmentation.

In this regard, this review focuses on recent literature regarding
segmentation/tracing cytoskeletal filament networks in micro-
scopic images. While the focus is on the segmentation/tracing,
we also discuss a few studies covering other related image-
processing tasks such as vesselness-enhancement, time-tracking,
morphological network analysis and handling of microscopic limi-
tations. The review starts with a section introducing the different
microscopy categories that are frequently used for imaging of
cytoskeletal filaments. In the subsequent section, different cate-
gories of segmentation are briefly explained. The review then con-
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tinues with two sections introducing some of the recent research
on the classical and deep learning-based methods for enhancement
and segmentation of cytoskeleton, before concluding with a sec-
tion for summary and outlook.

2. Categorisation of microscopy methods

Imaging of cytoskeletal filaments is performed using a variety of
microscopy methods, ranging from fluorescence microscopy to
cryo-electron tomography. Each of these methods produces images
with different spatiotemporal resolution, signal-to-noise ratio and
contrast properties. Studies targeting particular aspects of
cytoskeleton structure and function must first choose a microscopy
method capable of providing that information. For instance, a
study aiming for a very high resolution can resort to an electron
microscopy method, which can achieve a spatial resolution of
around 5 nm. Electron microscopy images, however, typically have
very low signal-to-noise ratio and low contrast, which makes visu-
alisation, processing and analysis of these images difficult, espe-
cially in 3D [36]. Other studies, which focus on the dynamics of
the filaments, or co-localisation of filaments with particular other
proteins, often apply fluorescence-microscopy-based methods
(e.g. confocal and widefield systems). One advantage of these
methods is their speed, which enables them to be applied in a
high-throughput manner [53]. Speed of imaging is also particularly
important for capturing the cytoskeletal dynamics from time-
series datasets. A major limitation of the diffraction-limited fluo-
rescence microscopy in general is its low resolution and the arti-
facts/blur associated with the out-of-focus fluorescence. These
limitations are particularly aggravated in widefield systems, where
the out-of-focus fluorescence is not filtered at all. By rejecting the
out-of-focus fluorescence via a pinhole, laser-scanning confocal
microscopy (LSCM) can achieve better contrast and resolution
(roughly 250 nm in xy and 750 nm in z), albeit at the cost of imag-
ing speed. A particular limitation of the LSCM is that repetitive irra-
diation of the specimen with the excitation light during the image
acquisition increases the chances of phototoxicity (with live cells)
and photobleaching - which reduces the signal-to-noise ratio in the
output images. Improvements can be gained to achieve a better
trade-off between speed, sensitivity and resolution using more
specialised set-ups such as spinning disk system or widefield
deconvolution microscopy. A special case is Total Internal Reflec-
tion Fluorescence Microscopy (TIRFM), a method that exploits
evanescent wave for the selective excitation of fluorophores that
are very close to the coverslip. TIRFM offers improved contrast
and reduced photodamage due to the restricted area of excitation,
which eliminates the signal from the bulk of the cell. This makes
the technique advantageous for time-series imaging. It is, there-
fore, frequently used for studying cytoskeleton dynamics near
the plasma membrane [85,55]. None of the diffraction-limited
methods, however, are capable of a resolution that permits the pre-
cise localisation of the cytoskeletal filaments, which have a lateral
width (24 nm for microtubules, 7 nm for actin filaments) far
beyond the resolution limit of these techniques. This poses an
important challenge for the segmentation and the subsequent
quantitative analysis of the cytoskeleton images acquired via these
methods.

An ensemble of techniques called super-resolution techniques
can overcome the diffraction barrier to achieve better resolution
[73]). Common super-resolution methods include Stimulated
Emission Depletion Microscopy (STED), Single Molecule Localisa-
tion Microscopy (SMLM) and Structured Illumination Microscopy
(SIM). STED is an optics-only approach that can in principle achieve
about 20 nm resolution in xy and 50 nm in z. However, STED
requires irradiation of the specimen with very high laser power,
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which raises serious phototoxicity issues with living cells, espe-
cially in time-series imaging, which necessitates prolonged irradi-
ation. SMLM is an umbrella term for several super-resolution
techniques using a common principle [73,37], including Photo-
Activated Localisation Microscopy (PALM), Stochastic Optical
Reconstruction Microscopy (STORM) and DNA-PAINT methods.
These methods are not optics-only; rather, the super-resolution
image is reconstructed from the ‘‘point clouds”, coordinates of
sparse molecular localisations that are deduced from sequential
imaging of random subsets of fluorophores. The image reconstruc-
tion from the localisation data is achieved using complex postpro-
cessing algorithms. SMLM methods can typically achieve a
resolution of 10–30 nm, and thus can achieve nearly-precise local-
isation of cytoskeletal filaments. However, the successful recon-
struction of super-resolved images requires acquisition of
extremely large numbers of frames [26]. This is an inherently slow
process that hinders the applicability of these techniques for live-
cell imaging and tracking of dynamic processes such as growth/
shrinking of cytoskeletal filaments. Long illumination times also
increase the chances of photobleaching. Ongoing research strives
to develop algorithms that can reconstruct the super-resolved
image from increasingly sparser localisation data, hence speeding
up the process [63]. SIM is a versatile category of the super-
resolution methods, which offers faster image acquisition. SIM uti-
lises non-uniform, patterned illumination of the specimen. The
interactions between the high-frequency illumination pattern
and the high-frequency variations in the specimen produce what
is called a Moiré interference pattern, which contains the super-
resolution information. A series of images with Moiré patterns
are thus collected, changing the orientation of the illumination
with each image. The collection of images are then processed with
specialised algorithms to reconstruct the super-resolved image.
Despite its similarity to SMLM in terms of the dependency on the
acquisition of multiple image frames and their digital postprocess-
ing, SIM is much faster because it requires much fewer raw images
(typically 9 in 2D and 15 in 3D), and thus facilitates time-series
imaging. On the other hand, SIM resolution is typically around
100 nm in xy and 250 nm in z, which is not high enough for precise
localisation of cytoskeletal filaments.
3. Categorisation of segmentation methods

Segmentation is the process of partitioning an image into mul-
tiple meaningful regions based on certain coherence criteria. The
output of the segmentation process is an image, where each
pixel/voxel is replaced by a label, which is determined based on
these criteria. In this respect, image segmentation is a pixel/voxel
classification problem.

Segmentation methods can be categorised based on the goal of
this classification process. Binary segmentation simply aims to par-
tition an image into foreground and background regions; thus the
aim of classification is simply to distinguish the foreground pixels/
voxels from the background. This is the simplest segmentation
method, and the most common approach for segmentation of
microscopic images. Very often, the binarised microscopic image
is subjected to a ‘‘connected component analysis”, whereby the
isolated foreground regions are given specific labels. Each labelled
region can then be analysed separately. This approach to obtaining
a multi-labelled image, however, is naïve due to two main reasons.
First of all, if any objects in the binary image overlap with each
other, these objects cannot be isolated based on connectivity, and
thus cannot be properly labelled. Second, even if the objects can
be properly labelled, these labels do not carry any information
about what the labelled objects represent, but only report that
the objects are spatially disconnected from each other. However,
2108
an analyst often wishes to categorise objects based on other crite-
ria, rather than merely spatial connectivity. Certain segmentation
algorithms tackle this problem by exploiting prior knowledge
about the objects of the image under investigation. This group of
segmentation methods, called semantic segmentation, are able to
partition an image into semantically meaningful regions[58]. In
other words, these methods allocate the pixels/voxels into pre-
defined categories of object identity so that each label in the seg-
mented image reports the class-membership of all pixels/voxels
lying under that label. While being able to categorically identify
different objects in an image, semantic segmentation still lacks
the ability to distinguish different object instances belonging to
the same category. Instead, multiple different objects falling into
the same category are treated as a single entity and given a single
label. This problem is addressed by another class of methods
referred to as instance segmentation [58]. These methods are cap-
able of distinguishing the different object instances belonging to
the same category. Instance segmentation is particularly important
for analysis of time-series microscopy images, because the ability
to recognise and delineate objects at the instance level can sub-
stantially improve the performance of time-tracking of individual
objects. Panoptic segmentation [38] unifies semantic segmentation
and instance segmentation, assigning a categorical label to each
pixel/voxel while also distinguishing different instances of each
category.

Segmentation methods, therefore, are different approaches to
solving the aforementioned classification problems. Based on the
requirement for annotated data, segmentation methods can be
divided into two broad categories: unsupervised and supervised
segmentation methods. Unsupervised methods need no training
data to segment images, whereas supervised methods fit a seg-
mentation model based on a ground-truth dataset, which comprise
examples of segmentations, usually created via manual annotation
by domain experts.

Most of the classical segmentation methods belong to the cate-
gory of unsupervised methods. These can be roughly divided into
the following subcategories i) thresholding, ii) edge-based, iii)
region-growing, iv) clustering, v) model-based. Thresholding
methods aim to automatically find the optimal intensity threshold
to divide an image into foreground and background regions. Edge-
based methods seek to segment the image based on the detection
of object boundaries. Region-growing methods are based on the
assumption that pixels/voxels localised closely to each other are
likely to belong to the same object. Clustering methods utilise var-
ious statistical clustering techniques to group pixels/voxels.
Model-based methods typically solve a constrained optimisation
problem to segment the image.

Supervised segmentation strategies are mostly based on deep
neural networks (DNNs, [77,69,9,17,28]), although, more seldom,
other machine learning algorithms are also used for this purpose
[76,2]. Ground-truth images are obtained either through direct
manual annotation of the images, or manual correction following
a rough segmentation via an unsupervised approach. Supervised
learning itself is also further subcategorised based on the degrees
and types of supervision. In the frame of image segmentation,
strong (or full) supervision refers to the labelling of each pixel/
voxel of each image in the training dataset. This is a time- and
labour-intensive process. Efforts to tackle this particular problem
often employ the semi-supervision strategy, which involves partial
labelling of the pixels/voxels in the training dataset. As an example,
Çiçek et al. [18] develop a neural network that can learn volumetric
segmentation from 2D annotated slices. Another supervision
mechanism, even further reducing the data-labelling workload is
termed weak supervision. For an excellent review on the concept
of weakly supervised learning in general, we refer the reader to
Zhou et al. [96]. In the context of supervised image segmentation,
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a weakly annotated image can be obtained by marking individual
objects in the image via bounding boxes, scribbles, points or at
image level [95]. The weakest form of supervision is the image-
level supervision, where the image is tagged for the presence/ab-
sence of a particular object category without specifying the locali-
sation [95]. For an in-depth discussion and comparative evaluation
of weakly supervised segmentation methods in different image
domains, we refer the reader to Chan et al. [16].

In the field of cytoskeleton image analysis, segmentation tasks
are usually more complicated than simple binary segmentation.
Many studies aim to detect and extract the centrelines (or ridges)
of the filaments in an accurate manner [91], a process termed fila-
ment tracing. Moreover, segmentation/tracing must often be per-
formed on time-series images in order to facilitate a quantitative
analysis of the growth/collapse dynamics of cytoskeletal polymers.
This type of analysis requires techniques for the detection and
labelling of each different filament in a network and the tracking
of the individual labels over time. This task is also studied in the
frame of instance segmentation [54]. Therefore, a wide spectrum
of segmentation methods, ranging from the traditional threshold-
based methods to the complex deep learning approaches, are uti-
lised for the segmentation of cytoskeletal filaments. These are also
accompanied by image pre-processing/enhancement strategies
that are helpful (and often required) for the segmentation process.
Below, we will summarise some of the recent studies focusing on
these methods.

4. Classical methods for enhancement and segmentation of
cytoskeletons

4.1. Conventional segmentation methods

Many of the conventional segmentation methods typically
involve two steps: i) a pre-processing/feature enhancement step
that denoises the image and enhances certain geometrical features
of the objects to be segmented, and ii) a labelling step that groups
the voxels into different categories based on the features extracted
in the first step. In case of curvilinear structures, the pre-processing
step aims particularly to enhance the vessel-like structures in the
image using specific image filters, while suppressing structures
that deviate from this curvilinear geometry. These vessel-
enhanced images are then used for extraction of the filaments in
the second step of the segmentation, which, in the simplest case,
involves intensity-thresholding of the filtered image to obtain a
binary mask of the curvilinear structures. An example of this
approach is used by Alioscha et al. [3], who segment actin filament
networks from fluorescence microscopy images. Their method
starts with an image decomposition operation, which yields a car-
toon image component and a noise/texture image component. The
cartoon component is then used as input for the computation of a
multiscale line-response image (via a method proposed originally
by [61], where each pixel holds a score of belonging to a line.
The authors then threshold this response image using a local adap-
tive thresholding method [86] to segment the actin network. Sim-
ilar studies use filtering methods suggested originally by Sandberg
& Brega [72], called line filter transform (LFT) and orientation filter
transform (OFT). Among these, Zhang et al. [94] develop a software
tool (SIFNE) for extraction of filament networks from images
acquired via Single Molecule Localisation Microscopy (SMLM), a
category of super-resolution microscopy techniques. In the seg-
mentation stage of their analysis pipeline, they transform the
images with LFT and OFT before extracting the binary mask from
the vessel-enhanced images via Otsu thresholding. Finally, the bin-
ary images acquired are skeletonised via morphological thinning.
Xia et al. [87] develop a method for quantitative analysis of cortical
actin network using images acquired via STORM (Stochastic Opti-
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cal Reconstruction Microscopy), a subcategory of SMLM imaging.
Their segmentation involves LFT and OFT filters to enhance the
curvilinear features in the image, followed by H-minima transform
for further denoising, and finally binarisation of this pre-processed
image via Meyer watershed transform [57]. Breuer et al. [14] inves-
tigate the structural, organisational and dynamic properties of
actin networks in Arabidopsis in order to gain a quantitative
understanding of the actin-based organelle transport. To be able
to perform such an analysis, the authors develop a pipeline that
can extract actin networks from confocal microscopic images of
the actin cytoskeleton. In the segmentation stage of their pipeline,
they implement a tubeness filter that uses multiscale Hessian
matrix eigenvalues [74] before thresholding this filtered image
with an adaptive median threshold. Subsequently, they skeletonise
the binary image before continuing with the quantitative analysis.
In another study focusing on the quantitative analysis of a plant
cytoskeleton, Faulkner et al. [22] develop the software tool
CellArchitect, which can detect drug-induced changes in the
microtubule network organisation in Arabidopsis cells. Prior to
microtubule segmentation, the authors identify and mask cell bor-
ders in the image, hence revealing each cell object. To segment the
microtubule networks, they first apply a Gaussian filter for
smoothing and denoising, and then binarise the filtered image
via a percentile-based local threshold calculated separately for
each cell. Binarised networks are then skeletonised before morpho-
logical quantification.

Other studies focusing on the morphological analysis of FtsZ
scaffolds in Physcomitrella plastids, the plastoskeleton, apply
deconvolution as a pre-processing step to 3D confocal microscopy
images of FtsZ networks, followed by adaptive thresholding [6,64].
The thresholded images are subjected to various global and local
statistical analyses leading to extraction of a series of descriptive
features. Another study by Asgharzadeh et al. [7] add modifications
to the segmentation and quantification techniques introduced in
Asgharzadeh et al. [6] and Özdemir et al. [64]. After segmentation
and morphological analysis of the networks in 3D image form, the
binary network images are transformed into volume meshes and
their mechanical behaviour is analysed using theoretical material
parameters and finite-element modelling. The relationships
between the cytoskeletal network morphology and the mechanical
behaviour of the 3D simulations are examined using supervised
machine learning. Finally, a comparative evaluation of this analysis
for two closely related FtsZ isoforms from Physcomitrella is pre-
sented [7].

To illustrate the ‘‘filter-and-threshold” strategies, we here pre-
sent an exemplary segmentation procedure for 3D images, explain-
ing the multiple steps of a semi-automated pipeline (Fig. 1). The
input image to this procedure is a confocal microscopy z-stack
image of a filamentous network assembly belonging to the FtsZ1-
1 isoform, a protein that localises to the chloroplasts of the moss
Physcomitrella (Fig. 1A). This image was acquired using the molec-
ular biology and imaging protocols described in Asgharzadeh et al.
[6], Özdemir et al. [64] and Asgharzadeh et al. [7]. At the beginning
of the pipeline, the image’s grey values are rescaled to a range of 0
and 1. The image is first subjected to a pre-processing step (Fig. 1A,
Step-1) consisting of the following chain of operations: i) Gaussian
filtering, ii) H-minima transformation, iii) Hessian-based vessel-
ness enhancement filter [23,4], iv) morphological grey-closing, v)
adaptive histogram equalisation (CLAHE), vi) median filtering.
The output of this process is an image, which is denoised,
smoothed and enhanced for the vessel-like features (Fig. 1B). The
enhanced image is segmented using hysteresis thresholding
(Fig. 1, Step 2). The resulting binary image contains the network
scaffolds corresponding to a multitude of chloroplasts (Fig. 1C).
To isolate the scaffold corresponding to a single chloroplast, we
mask the binary network image with a chloroplast mask, which
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corresponds to the largest central chloroplast in the image (Fig. 1,
Step-3) (the chloroplast mask is separately generated from the
chlorophyll fluorescence and not shown due to space limits). The
resulting binary network image (Fig. 1D) is subjected to a tubular
enhancement procedure (Fig. 1, Step-4) based on the following
consecutive operations: i) Euclidean distance transform, ii)
Hessian-based line filter [74], iii) adaptive histogram equalisation
(CLAHE), iv) local adaptive thresholding following Bernsen’s
method [10], v) morphological binary-closing, vi) removal of bin-
ary noise with a size filter. Output of this procedure is a binary
image that has been substantially thinned and has a uniformwidth
(Fig. 1E). Therefore, this image is already suitable for the detection
of interest points (nodes, endpoints, etc.). Optionally, the image
can be skeletonised via morphological thinning algorithms (since
the image at this stage has a uniform width, morphological
thinning can be exerted on it without causing artefacts). In our
Fig. 1. Illustration of a typical filter-and-threshold procedure in a network extracti
Physcomitrella. (A) Input is a raw 3D image of FtsZ1-1 produced by confocal microscopy. (
i) Gaussian filtering, ii) H-minima transformation, iii) Hessian-based vesselness enhan
(CLAHE), vi) median filtering. (C) Binary image produced by Step-2, which segments the e
which masks the image in (C) to isolate the FtsZ scaffold corresponding to a single chloro
operations: i) Euclidean distance transform, ii) Hessian-based line filter, iii) adaptive histo
closing. vi) removal of binary noise with a size filter. (F) Binary skeleton image produced
(G) Feature image after Step-6, which finds the nodes, endpoints and edges of the skeleton
are represented with the ‘‘viridis” colourmap, which has a spectrum from purple (lower v
figure legend, the reader is referred to the web version of this article.)
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example here, the image is skeletonised based on Lee et al. [43]
(Fig. 1, Step-5). The resulting skeleton image (Fig. 1F) is further
processed with an algorithm (Fig. 1, Step-6) that transforms the
raw skeleton into an annotated network (Fig. 1G), specifically
labelling the internal nodes (red), the endpoints (yellow) and the
connecting edges (green) of the skeleton. The representation of a
filament network in the form of such an annotated network offers
a wide range of quantitative analysis options. For instance, geo-
metrical features such as edge directionality, lengths, tortuosity,
etc. can be directly computed from this representation. The anno-
tated network can also be easily transformed into a morphological
graph to implement graph-theoretical algorithms on it (for
instance, to compute shortest paths between selected nodes).
Finally, an overlay of the annotated network and the binary region
mask is shown in Fig. 1H. Parameters used in the described imple-
mentation are given in Table 1.
on procedure applied to a scaffold of FtsZ1-1 filaments in the chloroplasts of
B) Enhanced image after step-1. Step-1 consists of the following chain of operations:
cement filter, iv) morphological grey-closing, v) adaptive histogram equalisation
nhanced image using hysteresis thresholding. (D) Binary image produced by Step-3,
plast. (E) Binary tubular image after Step-4, which consists of the following chain of
gram equalisation (CLAHE), iv) local adaptive thresholding, v) morphological binary-
by Step-5, which applies a 3D skeletonisation algorithm to the tubular image in (E).
image in (F). (H) Overlay of the images in (D) and (G). Intensity values in (A) and (B)

alues) to yellow (higher values). (For interpretation of the references to colour in this



Table 1
Parameters used in different steps of the pipeline implemented in Fig. 1. Local
windows and structuring elements are given with the order of dimensions (z, x, y).
Note that the steps that need no manual parameter input are excluded from this
table.

Process Step Parameters

Pre-processing Gaussian filter sigma = 1.0
H-minima transform h = 0.03
Multiscale Hessian-
based vesselness
enhancement filter

sigma minimum = 0.8, sigma
maximum = 5.0, sigma
number = 9.0, alpha = 2.0,
beta = 0.5, gamma = 0.005,
objectness scaling = True

Morphological grey-
closing

structuring element = ellipsoid
with diameters (3, 7, 7)

CLAHE window = (9, 9, 9), contrast
limit = 0.1

Median filtering window = (1, 5, 5)
Binarisation Hysteresis threshold high threshold = Otsu threshold,

low threshold = 0.75 � Otsu
threshold

Skeletonisation Hessian-based line
filter

sigma = 1.5, alpha1 = 0.5,
alpha2 = 2.0

CLAHE window = (7, 7, 7), contrast
limit = 0.05

Local adaptive
thresholding

window = (5, 5, 5), contrast
threshold = 0.1

Morphological binary-
closing

structuring element = ellipsoid
with diameters (3, 7, 7)

Size filtering size threshold = 20 voxels
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4.2. Limitations of conventional segmentation methods for
cytoskeleton images

The threshold-based segmentation methods such as exempli-
fied above are still popular due to their simplicity, especially when
the aim of the segmentation task is simply to obtain a binary mask
for the foreground voxels corresponding to the object. When the
sample images already have a high signal-to-noise ratio, the pre-
liminary denoising/feature-enhancement filters can sufficiently
improve the image so that a simple thresholding can yield a decent
representative binary mask. With more challenging images, for
instance, images with low signal-to-noise ratio, or images with dis-
continuous or blurred contours, more complex strategies are
required for segmentation. In addition to these general issues, a
particular problem related to cytoskeleton imaging is that the
physical width of the filaments is usually smaller than the resolu-
tion limit of many microscope modalities (e.g., confocal laser scan-
ning microscopy) [88], a limitation that obscures the correct
filament tracks in the image. In connection with this, multiple
adjacent filaments are unresolvable within the diffraction limit of
light. In such cases, quantitative measurements are jeopardised
by the lack of precision in localisation of the filament tracks in
the image. The aforementioned threshold-based methods are inca-
pable of handling the problem of imprecise localisation, since they
usually yield a pixel/voxel mask that is wider than the physical
width of the polymer. Furthermore, these pixel/voxel masks are
not convenient for direct quantitative analysis and usually sub-
jected to a morphological thinning operation (skeletonisation)
[14,87]. Morphological thinning, however, does not guarantee
accurate localisation of the physical filaments and, depending on
the degree of local variations in object thickness, tends to generate
artefacts such as incorrect nodes and endpoints. A more accurate
localisation and extraction of the filaments in the images involves
detection of local maxima (ridges) along the length of the filaments
(a process referred to as tracing). Multiple approaches are being
used to tackle the tracing task. Rigort et al. [67] develop a method
to extract actin filaments from cryo-electron tomograms based on
generic template matching. Template matching yields a local cross
2111
correlation map and an orientation field, both of which are used to
develop a tracing algorithm that extracts the filament centrelines.
An advantage of this method is that the user has the flexibility to
modify the cylindrical template in order to detect different
cytoskeletal filament types such as intermediate filaments and
microtubules. This segmentation strategy was also employed by
Jasnin & Crevenna [31]. Rogge et al. [68] propose a method for seg-
mentation and quantification of F-actin filaments from 2D fluores-
cence microscopy images. Their segmentation relies on an iterative
process consisting of a pre-processing step (involving Gaussian fil-
ter, morphological operations and thresholding), a tracing step for
centreline extraction and a step for fibre connection. With each
consecutive cycle of the process, filaments with larger width are
extracted. The segmented images are then subjected to quantita-
tive analysis. They also provide an open-source GUI, FSegment,
which performs the presented method. Costigliola et al. [19] use
a method (originally proposed by Gan et al. [25] that combines
multi-scale steerable filters and a non-maximum suppression
operator for direct extraction of vimentin network skeletons from
spinning disk confocal microscopy (SDCM) images. The multiple
skeleton segments are merged into a full network based on their
proximity and orientations. In the second step of the analysis pipe-
line, the authors apply a length threshold to distinguish the longer,
more bundled vimentin filaments from the shorter fragments.
Finally, they subject the resulting vimentin networks to various
quantitative analyses, which include an analysis of the filament
orientation in relation to the direction of cell movement. Tsugawa
et al. [82] develop a method for extraction of local anisotropy vec-
tors and orientation of fibrillary structures in 2D images based on
nematic tensor analysis (NTA). After the development and valida-
tion of their method using synthetic images, they demonstrate its
performance with real data by applying it to real confocal micro-
scopy images of cortical microtubules in a giant cell of an Ara-
bidopsis sepal.

4.3. Model-based approaches

To attain a greater accuracy in localisation of the filament ridges
in the images, model-based strategies using various optimisation
algorithms are often employed in the segmentation/tracing tasks.
In the specific case of cytoskeleton image segmentation, the objec-
tive of most model-based methods is to fit a smooth curve to the
centrelines of the filaments with as high precision as possible
[78,70,84,91,88].

To this end, a group of methods, namely deformable models, are
popular. These methods are based on deformable contours (curves
for 2D images or surfaces for 3D images) that are defined within
the sample image frame, and that undergo gradual deformation
under the influence of internal and external forces. This so-called
‘‘contour evolution” involves iterative modification of the contour
so that it approximates desired image features, such as object
boundaries (or ridges in the specific case of filaments) while being
constrained by certain boundary conditions. The internal forces are
defined within the contour, and are responsible for constraining
the evolving contour according to prior knowledge about the
object shape (e.g., object’s local smoothness or curvature). The
external forces, on the other hand, are calculated from the image
and specify the directions and speeds that are used to drive the
contour. The ability to design the internal and external forces gives
the user control over the model, which can thus be tuned to seg-
ment, for example, images with different modalities.

Since the seminal paper by Kass et al. [35], a large body of
research was conducted on deformable models, and a wide range
of segmentation techniques were developed. For a deep introduc-
tion into the field, the reader can refer to Tsechpenakis [81] and
Jayadevappa et al. [32]. In the following, we will introduce several
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recent studies that use deformable model-based strategies to seg-
ment/trace cytoskeletal filaments in microscopic images.

Regarding the application of deformable models in the frame of
segmentation and tracking of cytoskeletal networks, a particular
subcategory of deformable models, namely parametric deformable
models (active contours or snakes), is often preferred. In one of the
early examples of these studies, Kong et al. [39] employ particle fil-
ters to track the microtubule tip, and then, based on the identified
tip locations, they segment the microtubule filaments via open
active contours. In another study focusing on microtubule segmen-
tation, Nurgaliev et al. [62] combine active contours with Monte
Carlo simulations to identify microtubule trajectories in 3D elec-
tron tomograms.

In a series of original publications [45,44,46], the authors intro-
duce ‘‘stretching open active contours” (SOACs), which have since
developed into popular tools for the extraction and quantification
of cytoskeletal networks. Differing from the typical active contour
models, which use closed curves that evolve to find the object
boundaries, SOACs are open curves, which start stretching from
snake tips and eventually delineate the central lines (ridges) of
the filaments in the image. Smith et al. [78] develop a user-
interactive software based on SOACs, named JFilament, which does
not only segment and track filaments in microscopic images but
can also be used to extract certain static and dynamic quantitative
features of the filaments. Xu et al. [90] develop a method that
achieves automated, simultaneous initialisation and evolution of
multiple SOACs. This method automatically extracts the centreli-
nes of an entire filament network. Furthermore, this method uses
graph partitioning strategy to reorganise the evolved SOACs in
order to dissect and label individual filaments in the network. Xu
et al. [91] improve the SOACs-based segmentation algorithms
and extend them to 3D images. In particular, they introduce an
adaptive stretching force that results in robust contour evolution
under high intensity variations and noise. Xu et al. [92] develop
the open-source user-interactive platform SOAX that uses SOACs
algorithms to extract cytoskeletal networks from images, and addi-
tionally provides an option to perform quantitative analysis on the
segmented objects based on a set of input parameters from the
user. Xu et al. [89] adds temporal dimension to the SOAX software.
The final version of the software (TSOAX) is capable of tracking and
analysing cytoskeletal networks in time-series movies consisting
of both 2D and 3D images. Kotsur et al. [40] address some draw-
backs of SOACs in tracking of individual intermediate filaments
in confocal time-series images and propose a modified method
that solves these issues. Their method can accurately track individ-
ual filaments within their branched network due to a reconfigured
active-contour algorithm that has a better control on the snake
endpoint growth.

Another user-interactive application, designed to segment and
analyse filamentous and fibrous objects in microscopic images, is
proposed by Usov & Mezzenga [83]. Their tool FiberApp works
on images acquired by any type of microscope, although the pre-
sented results are mostly based on atomic force microscopy
(AFM) or electron microscopy (EM) images. They use a combina-
tion of the A* pathfinding algorithm and the active contour models
to extract the contours of fibrous objects from the images (the
‘‘contour” here referring to the fibre centrelines). FiberApp enables
an option for the user to specify heterogeneous stiffness values for
different regions of the image. This can be used for instance, to
remove undesirable fluctuations in the extracted contours. It also
offers a range of options for quantitative analysis, which can be
automatically applied to the traced fibres.

Further model-based strategies include Valdman et al. [84] who
focus on devising methods for inferring material properties of
cytoskeletal filaments from exhibited filament shapes, using simu-
lated, noisy biopolymer images with known stiffness. They test
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their methods also on real Taxol-stabilised microscopic images of
microtubules. Their approach relies on optimising an objective
function that quantifies the overlap between an open smooth curve
designed in the orthogonal polynomial basis and the fluorescence
intensity in the image. Xiao et al. [88] combine curve-fitting and
level-set strategies for the centreline extraction from filament
images. By representing the open curves with two B-spline vector
level sets, they can formulate filament centreline extraction as a
global convex optimisation problem. Their method achieves sub-
pixel accuracy without prior knowledge of the filament number
in the image. Similar approaches are applied to the analysis of
cytoskeletal dynamics as well. In such a study, Kapoor et al. [34]
develop the multi-purpose software MTrack for microtubule detec-
tion, tracking and analysis in time-series images acquired via TIRF
microscopy. They use Maximally Stable Extremal Regions (MSER)
algorithm to obtain restricted image areas containing the micro-
tubule seeds. Subsequently, the seed endpoints, from which the
microtubules will grow and shrink, are detected by fitting a Sum
of Gaussians (SoG) model to each of the detected seed regions. This
cycle of implementing MSER and fitting a SoG model is repeated
for consecutive time frames to track the filament endpoints (hence
the growth/shrinking of filaments) over time, using the informa-
tion from a successfully segmented time frame as starting point
for the model-fitting in the next time frame. By representing the
SoG path with a 3rd order polynomial function, the authors enable
their method to robustly track straight, curved and crossing fila-
ments. MTrack also offers an analysis option for microtubule
length over time.

Another popular tool for filament tracing and tracking is pro-
posed by Ruhnow et al. [70] who introduce the semi-automatic
software application FIESTA, which is capable of centreline and
tip extraction from filament images with sub-pixel precision as
well as their tracking in time-series images. FIESTA relies on an ini-
tial binarisation, thinning and region-of-interest definition, which
is followed by fitting a 2D model based on Gaussian distributions
to identify the centre positions of filaments and tips. Finally, a
spline interpolation joins the segments together to obtain the cen-
trelines. After the centreline extraction from each timeframe in a
time-series, the algorithm establishes the temporal connections
between the detected objects to complete the tracking. Other
related studies focusing on filament tip tracking include Had-
jidemetriou et al. [27], Demchouk et al. [20], Prahl et al. [66], Mau-
rer et al. [56] and [12]. Importantly, the methods described in these
studies aim to identify and track microtubule tips, rather than
tracking the end-binding proteins.

Breuer and Nikoloski [13] introduce an open-source software
for automatic decomposition of a network into its constituent fila-
ments. They treat filamentous networks as weighted geometric
graphs, where the edges correspond to segments of the filaments
and the nodes correspond to the segment endpoints. As an objec-
tive of the optimisation process, they define a ‘‘roughness” term
that represents the variability in filament thickness. Their pro-
posed method seeks to assign segments to paths of filaments while
minimising the total roughness as the entire network is covered. In
addition to the total roughness, their method can also implement
alternative optimisation objectives such as average roughness or
curvature-related measures. The authors transform their method
into a software tool, DeFiNe, and test it on a series of image-
based network data, including LSCM images of the Arabidopsis
actin cytoskeleton.

Park [65] proposes a method for segmentation, skeletonisation
and quantitative geometrical analysis of 3D filament networks
from LSCM images. For segmentation, this author combines struc-
ture tensor eigenvalues and Otsu threshold calculation to derive an
energy functional, which is minimised using the graph-cuts
method. After binarisation, a skeleton-based seed selection is
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applied, followed by multiple hypothesis template tracking [24] for
accurate centreline extraction. Finally, for a quantitative analysis,
Park [65] calculates a distribution of the fibre diameters over their
reconstructed fibrillary network.

Model-based approaches are also used for the segmentation of
cytoskeletal filaments from electron microscopy images. Kervrann
et al. [36] propose a probabilistic model in the frame of conditional
random fields (CRFs) for segmentation of microtubules from 2D
sections of cryo-electron tomograms. In another study focusing
on extraction of filaments from cryo-tomograms, Sazzed et al.
[75] introduce the software tool BundleTrac for semi-automatic
tracing of individual actin filaments in filament bundles in noisy
Fig. 2. Illustration of model-based approaches to a scaffold of Physcomitrella FtsZ1-1 fi
segmentation. Raw image is first subjected to a pre-processing step leading to a denoised
level set (iteration 0), which evolves under internal and external forces. The different stat
of the SOAC method using the JFilament software. The input is a 2D slice (left plane) from
delineate the ridges of the filaments (middle plane). An overlay of the fitted centrelines
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cryo-tomograms. BundleTrac first detects the main axis of the bun-
dle and applies longitudinal averaging along this axis for denoising.
For tracing of the filaments, BundleTrac optimises a 2D seven-peak
Gaussian convolution. Yue et al. [93] propose a segmentation
method for cryo-EM images of microtubules. This method denoises
and enhances the cryo-EM image through extensive pre-
processing, including an improved diffusion filter, and then applies
an adapted Chan-Vese [15] algorithm for segmentation of the fil-
tered image.

We here demonstrate the model-based approaches with two
illustrative implementations (Fig. 2), where two different deform-
able model-based strategies are applied to a confocal microscopy
laments. (A) Implementation of the morphological ACWE method for binary region
and vessel-enhanced form of the image. The contour is initialised as a checkerboard
es of the evolving contour are shown (Iterations 10, 15 and 20). (B) Implementation
the 3D raw image. Snakes are initialised manually and then allowed to deform to

and the raw image is shown in the right plane.
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image of the Physcomitrella FtsZ1-1 isoform. The first method is
binary region segmentation using a technique called Morphologi-
cal Active Contours without Edges (morphological ACWE), which
is an adaptation of the Chan-Vese method by Márquez-Neila
et al. [52]. We demonstrate this method by using the open-
source python code provided by the authors. The second method
is filament centreline extraction by using the SOAC method, which
we implement by using the JFilament software [78]. For the
demonstration of these methods, we use the same input image
as the one in Fig. 1 (for the details about the molecular biology
and the image acquisition, we refer the reader to Asgharzadeh
et al. [6], Özdemir et al. [64] and Asgharzadeh et al. [7]). Fig. 2A
outlines the implementation of the morphological ACWE on the
3D image. The pre-processing that transforms the raw image into
a state with reduced noise and enhanced tubular structures com-
prises the same sequence of steps as described in Fig. 1B. Subse-
quently, morphological ACWE is performed on this enhanced
image. The iterative segmentation process is initialised with a bin-
ary checkerboard pattern (Fig. 2A, iteration 0). The contour evolves
under external and internal forces, eventually approximating the
shape of the objects in the image. The different states of the con-
tour evolution are demonstrated (Fig. 2A, Iteration 10, 15 and
20). It is important to note that in this case the pre-processing is
essential for the segmentation to be successful, whereas the
method yields a poor segmentation if the raw image is chosen as
the initial input. The end product of this pipeline is a region mask,
which can be thinned and skeletonised to perform a quantitative
network analysis (as in Step-4 to Step-6 in Fig. 1). An alternative
to the approach described in Fig. 2A would be a direct centreline
extraction by curve-fitting to the raw data. This would more accu-
rately predict the true filament ridges. Fig. 2B shows such an
implementation of the centreline extraction from the raw image
using the JFilament software [78]. For this example, we select a
2D slice from our image (Fig. 2B, left), since the strong anisotropy
in the resolution of our 3D image hinders a successful implemen-
tation. In this semi-automated process, we select the initial posi-
tions of the snakes and let them deform so that they delineate
the ridges of the filaments. The traced centrelines are shown in
Fig. 2B (middle) and their overlay with the raw image is shown
in Fig. 2B (right). The parameters that we use for the implementa-
tions in Fig. 2A and Fig. 2B (except for the pre-processing of the
input image in Fig. 2A, which is the same as in Fig. 1) are given
in Table 2.

5. Deep learning methods for enhancement and segmentation
of cytoskeletons

5.1. Deep learning for segmentation

The recent advances in the field of deep learning (DL from now
on) and its implementations in computer vision had a great impact
on bioimage segmentation, resulting in the development of an
array of neural networks specialised for segmentation tasks
[69,18]. The accumulation of microscopic images of the cytoskele-
ton along with the invention of various automated and semi-
automated software tools for filament segmentation/tracing leads
Table 2
Parameters used in the two methods implemented in Fig. 2.

Process Parameters

Morphological
ACWE

smoothing = 1.0, lambda1 = 1.0, lambda2 = 1.6

SOAC stretch = 100.0, spacing = 5.0, background = 10.0,
alpha = 5.0, weight = 5.0, smoothing = 1.5,
foreground = 64.0, beta = 0.2, gamma = 10000.0
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to faster and more accurate cytoskeleton image annotation, and
thus the accumulation of ground-truth image data for supervised
learning studies. This in turn leads to the development of DL-
based segmentation methods tailored to cytoskeleton images. In
addition to enhancing the segmentation accuracy, these methods
also aim to find solutions to the problems that are frequently
encountered in filament segmentation but cannot be robustly
overcome using the unsupervised segmentation methods dis-
cussed above.

Asgharzadeh et al. [8] demonstrate an application of U-net
for the segmentation of FtsZ networks in Physcomitrella
chloroplasts, the plastoskeleton, from confocal microscopy
images. In another study based on U-net, Liu et al. [48]
develop a segmentation method for cytoskeleton images (actin
filaments and microtubules) acquired using confocal micro-
scopy. To generate the ground-truth images, they rely on a
combination of i) SOAX-based segmentation, ii) a single U-net
module fit to the SOAX output and iii) manual correction of
the segmentation by this U-net module. Their proposed net-
work is based on multiple modified U-net modules, which
are stacked in an end-to-end manner. This network, when
trained on the ground-truth, performs slightly better than a
single U-net module on confocal microscopy images of actin
and microtubule networks.

Obtaining high-quality ground-truth images is a general chal-
lenge for most projects using DL-assisted segmentation. To reduce
the labour associated with image annotation, weakly supervised
approaches are often used. In a recent example of such studies,
Lavoie-Cardinal et al. [41] use a modified U-net, trained on weak
annotations in the form of polygonal bounding boxes, for segmen-
tation of F-actin nanostructures from STED images. Bilodeau et al.
[11] take a further step and introduce MICRA-Net, a neural net-
work designed to be trained on image-level classification annota-
tions in order to perform multiple microscopy tasks, including
semantic segmentation of images. In addition to other cell biolog-
ical use cases, the authors demonstrate efficient segmentation of F-
actin nanostructures from STED images using a model trained on
image-level annotations.

One of the tricky tasks relating to the segmentation of
cytoskeletal networks is the correct identification of filaments at
the intersection points of the networks. This issue is especially
complicated with dense networks and bending filaments. Liu
et al. [47] tackle this challenge by proposing a U-net-based neural
network, which accepts binary network images as inputs, and dis-
sects the network into individual filament instances. Since the net-
work is trained on orientation-associated ground-truth, it does not
confuse the filament identity at the intersection points. The down-
side of this approach is that any filaments that are kinked/curved
will be fragmented into different orientation groups. The method
also handles this issue by using an algorithm that repairs these
fragmented filaments based on the orientation vectors at the fila-
ment termini. The authors test their method on microtubule
images, which they first segment using the method by Liu et al.
[48] to obtain the binary input data.

Liu et al. [49] propose a DL-based method for geometrical and
topological characterisation of actin filament networks. For an ini-
tial binary segmentation, they use the U-net based method by Liu
et al. [48]. For the topological characterisation, they use the ResNet
platform to train a network that accepts the binary images as
inputs and generates heatmaps to highlight the junctions and end-
points of the networks. For the quantification of the filament
lengths, they employ a fast-marching algorithm, which calculates
a geodesic distance map by using the key points (junctions and
endpoints) as the seeds. The number and lengths of the filaments
can then be acquired from the local peak values obtained from this
distance map.
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In another recent study, Eckstein et al. [21] propose a micro-
tubule tracking method for large electron microscopy volumes.
Their workflow, implemented on Drosophila neural tissue, starts
with training of a 3D U-net (based on ground-truth skeleton anno-
tations) that predicts scores for each voxel’s belonging to a micro-
tubule. From the resulting probability map, they extract candidate
points for microtubule segments through non-maximum suppres-
sion and thresholding. These candidates are then translated into a
graph representation, where the nodes of the graph represent the
candidates and the edges show potential links between them.
Finally, they formulate the identification of the true microtubule
track as a constraint optimisation problem, which aims to find
the most appropriate subset of edges in the graph. Solving this
optimisation reveals the correct microtubule tracks.

DL-based strategies are also beginning to be applied to filament
tracking in time-series data. Masoudi et al. [54] develop a method
for tracking of microtubules in 2D time-series images and measur-
ing the velocities of microtubules. They tailor their method partic-
ularly to combat the challenges of the TIRF imaging method. Their
method relies on instance-level segmentation of microtubules at
each frame of the time course and then generating a trajectory
for each microtubule instance over time. Prior to the segmentation,
their method uses a visual attention module, which contains a CNN
and a Recurrent Neural Network (RNN) that processes the image
and suggests where to focus for segmentation. Then the segmenta-
tion module, which is an encoder-decoder system, segments the
image within this attention region. After the segmentation is fin-
ished, the individual microtubule instances are associated by ana-
lysing successive pairs of time frames in order to get the trajectory
for each microtubule.

5.2. Deep learning for enhancement

In addition to boosting the general image processing tasks such
as segmentation and tracking in a broad sense, DL contributes to
the handling of microscopy-specific problems. Enhancement of
microscopic resolution is a topic, which attracts much interest in
recent years and benefits greatly from DL-based technologies.
One important contribution to this field was made by Ouyang
et al. [63], who introduce ANNA-PALM, a DL strategy that generates
super-resolution images from sparse localisation-microscopy
images and/or widefield images. Localisation microscopy tech-
niques include PALM/STORM and DNA-PAINT, both of which are
used by Ouyang et al. [63] to acquire microtubule images. The
ground truth for the learning task is composed of dense, super-
resolution PALM images. To build the training image set, under-
sampled, sparse versions of the same PALM images (and optionally
a widefield image) are used. The training is performed via pix2pix
image-to-image translation architecture [30] and aims to enable
the neural network to reconstruct a super-resolution image from
a sparse localisation image (or even a widefield image if included
in the training). The authors demonstrate that their method per-
forms well on a variety of image datasets representing different
subcellular structures, including microtubules. As a result, the
method is a suitable option for a tubeness-enhancement step prior
to filament segmentation/tracing studies.

Indeed, Nanguneri et al. [60] employ this approach as they uti-
lise ANNA-PALM as a part of their computational analysis frame-
work focusing on F-actin network in dendritic spines. They
develop a pipeline for segmentation and quantification of actin fil-
ament networks in spine-specific regions of neurons using super-
resolution image datasets. They first use a supervised machine-
learning tool, named trainable Weka segmentation [5], to identify
actin-rich regions in the images. To achieve fine segmentation of
the actin filaments within these regions, they compute a tubular
model of their super-resolution images using ANNA-PALM [63],
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in particular using the microtubule models offered by that study.
Subsequently, they apply certain masks on the tubular model to
obtain region-of-interests, which are actin-rich areas spatially cor-
relating with a postsynaptic marker. Within these specific regions,
they finally apply a ridge detection algorithm [79] to extract actin
skeletons, which are then subjected to quantifications. Concurrent
with the analysis of the actin cytoskeleton, supervised learning
algorithms are used to perform a morphological characterisation
of the spines.

Lee et al. [42] propose another DL-based technique for tubular
image enhancement. They train a CycleGAN [97] model that is cap-
able of enhancing the quality of low-resolution microtubule net-
work images, which then can be effectively segmented simply
using Otsu thresholding. They train their model on two sets of
images. One set, acquired from the Human Protein Atlas [80], con-
sists of high-resolution confocal images, which represent the refer-
ence images for training. The second set, acquired from the Broad
Bioimage Benchmark Collection [50] are low-resolution widefield
images representing targets for enhancement. The CycleGAN
model being trained on these two sets learns the data distributions
in both the low and high-resolution image sets and can eventually
transform an input image from a low-resolution distribution to an
output with a high-resolution distribution.

A study combining the two technologies of super-resolution
imaging and DL is conducted by Jin et al. [33], who propose
deep-learning-assisted structured illumination microscopy (DL-
SIM). This method uses DL to boost the performance of SIM by
enhancing the image reconstruction step so that the image recon-
struction can be performed with only few raw images and using
images acquired under low-light conditions. Using the U-net archi-
tecture, the authors train two networks on raw SIM images of
microtubule and actin networks, in addition to other subcellular
structures. For training of the first network, they use raw SIM data
as input and the standard SIM reconstruction images as the ground
truth. This network can achieve successful reconstruction with
drastically reduced numbers of raw images compared to the con-
ventional SIM reconstruction methods. The second network, con-
sisting of two U-nets, is trained to handle noisy images. For this
network, the images acquired under low-light conditions are used
as training input, whereas the corresponding SIM reconstructions
from images acquired under normal-light conditions are used as
the ground truth. The resulting network is capable of SIM recon-
struction from raw images acquired under extremely low-light
conditions. Chaining of the two U-nets yields a tool that can recon-
struct SIM images both using fewer raw images than needed by the
conventional SIM reconstruction methods and achieves better
reconstruction quality with noisy raw data. Therefore, the method
potentially reduces the photobleaching problems associated with
prolonged imaging and strong illumination.
6. Summary and outlook

High-resolution imaging combined with the advanced compu-
tational methods is boosting the information acquired from bioim-
age analysis. Enhancement, segmentation, tracing and tracking
methods are being developed for cytoskeleton images with several
user-interactive software tools introduced already, as covered in
this review. Table 3 summarises the reviewed works, linking each
study with the respective bioimaging method, the biopolymer
type, the segmentation/enhancement tasks, key strategies
employed and, if available, the name of the user-interactive tool.

These methods and tools enable morphological characterisation
of cytoskeletal filaments and networks, which in turn reveal
insights into their functional characteristics, such as efficiency of
transport and adaptive mechanical behaviour. At the current stage,



Table 3
A summary of the publications covered in this review.

Category Publication Bioimaging Technique Biopolymer Type Main Segmentation/
Tracing/
Enhancement Tasks

Key Strategies Relevant User-
Interactive Tool

Intensity
threshold

[36] Cryo-Electron Tomography Microtubules Region segmentation
(pixel/voxel mask)

Conditional Random
Fields-Maximum a
Posteriori estimation

None

[3] Fluorescence Microscopy Actin filaments Region segmentation
(pixel/voxel mask)

Image decomposition,
multiscale line filters,
adaptive thresholding

None

[94] SMLM Microtubules Region segmentation
(pixel/voxel mask)

LFT, OFT SIFNE (SMLM
Image Filament
Network Extractor)

[14] Confocal Microscopy Actin filaments Region segmentation
(pixel/voxel mask)

Multiscale Hessian-based
tubeness filter, adaptive
thresholding

None

[22] High Throughput Confocal
Microscopy

Microtubules Region segmentation
(pixel/voxel mask)

Gaussian filter, local
thresholding

CellArchitect

[6] Confocal Microscopy FtsZ Region segmentation
(pixel/voxel mask)

Deconvolution, local
thresholding

None

[64] Confocal Microscopy FtsZ Region segmentation
(pixel/voxel mask)

Deconvolution, local
thresholding

None

[87] STORM Actin filaments Region segmentation
(pixel/voxel mask)

LFT, OFT, H-minima
transform, Meyer
Watershed transform

None

[7] Confocal Microscopy FtsZ Region segmentation
(pixel/voxel mask)

Deconvolution, local
thresholding

None

Filter/
template-
based
tracing

[67] Cryo-Electron Tomography Actin filaments Centreline extraction Template
matching,tracing

Actin
Segmentation (an
AMIRA extension
package)

[31] Cryo-Electron Tomography Actin filaments Centreline extraction Template matching,
tracing

None

[25] SDCM/SIM Microtubules and
Intermediate Filaments

Centreline extraction Steerable filters None

[82] Confocal Microscopy Microtubules Estimation of local
anisotropy and
orientation

Nematic tensor analysis None

[19] SDCM Intermediate Filaments Centreline extraction Steerable filters None
[68] Widefield Fluorescence

Microscopy
Actin filaments Centreline extraction Filtering and tracing FSegment

Conventional
model-
based

[39] SDCM Microtubules Tracking over time Open active contour
model

None

[27] Epifluorescence Microscopy,
Confocal Microscopy

Microtubules Centreline
extraction, tip
tracking over time

Optimisation using
consecutive level-sets
method

None

[45] TIRFM Actin filaments Centreline
extraction,tracking
over time

Open active contour
model

None

[44] TIRFM Actin filaments Centreline
extraction,tracking
over time

Open active contour
model

None

[46] TIRFM Actin filaments Centreline
extraction,tracking
over time

Open active contour
model

None

[62] Cryo-Electron Tomography Microtubules Centreline extraction Open active contour
model

None

[78] TIRFM, SDCM Actin filaments Centreline
extraction,tracking
over time

Open active contour
model

JFilament (an
ImageJ plugin)

[20] Digital Fluorescence
Microscopy

Microtubules Tip tracking over
time

Gaussian fitting,
Gaussian survival
functions

None

[70] TIRFM, Epifluorescence
Microscopy

Microtubules, Kinesin
motors

Centreline
extraction,tracking
over time

Least squares
withGaussian
distribution models

FIESTA

[90] TIRFM, SDCM Actin filaments Centreline extraction Open active contour
model

None

[84] TIRFM Microtubules Centreline extraction Active contour model None
[56] TIRFM Microtubules Tip tracking over

time
2D model fitting,
modifications to Ruhnow
et al. [70]

None

[66] Epifluorescence Microscopy Microtubules Tip tracking over
time

Gaussian fitting,
Gaussian survival
functions

TipTracker
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Table 3 (continued)

Category Publication Bioimaging Technique Biopolymer Type Main Segmentation/
Tracing/
Enhancement Tasks

Key Strategies Relevant User-
Interactive Tool

[91] TIRFM, SDCM Actin filaments Centreline extraction Open active contour
model

None

[12] TIRFM Microtubules Tip tracking over
time

2D model fitting,
modifications to Ruhnow
et al. [70]

None

[13] Confocal Microscopy Actin filaments Decomposition of
network into
constituent
filaments

Graph partitioning
optimisation

DeFiNe

[92] TIRFM, SDCM Microtubules, Actin
filaments

Centreline extraction Open active contour
model

SOAX

[83] AFM, EM Fibrils of nanocellulose, BSA,
polysaccharides,amyloid,
beta-lactoglobulin

Centreline extraction A* Pathfinding
Algorithm, curve fitting

FiberApp

[88] Fluorescence Microscopy,
Phase-Contrast Microscopy,
Darkfield Microscopy

Microtubules, Axonomes Centreline extraction B-spline vector level sets,
generalised linear model

None

[93] Cryo-Electron Microscopy Microtubules Region segmentation
(pixel/voxel mask)

Chan-Vese model None

[65] Confocal Microscopy Not specified Region
segmentation, fiber
reconstruction

Graph-cuts, template
fitting, multiple
hypothesis tracking

None

[75] Cryo-Electron Tomography Actin filaments Centreline extraction 2D convolutional
optimisation using
Gaussian kernels

BundleTrac

[89] TIRFM, SDCM Actin filaments, myosin
rings, fibrin bundles

Centreline
extraction,network
tracking over time

Open active contour
model

TSOAX

[34] TIRFM Microtubules Centreline
extraction,tracking
over time

Sum of Gaussian (SoG)
and polynomial models

MTrack (an ImageJ
plugin)

[40] Confocal Microscopy Intermediate Filaments Centreline extraction
and tracking over
time

Open active contour
model

None

DL-assisted
model-
based

[63] PALM, DNA-PAINT, Widefield
Microscopy

Microtubules Superresolution
reconstruction

U-net and GANs ANNA-PALM
(ImageJ plugin and
web application)

[42] Confocal Microscopy,
Widefield Microscopy

Microtubules Resolution
enhancement

Cycle-GAN None

[47] Not specified Microtubules Instance
segmentation of
filaments of a
network

Deep learning model
based on U-net
architecture

None

[48] Confocal Microscopy Microtubules, Actin
filaments

Centreline extraction Deep learning model
based on U-net
architecture

None

[60] dSTORM Actin filaments Region
segmentation,
centreline extraction

ANNA-PALM, supervised
learning, Gaussian
derivatives

None

[8] Confocal Microscopy FtsZ Region segmentation
(pixel/voxel mask)

Deep learning model
based on U-net
architecture

None

[11] STED Actin filaments Region segmentation
(pixel/voxel mask)

CNN, weak supervision,
latent learning

None

[21] Electron Microscopy Microtubules Reconstruction of
filament tracks

3D U-net, non-maximum
suppression, integer
linear programming

None

[33] SIM, TIRFM Microtubules, Actin
filaments

Superresolution
reconstruction

U-net None

[41] STED Actin filaments Region segmentation
(pixel/voxel mask)

U-net, weak supervision None

[49] Not specified Actin filaments Junction and
endpoint detection
in a network

Deep learning model
based on ResNet
architecture

None

[54] TIRFM Microtubules Instance
segmentation, time-
tracking of filaments

Convolutional Neural
Networks, Recurrent
Neural Networks

None
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many existing methods and tools are still semi-automated, requir-
ing extensive manual parameter configuration. Table 3 shows that
there is an increasing trend towards using DL-assisted methods to
automate various tasks in microscopic image analysis. One of the
main limitations of using supervised DL methods in microscopic
image processing/analysis is the difficulty and cost of data annota-
tion. With large amounts of 3D/4D image data being now routinely
produced in life sciences, this problem becomes even more restric-
tive. It is, therefore, reasonable to expect that more research will be
focusing on unsupervised as well as semi- and weakly supervised
learning strategies to tackle this problem. Many of the existing
methods are still restricted to 2D static images. Considering the
importance of 3D cytoskeletal dynamics for many cellular pro-
cesses, future research will probably address robust tracking of
individual filaments in cytoskeletal networks in 3D time-series
images from the viewpoint of instance segmentation.

With the fast accumulation of image data, availability of
advanced DL algorithms and GPU-accelerated hardware, further
progress is likely to be achieved in the field, especially on the
aspects of automation and 3D/4D extension.
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