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1  | INTRODUC TION

Pituitary adenylate cyclase-activating polypeptide (PACAP) was 
isolated from ovine hypothalamic extracts as a novel peptide 
hormone that could stimulate cyclic adenosine monophosphate 
(cAMP) synthesis in anterior pituitary cells.1 Although PACAP 
was first discovered in the hypothalamic area, PACAP actually is 
widely distributed in various brain regions, including the cerebral 
cortex, substantia nigra, pineal gland, hippocampus, amygdala, 

cerebellum, and pons.2,3 Thereafter, it was revealed that PACAP 
also is expressed broadly in the peripheral nervous system4 and 
in many peripheral organs, including the pituitary gland,5,6 adrenal 
gland,7 pancreas,8 gonads,9,10 and placenta.11 Furthermore, PACAP 
has been reported to act as a hormone, neurotransmitter, and neu-
romodulator.12 For example, in the central and peripheral nervous 
systems, PACAP is involved in neuronal differentiation and activa-
tion of the neurosecretory system and plays roles in the differen-
tiation of neural progenitor cells,13 regulation of neuronal synaptic 
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Abstract
Background: Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multi-
functional peptide that is isolated and identified from the ovine hypothalamus, whose 
effects and mechanisms have been elucidated in numerous studies. The PACAP and 
its receptor are widely expressed, not only in the hypothalamus but also in peripheral 
organs.
Methods: The studies on the role of PACAP in the hypothalamic-pituitary system, 
including those by the authors, were summarized.
Results: In the pituitary gonadotrophs, PACAP increases the gonadotrophin α-, lute-
inizing hormoneβ-, and follicle-stimulating hormone β-subunit expression and the 
expression of gonadotropin-releasing hormone (GnRH) receptor and its own recep-
tor, PAC1R. Moreover, a low-frequency GnRH pulse increases the expression of 
PACAP and PAC1R more than a high-frequency GnRH pulse in the gonadotrophs. 
The PACAP stimulates prolactin synthesis and secretion and increases PAC1R in the 
lactotrophs. In the hypothalamus, PACAP increases the expression of the GnRH re-
ceptors, although it is unable to increase the expression of GnRH in the GnRH-
producing neurons.
Conclusion: The PACAP not only acts directly in each hormone-producing cell, it pos-
sibly might regulate hormone synthesis via the expression of its own receptors or 
those of other hormones.
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plasticity,14 glucose-dependent insulin secretion,15 and many other 
physiological effects.

There are two functional isoforms, PACAP-38 and PACAP-27. 
Both are derived from the same precursor protein that is encoded 
by the Adcyap1 gene. It shares 68% amino acid sequence homology 
with vasoactive intestinal polypeptide (VIP) and 37% homology with 
secretin and thus PACAP belongs to the VIP-secretin-glucagon pep-
tide superfamily.12 The primary structure of PACAP38 has been re-
markably conserved among most mammals, suggesting that PACAP 
plays important roles in maintaining life.16 The distribution ratio of 
PACAP27 and PACAP38 varies from tissue to tissue.10

The G protein-coupled PAC1, VPAC1, and VPAC2 receptors have 
been cloned in vertebrates as the PACAP receptor. Both VPAC1 
and VPAC2 respond to VIP and PACAP with high affinity, whereas 
the PAC1 receptors are selective for PACAP.17 The PACAP-specific 
PAC1 receptor (PAC1R) couples mainly to Gs protein and induces in-
tracellular c production, which ultimately activates the adenylate cy-
clase/protein kinase A (PKA) pathway. Also, PACAP is able to couple 
Gq protein and activate the phospholipase C (PLC)/protein kinase C 
(PKC) pathway and elevate intracellular calcium.18

The importance of PACAP in reproductive function has been clar-
ified by studies of PACAP and PAC-1-knockout and -overexpressing 
mice. The PACAP null female mice had lowered implantation rates 
and decreased prolactin and progesterone levels.19 In another report, 
PACAP knockout female mice showed decreased mating frequency 
and reduced fertility (the number of parturitions relative to the num-
ber of pairings).20 In contrast, the overexpression of PACAP in the 
anterior pituitary gland of transgenic male mice delayed puberty 
and suppressed luteinizing hormone (LH) and follicle-stimulating 
hormone (FSH) levels and gonadotropin-releasing hormone (GnRH) 
receptor expression.21 Thus, PACAP plays important roles in the 
hypothalamic-pituitary system.

This review focuses on the modulatory role that is played by 
PACAP in the hypothalamic-pituitary system in reproduction. 
Interactions between PACAP and the principle regulators of the 
hypothalamic-pituitary system—kisspeptin, GnRH, gonadotropin, 
and prolactin—are discussed, based on the authors’ observations 
using cell models.

2  | ROLE OF PITUITARY ADENYL ATE 
CYCL A SE-AC TIVATING POLYPEPTIDE IN 
THE ANTERIOR PITUITARY GL AND

Gonadotropins, namely LH and FSH, are secreted from the ante-
rior pituitary gland and regulate puberty and reproductive function 
through the production of sex steroids in the gonads. The LH and 
FSH are controlled primarily by GnRH, which is released from the 
hypothalamus in a pulsatile manner.22 However, several reports 
suggested that PACAP also modulates the secretion of gonado-
tropins as it is present in the hypothalamus with a dense PACAP-
immunoreactive fiber network in the external and internal zone of 
the median eminence in close contact with the hypophyseal portal 

vein23 and PACAP has been detected in portal blood at a higher 
concentration than in the peripheral blood.24 Moreover, PACAP 
receptors are found in the anterior pituitary gland23,25 and PACAP 
stimulates the anterior pituitary hormones, such as growth hor-
mone, adrenocorticotropic hormone, prolactin, thyroid-stimulating 
hormone (TRH), and gonadotropins in normal pituitary cells.1,26,27 In 
addition, in vivo, i.v., and intra-atrial injections of PACAP increase the 
LH level in male rat blood,28,29 suggesting that PACAP might act as a 
hypothalamic factor via the pituitary portal vein, similar to GnRH. In 
addition, PACAP is expressed by gonadotrophs and folliculostellate 
cells6,30 and is synthesized10 and released31 from the anterior pitui-
tary gland. Moreover, i.v. injection of PACAP increases its own ex-
pression in the pituitary gland.28 These results suggest that PACAP 
might act not only as a paracrine factor through the hypothalamus, 
but also as an autocrine factor in the pituitary gland.

3  | REGUL ATION OF THE 
GONADOTROPHS BY PITUITARY 
ADENYL ATE CYCL A SE-AC TIVATING 
POLYPEPTIDE IN THE ANTERIOR PITUITARY 
GL AND

With regard to the effects of PACAP on gonadotrophs, many studies 
have been conducted by using model cells. αΤ3-1 cells, which are 
immortalized cells that are derived from transgenic mice, synthesize 
and secrete the α-subunit gene even though they do not express 
the β-subunit and cannot synthesize LH or FSH.32 The PACAP dose-
dependently increases the cAMP accumulation and increases the 
basal levels of the α-subunit through the PAC1 receptors and has a 
synergistic effect on GnRH in the αT3-1 cells.33,34

The LβT2 cells are another gonadotropin-producing cell model. 
These cells, also immortalized cells that are derived from transgenic 
mice, contain α-, LHβ-, and FSHβ-subunits and can be induced to ex-
press each subunit by GnRH stimulation.35,36 The PACAP increases 
the intracellular cAMP levels and stimulates the α-, LHβ-, and FSHβ-
subunit promoter activities in the LβT2 cells, although the effects 
were more modest than those of GnRH. The effects of GnRH on go-
nadotropin expression were not altered by the presence of PACAP.36

However, continuous PACAP stimulates α-subunit messenger (m)
RNA levels but decreases FSHβ-subunit mRNA without affecting the 
LHβ-subunit mRNA in rat primary pituitary culture.37 Additionally, if 
PACAP is administered in a pulsatile manner, PACAP stimulates the 
α- and LHβ-subunit mRNA but has no effect on the FSHβ-subunit 
mRNA in rat pituitary cells.38

Continuous GnRH stimulation fails to restore sustained LH and 
FSH secretion, whereas gonadotropin secretion can be induced 
by pulsatile GnRH administration.39 In addition, it is generally ac-
cepted that FSH is predominantly secreted after low-frequency 
GnRH pulses and LH is predominantly secreted after high-frequency 
GnRH pulses.40 The GnRH pulse frequency-dependent regulation of 
gonadotropin production also was investigated in the gonadotroph-
immortalized cell line, LβT2.41,42 It is suggested that the effects of 
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GnRH on gonadotroph regulation are altered by the stimulation 
mode of PACAP, although it is unclear how PACAP is released from 
the hypothalamus to the anterior pituitary gland. As above, pulsa-
tile stimulation with PACAP specifically induces the expression of 
gonadotropin subunits in gonadotrophs. More interestingly, stimu-
lation with high-frequency PACAP pulses (pulse interval of 30 min-
utes) increases the LHβ-subunit mRNA more than the low-frequency 
PACAP pulses, whereas the low-frequency PACAP pulses (pulse in-
terval of 120 minutes) increase the FSHβ-subunit mRNA in a prefer-
ential manner in the LβT2 cells.43

4  | PITUITARY ADENYL ATE CYCL A SE-
AC TIVATING POLYPEPTIDE AND 
GONADOTROPIN- RELE A SING HORMONE 
CROSS-TALK IN THE GONADOTROPHS

The PACAP receptors are present not only in the hypothalamus, 
but also in the anterior pituitary gland.44 There are two types of 
receptors—PAC1R and VPAC2R—in the anterior pituitary gland 
and gonadotrophs.45,46 The PACAP mainly acts via the PAC1R in 
rat gonadotrophs.34 The GnRH promotes the expression of its own 
receptors in the gonadotrophs41 and PACAP also regulates PAC1R 
expression.43,47 Moreover, the stimulation of PACAP increases 
the expression of the GnRH receptor in LβT2 cells.43 Interestingly, 
the expression of PAC1R is markedly increased by low-frequency 
PACAP stimulation in the LβT2 cells. In contrast, the GnRH recep-
tor expression increases with high-frequency PACAP stimulation 
and does not increase with low-frequency PACAP stimulation.43 The 
results of these studies suggest that PACAP regulates not only the 
expression of the gonadotropin subunits, but also that of its own 
receptors and GnRH receptors. Larger numbers of GnRH receptors 
tended to increase the expression of LHβ, but tended to decrease 
that of FSHβ.39 However, the expression of both the LHβ- and FSHβ-
subunit mRNA was promoted as the number of PAC1Rs increased in 
the LβT2 cells.48 In addition, previous studies have shown that GnRH 
increases the expression of PACAP and PAC1R in the gonadotrophs 
and primary pituitary culture.43,49 The authors also have observed 
that low-frequency GnRH pulses increase the expression of PACAP 
and PAC1R more than the high-frequency GnRH pulses. Moreover, 
the GnRH-induced expression of the FSHβ-subunit is significantly 
prevented by the PAC1R antagonist.50 Thus, GnRH and PACAP each 
display receptor-mediated cross-talk and might be involved in gon-
adotropin production.

4.1 | Role of pituitary adenylate cyclase-activating 
polypeptide in prolactin synthesis and secretion in the 
pituitary gland

Prolactin is released from the lactotrophs and somatolactotrophs 
in the anterior pituitary gland and has a wide variety of functions. 
Prolactin plays important roles in reproduction and is involved in 
mammary gland development during pregnancy and breast milk 

synthesis and secretion.51 The frequency and amplitude of LH pulses 
decrease in patients with hyperprolactinemia, resulting in menstrual 
cycle dysfunction and amenorrhea.52 In addition, prolactin sup-
presses LH pulses in rats.53 Prolactin-receptor null female mice fail 
embryonic implantation and have irregular cycles and reduced fer-
tilization rates.54

Prolactin secretion is predominantly inhibited by dopamine from 
the tuberoinfundibular dopaminergic neurons.55 This means that if 
prolactin increases in circulation, dopamine is secreted from the hy-
pothalamus and prolactin production is suppressed in the anterior 
pituitary gland. However, other factors promote prolactin synthesis 
and secretion. One such factor is TRH. The structure of TRH has 
been elucidated and the hormone has been proven to induce the 
rapid release of pituitary thyrotropin.56 Subsequently, TRH was 
shown to induce prolactin secretion from rat pituitary cell culture57 
and its i.v. administration has induced the release of prolactin in 
humans.58 The TRH binds TRH receptor-coupled G protein on the 
lactotrophs and activates the PKC-related pathway.59 Extracellular 
signal-regulated kinase (ERK) is also activated by TRH and activated 
ERK is inactivated by dual-specificity threonine/tyrosine mitogen-
activated protein kinase (MAPK) phosphatase.60,61 The activation of 
ERK signaling is important for TRH-induced prolactin expression.62 
However, it is not yet clear how TRH regulates the production and 
secretion of prolactin.

The PACAP receptors are expressed in most types of cells in 
the anterior pituitary gland and PAC1R mainly is expressed in the 
lactotrophs.23 It was shown initially that PACAP promotes prolac-
tin secretion from superfused rat pituitary cells.1 Although there 
have been reports that PACAP does not affect prolactin secretion 
in sheep63 or rat64 pituitary cells, subsequent studies have ob-
served that PACAP can increase prolactin release from rat pituitary 
cells.65,66 Moreover, PACAP increases the plasma prolactin levels in 
hypothalamus-lesioned rats.67 A previous study showed that PACAP 
stimulated prolactin gene expression in the prolactin-producing 
GH3 cell model, although the effect was mild, compared with TRH 
stimulation.68 The GH3 cells are immortalized cells that are derived 
from rat pituitary tumor that synthesizes and secretes prolactin and 
growth hormone69 and PACAP can stimulate prolactin and growth 
hormone release.70 It increases prolactin gene expression in GH3 
cells through the ERK and cAMP/PKA pathways.71

Although the effect of PACAP on prolactin gene expression in 
GH3 cells is limited, the degree of prolactin promoter activity is sim-
ilar to that of TRH stimulation if there is sufficient PAC1R due to 
its overexpression. In addition, PACAP and TRH have a synergistic 
effect on the expression of the prolactin gene. Increased PAC1R ex-
pression via overexpression potentiates the effect of TRH on pro-
lactin promoter activity.72 This suggests that the presence of PAC1R 
itself might enhance the effect of TRH on prolactin expression. 
Moreover, PACAP itself increases PAC1R expression, although TRH 
cannot stimulate PAC1R expression in GH3 cells.

Desensitization occurs in the GnRH receptor due to prolonged 
continuous stimulation with GnRH, suppressing gonadotropin se-
cretion.73 Similar to the GnRH receptor, prolonged TRH stimulation 



     |  237ORIDE et al.

decreases the number of TRH receptors in the pituitary cells.74 In the 
authors’ work, the response of prolactin promoter activity to TRH 
and PACAP was diminished with prolonged TRH stimulation in the 
GH3 cells. In contrast, prolonged PACAP stimulation counteracted 
the response of prolactin promoter activity, not only to PACAP but 
also to TRH.75 This means that PACAP and TRH desensitize their 
own and each other’s receptor in prolactin-producing cells.

5  | PITUITARY ADENYL ATE CYCL A SE-
AC TIVATING POLYPEPTIDE AND PITUITARY 
ADENYL ATE CYCL A SE-AC TIVATING 
POLYPEPTIDE RECEPTOR IN THE 
HYPOTHAL AMUS

High levels of PACAP are found in the hypothalamus of different 
species by radioimmunoassay.10 Thereafter, there have been sev-
eral reports on the localization of PACAP in the hypothalamus and 

it was clear that PACAP is present in the supraoptic nuclei, para-
ventricular nuclei,76,77 arcuate nucleus, and in a wide area in the hy-
pothalamus.78 The PACAP receptors are distributed in the arcuate 
nucleus, supraoptic nuclei,79 paraventricular nuclei, suprachiasmatic 
nucleus,80 and preoptic area.81 The presence of PACAP and the 
PACAP receptors in the hypothalamus suggests that PACAP acts as 
a paracrine and autocrine factor.

5.1 | Role of pituitary adenylate cyclase-activating 
polypeptide in the hypothalamus

As GnRH is synthesized and secreted by parvocellular neurons that 
extend from the preoptic area82 and PACAP is also present in this 
area, it is possible that PACAP regulates gonadotropin synthesis and 
secretion via the control of GnRH neurons. The release of LH and 
ovulation are inhibited in female rats by the intracerebroventricu-
lar administration of PACAP83 and the injection of PACAP into the 
medial basal hypothalamus reduces the LH concentration, LH pulse 

F IGURE  1 Schematic summary of the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in reproductive function 
regulation in the hypothalamus-pituitary system. The PACAP is not only released from the hypothalamus but also expresses in gonadotrophs 
and folliculostellate cells in the anterior pituitary gland, in which PACAP type1 receptors (PAC1R) exist in the gonadotrophs and PACAP 
increases the expression of the gonadotropin α-, luteinizing hormone (LH)β-, and follicle-stimulating hormone (FSH) β-subunits. The PACAP 
increases the expression of the gonadotropin-releasing hormone (GnRH) receptor (GnRHR) and its own PAC1R in the gonadotrophs. The 
PAC1R receptor is also present in the lactotrophs and PACAP increases the expression of prolactin and PAC1R. In addition, PACAP enhances 
thyrotropin-releasing hormone receptor (TRHR)-induced prolactin production. In the hypothalamus, both PACAP and kisspeptin increase 
GnRHR expression. The GnRHR expression by kisspeptin stimulation is potentiated in the presence of PACAP
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frequency, and pulse amplitude in ovariectomized ewes.84 Moreover, 
the intracerebroventricular injection of PACAP increases the GnRH 
mRNA levels in male rats.85 These results suggest that PACAP has an 
effect on gonadotropin secretion at the hypothalamus.

6  | ROLE OF PITUITARY ADENYL ATE 
CYCL A SE-AC TIVATING POLYPEPTIDE IN 
GONADOTROPIN- RELE A SING HORMONE-
PRODUCING NEURONS

In studies of the response of GnRH neurons, GT1-7 cells, which are 
mouse hypothalamic immortalized cells, are widely used as a model. 
The PACAP receptors are expressed in the GT1-7 cells and cAMP ac-
cumulation is dose-dependently increased by PACAP stimulation.86

The GnRH had been thought to be the primary regulator of the 
hypothalamus-pituitary-sex axis, but it has become clear that kiss-
peptin is positioned upstream of GnRH and controls GnRH secretion 
from the hypothalamus. The kisspeptin neuron fibers are located 
close to the GnRH neuronal cell bodies and processes and make 
synaptic contacts with the GnRH neurons.87,88 Kisspeptin causes 
depolarization of the GnRH neurons and increases their firing fre-
quency.89 These results show that kisspeptin directly activates 
GnRH neurons. Indeed, GnRH is released after stimulation by kiss-
peptin from the hypothalamic explants of male rats.90

In a study using Chinese hamster ovary cells, kisspeptin receptor 
(Kiss1R) coupled to Gq protein and stimulated intracellular calcium 
mobilization through the activation of the PLC pathway. Kisspeptin 
also strongly phosphorylated ERK and p38 MAPK.91 The authors 
previously reported that kisspeptin activates ERK- and cAMP/PKA-
mediated pathways in GT1-7 cells.92

Several studies have reported that Kiss1R is expressed in GT1-7 
cells and that kisspeptin is able to stimulate GnRH synthesis and secre-
tion from the GT1-7 cells.93,94 However, in the authors’ experiments, 
the effect of kisspeptin stimulation on GnRH expression in the GT1-7 
cells was unable to be confirmed, although the cells did express Kiss1R. 
However, it was observed that kisspeptin increased the expression of 
the GnRH receptors in Kiss1R-overexpressing GT1-7 cells.92

It is unclear how PACAP directly affects GnRH-producing neu-
rons. In GT1-7 cells, PACAP also increased the expression of the 
GnRH receptor, similar to kisspeptin. The increase in the GnRH 
receptor expression by kisspeptin stimulation was potentiated by 
PACAP.95 Pulsatile GnRH secretion is dependent on an autocrine 
interaction between GnRH and its receptors that are expressed 
in GnRH-producing neurons.96 These results suggest that PACAP 
could regulate GnRH expression by modulating GnRH receptor 
expression.

7  | CONCLUSION

The PACAP is a widely expressed pleiotropic peptide. It is involved in 
reproductive function and affects the hypothalamus-pituitary system. 

This review summarized the roles of PACAP in the hypothalamus-
pituitary system and reproductive function, focusing on experiments 
using cell models (Figure 1). Regarding gonadotropin production, GnRH 
is the major regulator, but PACAP also increases the expression of the 
gonadotropin subunit gene and further stimulates GnRH receptor 
expression in gonadotrophs. The PACAP is also a prolactin synthesis-
stimulating factor and the presence of PAC1R itself promotes TRH-
induced prolactin production in lactotrophs. In the GnRH-producing 
neurons, PACAP is involved in GnRH receptor expression. It is sug-
gested that PACAP not only acts directly in each hormone-producing 
cell, but also influences the production of each hormone by regulating 
the expression of its own receptors or those of other hormones.
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