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Simple Summary: This review article aims to compile the works published in the scientific literature,
over the last two decades, that use the goat as an animal model in preclinical studies using stem
cells, alone or associated with biomaterials, for the treatment of injury or disease in divers organ
systems. These preclinical studies are performed prior to human clinical trials for the implementation
of new medical or surgical therapies in clinical practice. Thus, it appears that, in the area of tissue
engineering and regenerative medicine, the caprine model is particularly used in studies using
stem cells in the musculoskeletal system but, although in a more limited way, also in the field of
dermatology, ophthalmology, dentistry, pneumology, cardiology, and urology. It appears that the goat
represents a particularly useful animal model for studies related to the locomotor system because
of its size, and also because they have a more active behavior than sheep, being more similar to the
human species in this aspect. Additionally, the goat knee anatomy and the thickness of the cartilage
that covers this joint are closer to that of humans than that of other large animal models commonly
used in orthopedic research.

Abstract: Mesenchymal stem cells (MSCs) are multipotent cells, defined by their ability to self-renew,
while maintaining the capacity to differentiate into different cellular lineages, presumably from
their own germinal layer. MSCs therapy is based on its anti-inflammatory, immunomodulatory,
and regenerative potential. Firstly, they can differentiate into the target cell type, allowing them to
regenerate the damaged area. Secondly, they have a great immunomodulatory capacity through
paracrine effects (by secreting several cytokines and growth factors to adjacent cells) and by cell-
to-cell contact, leading to vascularization, cellular proliferation in wounded tissues, and reducing
inflammation. Currently, MSCs are being widely investigated for numerous tissue engineering and
regenerative medicine applications. Appropriate animal models are crucial for the development
and evaluation of regenerative medicine-based treatments and eventual treatments for debilitating
diseases with the hope of application in upcoming human clinical trials. Here, we summarize the
latest research focused on studying the biological and therapeutic potential of MSCs in the goat
model, namely in the fields of orthopedics, dermatology, ophthalmology, dentistry, pneumology,
cardiology, and urology fields.
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1. Introduction

Research in stem cell therapy continues to grow, with promising results and increasing
expectations in the scientific community. Stem cells can be classified as embryonic stem cells
(ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs), which
differ in origin, plasticity, differentiation potential, and risk of tumorigenesis [1–5]. MSCs
have been the most studied cells, with excellent and safe results in multiple areas. The
therapy relies on the anti-inflammatory, immunosuppressive and regenerative properties
of these cells [1,6]. Nowadays, different diseases in humans and animals have already
been treated with cell-based therapies, mainly to regenerate damaged tissue or reduce
inflammation. Nevertheless, there are still some concerns regarding the use of this stem
cell therapy and unwanted side effects due to the migration of transplanted cells, as well as
insufficient cell survival upon transplantation [7,8]. A solution to this problem might lie in
the improvement of animal models and the selection of appropriate methods for grafting
and transplantation, facilitating the eventual use of stem cells in clinical practice [8–12].

Animal models have been increasingly relevant for human medicine, namely to
understand the pathophysiology of diseases and for the development and testing of new
therapies [13,14]. The most frequently used animal models are represented by rodents
(mice, rats, hamsters, guinea pigs) and lagomorphs (rabbits). Relatively to laboratory
animal models, they are generally used and highly contribute to pilot and proof of concept
in biomedical research studies. However, they have some important limitations, since they
differ substantially from humans in body, organ size, and life expectancy, resulting in huge
metabolic, physiological and behavioral differences [13,14]. To overcome this issue, after
the first studies were carried out on laboratory animals and to complement them, other
larger domestic animal species have been used, such as dogs, pigs, small ruminants (sheep,
goats), and horses [14], with promising results. These preclinical translational studies’
results are closer to those expected in human patients. The term “large animal” is used
to define animal species that are not included in the laboratory animal models, such as
rodents and rabbits [14,15]. As gene sequencing and manipulation tools are now accessible
to farm animals (cattle, pigs, sheep, and goats), genetically modified livestock models are
available for biomedical research [13].

The use of large animals in these research studies presents great advantages related to
their anatomy and dimensions, as they are larger than conventional laboratory animals,
being quite similar to humans in most physiological systems [9,16]. Particularly, regarding
small ruminants, they are recognized animal models for preclinical and translational studies
for human biomedical research. They have the great advantage of being cooperative and
compliant, easily available, easy to handle and house, and relatively low cost. They also
do not require excessive care with their feeding and sanitary prophylaxis. Their physical
stature and weight allow biomedical research to be conducted in more realistic clinical
situations. They are livestock species, so their use in experimental research is relatively well
accepted by the general society. Sheep have been widely used for biomedical research pur-
poses, resulting in numerous scientific articles and very recent reviews. Comparatively, the
goat remains largely unexplored in terms of scientific publications. In biomedical research
the goat model has been used mainly for the study of human diseases (chronic rheuma-
toid arthritis, congenital myotonia, cardiovascular conditions such as atrial fibrillation,
and Q fever), as antibody producer (immunological research, immunotherapy, diagnosis),
orthopedic, reproduction and cancer research, genome engineering for the production of
pharmaceutical proteins, generation of models of human diseases and hosts for the growth
of human organs, among other fields. Small ruminants (mainly sheep and goats) have
recently been used, namely for regenerative therapy studies with stem cells, in orthopedic
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and myocardial infarction research [17–19]. Nevertheless, large animals still represent less
than 0.5% of animals used in stem cell research, mainly due to poor knowledge of the
processes responsible for maintaining the pluripotency of stem cells [20]. In view of the
above, the aim of this review is to provide a critical overview, discussing the advantages
and limitations, and the current state and future perspectives of MSCs therapy studies
performed in the goat model, particularly in the orthopedic, dermatology, ophthalmology,
dentistry, pneumology, cardiology, and urology fields. A scientific literature search was
carried out in the main scientific publication dissemination electronic databases—PubMed,
Scopus, and Web of Science. For all the studies referring to the association of the fol-
lowing keywords—goat, stem cells, and animal model in their article title, abstract, or
keywords, data were extracted, analyzed, and discussed. The articles published in the
English language within the period between January 2000 to June 2022, with the caprine
model used in preclinical testing to study stem cell therapies, including the application of
MSCs and or hybrid constructs with MSCs seeded onto biomaterials, were reviewed. Only
one preclinical study published before the year 2000 was used, as this constitutes the first
reference in the goat model of the use of MSCs in cartilage repair [21]. The articles included
in this review were all original preclinical and translational studies using MSCs therapy
in the goat model in its different organ systems. All other types of articles were excluded,
namely, retrospective analyses and literature published prior to 2000.

2. The Goat Model

The goat is one of the earliest domesticated animals in the world, being an important
part of human culture. Their compact size (compared to cows) makes them attractive from
herd management and milking standpoint. Nowadays, there are more than 300 breeds of
domestic goats in the world, which provide essential sources of meat, milk, and fiber [16,22].
Cashmere goats are one of the most acclaimed breeds for their annual cashmere fiber
production. Recent studies explore the mechanism underlying cashmere growth fiber with
cellular models to enrich and optimize follicular cell lines in vitro [23].

Large animal models, namely small ruminants, have the advantages of joint size,
bone and cartilaginous thickness most comparable to those of humans, also exhibiting
secondary Haversian bone remodeling in the skeletally mature animals, bone tissue macro-
and microstructure and composition, bone biochemical properties and bone mineral density
more similar to humans [24–33].

Nonetheless, small ruminants also have remarkable differences compared to humans,
namely their rapid growth, with a predominance of plexiform or lamellar bone in areas
adjacent to the periosteum and endosteum of long bone cortices during the first years of
their lifespan, and the quadruped locomotion [32]. Compared to sheep, the goat is a much
higher energy level species, particularly with regard to locomotion, which more closely
resembles human musculoskeletal system activity, especially in the study of orthopedic
disorders [16,32]. This similarity with humans led to the frequent choice of the goat
model for research studies of bone and cartilage repair and hip arthroplasty, although
the sheep is also widely used in this type of study. The skeletal maturity is comparable
to sheep, reaching around 2–3 years of age [24]. Its anatomical characteristics also make
the goat an interesting model for vascular studies. Their long neck with little adipose
tissue and large blood vessels allows the exposure and characterization of large jugular
veins [16]. The use of small ruminants, namely goats, as models for human and animal
research, has some advantages and disadvantages compared to laboratory animals, as
described in Table 1. The main advantages are based on anatomical dimensions and
physiological similarities, with the exception of the gastrointestinal system, since small
ruminants have a polygastric stomach and are herbivores. Furthermore, they are seasonally
polyestrous, starting a 10-month period of estrous cycling when daylight hours decreased
in autumn [34]. Additionally, at a cellular and molecular level, it should be referred
the increasing knowledge of the differences and similarities of MSCs surface marker
expression patterns across the human and animal model species, namely the goat [35], and
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a nearly complete reference genome for goat species, including both sex chromosomes
(X and Y) and the autosomes, recently sequenced with high-resolution quality [36]. The
longer life expectancy and fewer ethical complications, make it a good preclinical and
translational model when compared to laboratory animal models. Some disadvantages lie
in the maintenance cost (despite being low, it is still higher than rodents), long gestation
time, and the fact that small ruminants are more difficult to handle [8,9,16]. Additionally,
the very specific and demanding regulation for the use and maintenance of large animal
models may also constitute an added difficulty in carrying out experimental studies in the
goat species.

Table 1. Advantages and disadvantages of the goat model [8].

Advantages Disadvantages

• Similarity of anatomy and dimensions to humans (most
similar to human heart and stifle joint)

• imilarity of physiology and/or clinical procedures
to humans

• Docile animals
• Longer life expectancy (7–14 years depending on breed)
• Fewer ethical issues than with companion animals (dogs

and cats) and horses

Higher maintenance costs than rodents
Harder to handle, requires specialized housing facilities
infrastructure and trained personnel
Longer gestation time
Differences in the gastrointestinal system, since the goat is a
polygastric animal species (ruminant)

Due to the above-mentioned facts, after the large-scale research phases of therapeutic
technologies development, when in vivo testing is a requirement and laboratory animals
are used (e.g., mouse, rat, rabbit), the goat model is one of the most used large animal
models for preclinical preparations before the clinical trials.

3. Overview of Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs) are undifferentiated cells of non-hematopoietic origin,
with self-renewal capacity, located in various adult or extra-embryonic tissues. These cells
are classified as multipotential, meaning they are capable to differentiate into multiple
cell lines, namely cardiomyocytes, chondroblasts, endothelial cells, hepatocytes, myocytes,
neuronal cells, osteoblasts, and tenocytes, among others [1,2].

MSCs can be obtained from embryonic cells in the first stages of embryo development
before its implantation in the uterus, and in adults, they can be isolated from various tissues,
such as umbilical cord, placenta, amnion, bone marrow (BMSCs), adipose tissue (ASCs),
dental pulp and periosteum [37–39]. The diversity of sources of stem cells or MSCs and the
wide range of potential applications of these cells lead to a challenge in selecting a suitable
cell type for cell therapy [8]. In veterinary medicine, MSCs are collected mainly from bone
marrow (BM) or adipose tissue (AT), since these tissues are easier to obtain [2,4,40].

Depending on how MSCs are obtained, therapy with these cells can be autologous,
if they are obtained from the same animal, allogeneic if the donor is another individual
from the same species, or xenogeneic if the donor is from a different species. Regarding the
route of administration, they can be applied locally, systemically, generally intravenously,
or both, depending on the disease [37].

These cells have the ability to differentiate into the target cell type allowing the re-
generation of the injured area and also have great immunomodulatory potential. This
immunomodulation is due to paracrine effects (by secreting different cytokines and growth
and differentiation factors (GDFs) to adjacent cells) and by cell-to-cell contact, leading to
vascularization, cell proliferation in injured tissues, and reducing inflammation [1,6,37,41].
Different diseases in animals have been treated using cell-based therapy, mainly to re-
generate damaged tissue or reduce inflammation. These cells are considered “immune
privileged” as they do not express histocompatibility complex class II (MHC-II) and costim-
ulatory molecules (such as CD40, CD80, and CD86), allowing allogeneic therapy, as they
escape the recognition and action of T cells and NK receptors [1,2,6,42].



Biology 2022, 11, 1276 5 of 22

MSCs can be applied in a wide range of clinical specialties, such as traumatology and
orthopedic, ophthalmology, neurology, internal medicine, dermatology, and immunopathol-
ogy, among others. Figure 1 shows the medical specialties studied for MSCs therapy in the
goat model. The applications of these therapies in the veterinary medicine field include
not only their clinical use in domestic animals, but also the translation of the results, as a
preclinical model, for human medicine [14]. These cells show great resistance to cryopreser-
vation, allowing the creation of cell banks for later use and the selection of the best donors
by previously evaluating their MSCs in vitro [2].
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4. Overview of Biomaterials for MSCs Regenerative Medicine and Tissue Engineering

As an important part of tissue engineering and regenerative medicine, materials (natu-
ral or synthetic) should be considered to improve the therapeutic efficacy and regenerative
potential of MSCs-based therapy and tissue engineering hybrid constructs. Materials can
induce or inhibit MSCs adhesion, proliferation, and differentiation, which plays a critical
role in MSCs’ therapeutic potential. Functional biomaterials should, therefore, be used to
promote proliferation, and specific lineage differentiation and reinforce in vivo survival
and engraftment of transplanted MSCs [43,44].

The commonly used scaffolds for tissue engineering include hydrogels, electrospun
scaffolds, and nano/microspheres [44]. Scaffolds can be derived from natural polymers
(e.g., collagen) containing adhesion peptides essential for direct cell adhesion, or derive
from synthetic polymers. When using synthetic polymers (e.g., poly(lactic-co-glycolic acid),
polycaprolactone), the bioactive molecules that are crucial for cell adhesion, proliferation,
and differentiation, are usually obtained by absorption, dipping the scaffolds in serum or
cell culture medium [44,45].

Hydrogels are one type of scaffold that have been used in a wide variety of applica-
tions, including vascularization, tendon repair, kidney repair, and neural regeneration [44].
Hydrogels based on natural polymers are an option to induce MSCs for chondrogenic
differentiation in human and animal models, and also allow the capture of chondroinduc-
tive growth factors and cytokines, such as TGF-β1, -β2, and -β3 [43]. Tissue engineering
has evolved greatly over the last few years, and scaffold production can be tailored to
better suit and mimic the in vivo conditions of where scaffolds are placed. From different
coatings that facilitate cell adhesion, to functionalized molecules that are going to guide cell
behavior and be released at specific time points, there is ever-growing evidence to support
the replacement of living tissues with different biomaterials [45].
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5. Application of MSCs in the Goat Model
5.1. Orthopedics

MSCs are an alternative source of cells for cartilage, muscle, tendon, and bone regen-
eration, as they are easily accessible and can be harvested from different tissues, having
a great capacity to proliferate and differentiate into other sorts of cells in the body, such
as osteoblasts and chondroblasts [37,46,47]. Caprine models have been used in preclinical
and translational research studies to assess new approaches, resorting to MSCs for carti-
lage tissue engineering aiming for regenerative joint resurfacing, osteoarthritis treatments,
bone fractures and defects, menisci and anterior cruciate ligament injury repair studies.
Additionally, several studies have been performed on the goat at the spine level, namely
for research on new treatments for intervertebral disc (IVD) disease.

5.1.1. Cartilage Repair

Articular cartilage covers the end of the bone, helping the bones easily glide over each
other. Due to its avascular nature and its low cellular density, this tissue has inadequate
self-healing capacity. Therefore, in the case of injury-causing cartilage defects, these lesions
rarely resolve spontaneously, forming a fibrous tissue with functional properties distinct
and inferior to native hyaline cartilage, leading to joint deterioration [1,41,48–50].

Cartilage lesions are usually treated by chondroplasty and palliative debridement
techniques, drilling and microfracture perforation (MF), or restoration techniques using
autologous chondrocyte implantation, mosaic arthroplasty and osteochondral allograft
transplantation [51–53]. Of these several techniques applied to repair cartilage in hu-
mans, none of them present guaranteed results. Recent advances in osteochondral tissue
engineering and regenerative medicine have been used to promote healing in areas of
articular cartilage damage that generally do not respond to more conventional treatments,
enhancing the healing of injured tissue so that it returns to its original or near-original
condition [37,54]. A variety of studies with transplanted cells—autologous, allogeneic,
and xenogeneic MSCs therapy, or novel replacement devices—have shown great results
in cartilaginous tissue healing and regeneration [55]. MSCs are able to differentiate into
chondrocytes when cultured alone or in combination with GDFs, making them interesting
for cartilage regeneration, meniscal repair, osteoarthritis therapy, and also ligaments and
tendon repair.

Human cartilage lesions have nearly a mean total volume of 552.25 mm3, with at
least 10 mm in diameter, and typically just involve the chondral tissue in 95% of clinical
presentations [24,25,56–59]. On the contrary, the mean total volume of the experimentally
induced cartilage defects in animal models generally presents a reduced volume compared
to human clinical presentations, in the goat at 251.65 mm3 [24]. Additionally, frequently
these induced defects in animal models involve the subchondral bone, which could cause
the subsequent advancement of the subchondral bone plate during spontaneous healing
of osteochondral defects and following articular cartilage treatment for chondral lesions
in various research studies with animal models [60]. This fact could be partly justified by
the marked difference in cartilage thickness between human and animal model species,
where humans have the thickest articular cartilage at the stifle joint level—2.35 mm [61].
The thickness of the medial condyle cartilage in goats has been reported by Brehm et al.
(2006) ranging between 0.8–2 mm and by Frisbie et al. (2006) with 1.1 mm resulting in
extensive variations of the chondral and subchondral bone volume involved in different
studies [62,63]. In this way, choosing an appropriate animal model for chondral or os-
teochondral tissue engineering studies should be based on published scientific literature,
guideline documents from the American Society for Testing and Materials, the International
Cartilage Repair Society, and the US Food and Drug Administration (FDA) [64,65].

The goat stifles joint anatomy and the cartilage articular thickness is similar to humans,
thus allowing arthroscopic examination and the creation of chondral defects, without
affecting the osteochondral bone plate, but has a limited capacity to heal without iatro-
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genic intervention, like in humans [24,25,59,63]. Table 2 presents the main MSCs studies
performed in the caprine model for cartilage repair.

Table 2. MSCs studies in the caprine model for cartilage repair.

Population Sample Type of Defect and
Localization

Material Tested and Follow-Up
Period Reference

Goats Round 4.0 mm Ø hole;
femoral condyle

Auto- and allogeneic BMSCs
implantation

Butnariu-Ephrat et al.
(1996) [21]

Female Nubian cross
goats > 2 years of age

Cylindrical full-thickness
osteochondral

4.5 mm Ø × 4.0 mm deep;
proximal 1/3 of the medial

facet trochlear groove,
bordering the axial groove +
anterior 1/3 of the central
medial femoral condyle

BMSCs + gelatin constructs
Timepoints: 1, 2, 7, and 14 days

Quintavalla et al.
(2002) [66]

12 goats (4 animals per group)

Osteochondral
6 mm Ø × 12 mm in depth;

medial femoral condyle
weight-bearing areas

TE osteochondral
graft of autologous BMSCs-β-TCP
scaffold with/without mechanical

stimulation of stir and an
untreated defect

Timepoints: 12 and 24 weeks

Pei et al. (2014) [67]

18 male goats, ±22.5 kg

Cylindrical 9 mm Ø × 3 mm
in depth defects;

weight-bearing area of the
medial femoral condyle

Human TGF-β1 gene-transduced
autologous BMSCs in sodium

alginate (density of
5 × 107 cells/mL) and 102 mmol/L
CaCl2 to form calcium alginate gels

+ mosaic arthroplasty (2 to
4 cylindrical osteochondral

5.5 mm Ø × 3 mm Ø grafts from
the medial femoral
condyle periphery)

Timepoint: 24 weeks

Sun et al. (2016) [68]

6 white male skeletally mature
goats (30 ± 5 kg) divided into

two groups

Full-thickness articular
cartilage defects; femoral

condyle (including lateral and
medial femoral condyles) with

6.5 mm Ø

hWJMSCs (density 1 × 106 cells) at
the third stage seeded onto an

ACECM-oriented scaffold (1 mm
thickness × 6.5 mm Ø) compared

with microfracture technique
Timepoint: 9 months

Zhang et al. (2018) [69]

24 goats, 10 months
Osteochondral defect (10 mm

Ø × 12 mm depth);
femoral heads

Treatment with a biomanufacturing
platform constructed with porous
tantalum and collagen membrane

with/without BMSCs
Timepoint: 16 weeks

Wei et al. (2019) [70]

β-TCP—beta-tricalcium phosphate, hWJMSCs—Wharton’s jelly derived mesenchymal stem cells, BMSCs—bone
marrow derived-mesenchymal stem cells, TGFβ—transforming growth factor beta.

Studies with the goat model for cartilage repair have demonstrated success in therapy
with fetal progenitor cells and Wharton’s jelly derived mesenchymal stem cells (hWJM-
SCs) [69] and BMSCs alone or associated with scaffolds or GDFs [69,71,72]. Zhang et al.
(2018) studied the potential of the hWJMSCs in a caprine model with a full-thickness
femoral condyle articular cartilage defect, compared with the MF technique. The results
showed that the hWJMSCs improved higher quality of hyaline cartilage regeneration,
maintaining the structure and functional integrity of the subchondral bone, compared to
MF [69]. Animals showed significant improvement, but the clinical results came better
when associated with collagen, primary cartilage cells, chondrons, or hyaluronic acid [71].
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In another study, gene therapy was performed by the application of human TGF-β1 gene-
transduced autologous BMSCs, in the sodium alginate and calcium chloride (CaCl2) to
create calcium alginate gels, associated with mosaic arthroplasty [68].

Li et al. (2021) demonstrated that the association of BMSCs and collagen type I have
better results in goat knee cartilage defect models, than either one alone [71].

5.1.2. Osteoarthritis

As a consequence of cartilage degeneration, osteoarthritis (OA) may arise. OA
is a degenerative and inflammatory disease that affects all the joint tissues (synovial
membrane, bone, cartilage, meniscus, ligament, tendon), resulting in loss of articular
cartilage, the release of inflammatory and regulatory cytokines, leading to pain and
lameness [37,49,73]. The cartilage inside a joint begins to wear down and the underly-
ing bone starts to change [37,49]. Due to the lack of any etiologic treatment that could
stop or delay the changes in the joint tissues, the current treatment for patients with OA
is mainly based on the use of analgesics and anti-inflammatory drugs. More recently,
thanks to a better understanding of OA pathophysiology, new therapeutic approaches have
emerged [73]. Intraarticular injection of autologous platelet-rich plasma (PRP) [74–76] and
MSCs have recently gained special attention as promising tools for OA treatment [77,78]
and can be used separately or as an association therapy. PRP acts as a scaffold, and through
the release of GDFs (such as transforming growth factor beta (TGF-β), fibroblast growth
factor (FGF), and insulin-like growth factor (IGF-1)), induces stimulation of chondrogenesis,
increases hyaluronic acid production, develops angiogenesis and leads to differentiation
of the existing cells in the treated zone [37,79,80]. MSCs are also a promising therapy as
they differentiate into chondrocytes once they are cultured alone or in combination with
GDFs [37,41,81,82].

The goat model has also been used to investigate stem cell therapy after induced OA
by meniscectomy in association or not with anterior cruciate ligament (ACL) resection.
Specifically, in the study of Murphy et al. (2003), a single dose of ten million BMSCs
suspended in a diluted solution of sodium hyaluronan was directly injected into the injured
stifle joint 6 weeks after OA induction and after 6 and 20 weeks of the operative period [83].
In another recent study, a single intra-articular dose of 7 × 106 human ASCs was injected
9 weeks after the meniscectomy associated with daily injections of cyclosporin A (10 mg/kg
for 7 days followed by 5 mg/kg for another 7 days) was applied and evaluated 8 weeks
after injection of human ASCs [84]. A study conducted by Wang et al. (2018) showed that
BMSCs therapy in a goat OA model had a greater benefit in terms of cartilage protection
when compared with PRP therapy [85].

5.1.3. Meniscal Repair

Meniscus repair also remains a challenge in orthopedics. It is formed by a semilunar
fibrocartilage structure that is essential to maintain normal stifle joint function [86]. Similar
to the articular cartilage, the meniscus is poorly vascularized in the inner area [87,88] and
there is no ideal reconstructive approach for damaged menisci [88]. GDFs, scaffolds, and
hybrid constructs, with a resource for static/dynamic cell cultures, can be combined for
meniscal tissue repair [88].

Caprine models with large radial tears of the meniscus have also been used to study
meniscal repair. Rothrauff et al. (2019) verified by magnetic resonance image and by
macroscopic and histological scoring, that the stromal vascular fraction (SVF), which
contains, among other cell types, MSCs, seeded in a hydrogel contributes to the successful
repair of meniscal tears [89]. Gene therapy also provides one promising minimal invasive
alternative strategy for meniscus. Zhang et al. (2009) used BMSCs with the transfection of
the human IGF-1 (hIGF-1) gene, one of the most important GDFs in cartilage homeostasis
and development. The author verified promising results to repair defects, especially when
combined with calcium alginate gel [88].
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5.1.4. Anterior Cruciate Ligament Injury Repair

ACL is the main structure that maintains the stability of the knee [90]. When ruptured,
usually as a sports injury, provokes tibia internal rotation and instability of the stifle joint,
resulting in lameness, pain, inflammation, and, in the long run, it leads to OA [37,91,92].
In veterinary medicine, the therapeutic approach is not consensual among authors. Some
advocate surgical therapy as the first choice in all patients, with alternate methods of ACL
repair, through extracapsular surgical techniques or surgical procedures which promote
changes in stifle joint anatomy and biomechanics, promoting the dynamic stability of
the knee [93]. However, no specific surgical technique has yet been defined as the ideal
standard in veterinary medicine.

Grafts, including autografts, allografts, and synthetic grafts are routinely used to recon-
struct ACL rupture [90]. Zhao et al. (2015) studied the feasibility of biological xenogeneic
ligament graft in a goat model combined with BMSCs for the reconstruction of ACL. The
results showed that there was no immune rejection with the xenogeneic graft [94]. Research
showed that xenogeneic ligament combined with BMSCs can accelerate microcirculation
and lead to ligament growth, significantly improving ligament revascularization, without
influencing the biological characteristics of the ligament [94].

5.1.5. Bone Fracture and Defect Repair

The repair of bone fractures and segmental bone defects secondary to trauma, post-
tumor resection, or post-debridement infection remains a major clinical problem, usually
implying a large economic burden [37,41,95–97]. The use of animal models, such as
goats, is important to develop bone tissue engineering approaches, mimicking real clinical
conditions in humans [97,98]. Small ruminants have similar body weights and compatible
long bone sizes for studying human implants and prostheses [99].

Currently, therapeutic methods for bone critical size defects (CSDs) include autografts,
allografts, and synthetic bone grafts [100]. A promising alternative to autologous bone
grafts is the combination of BMSCs with porous osteoconductive scaffolds [101,102]. For
this purpose, BMSCs cells are usually isolated, expanded in vitro, and seeded in a 3D
porous scaffold. This construct is then implanted into the bone defect to achieve in situ
regeneration [100].

To treat bone CSDs, an effective bone substitute is essential [103,104]. Bone substitutes fre-
quently used in clinical practice lack efficacy and have a low osteogenic capacity [70,103,104].
An ideal scaffold should be biocompatible, biodegradable, and promote the passage of nu-
trients and cellular waste products [105,106]. Furthermore, vascularization is essential for
optimal oxygen and nutrient supply of seeded cells [101,107]. Noteworthy, the addition of
endothelial progenitor cells (EPCs) to MSCs culture improves vascularization and increases
bone formation [107].

To achieve a better efficacy for the treatment of bone CSDs, several bone substitutes
and scaffolds have been studied in the goat model for femoral, tibial, and other bone defects
(Table 3).

Table 3. MSCs studies in the caprine model for bone fracture and defect repair.

Population Sample Type of Defect and
Localization Material Tested and Follow-Up Period Reference

36 goats, 14.5–15.5 kg 20 mm long defect of left tibial
bone and periosteum

Four groups treated with:

- Coral hydroxyapatite,
- Coral hydroxyapatite + BMSCs,
- Fascia flaps,
- Untreated group

Timepoints: 2, 4, 8, and 12 weeks

Chen et al.
(2006) [108]
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Table 3. Cont.

Population Sample Type of Defect and
Localization Material Tested and Follow-Up Period Reference

6 adult goats, 20–30 kg
Femur hollow cylinder of

2 cm length, 2 cm outer Ø and
7 mm inner hole Ø

Two groups treated with:

- bioactive triphasic ceramic-coated
HASi + BMSCs,

- HASi without cells

Nair et al.
(2008) [109]

8 adult female goats,
46.3–22.9 months, 54.1–75 kg

4 non-critical-sized defects
6 mm Ø on the medial

diaphyseal tibia

Four groups treated with a polymer of
methacrylate-endcapped
poly(D,L-lactide-co-e-caprolactone):

- Pure polymer with a triacetin
solution,

- Polymer with a triacetin solution +
autologous MSCs,

- Polymer with triacetin solution +
α-TCP,

- Untreated group

Timepoints: 2, 4, 8, and 12 weeks

Vertenten et al.
(2009) [110]

8 adult goats, 7–8 months,
17–20 kg

Cranial bone defects of
20 mm Ø

Three groups treated with:

- BMSCs/PLGA + PRP,
- BMSCs/PLGA + PPP,
- BMSCs/PLGA + DMEM

Timepoints: 3 days and 8 weeks

Lei et al.
(2009) [100]

6 adult goats 20–30 kg
2 cm femur bone segment was

excised from the
mid-diaphyseal region

Three groups treated with:

- HASi without cells,
- HASi + BMSCs,
- HASi + BMSCs + PRP

Timepoints: 6 weeks, 2 months

Nair et al.
(2009) [111]

8 female goats,
47.3 ± 17.5 months,

66 ± 12 kg

4 unicortical holes (6 mm Ø)
on the medial

diaphyseal cortex

Polymerizable pluronic f127 hydrogel
derivate combined with autologous MSCs
with different types of carriers
Timepoints: 2, 4, 6, and 8 weeks

Lippens et al.
(2010) [112]

32 adult male goats,
±3 years, ±50 kg 25 mm defect on the tibia

Four treated groups:

- nHACP/CF (nano-hydroxyapatite/
collagen/poly(L-lactic acid/chitin
fibres) + goat BMSCs,

- Autograft bone,
- nHACP/CF,
- Untreated group

Timepoints: 4 and 8 weeks

Liu et al.
(2010) [113]

6 female goats, 1 year,
±25 kg 30 mm defect on the tibia

Two groups treated with:

- β-TCP combined with autologous
BMSCs cultured by dynamic
perfusion,

- β-TCP combined with autologous
BMSCs cultured by static perfusion

Timepoints: 1, 4, 12, and 24 weeks

Wang et al.
(2010) [114]

4 adult female goats,
30–45 kg

8 drill holes
(6 mm Ø × 3.0 mm depth) on
the lateral diaphysis of both

posterior femurs

Cell-scaffold of goat BM stromal cells and
SPCL (a blend of starch with
polycaprolactone)
Timepoints: 2, 4, and 6 weeks

Rodrigues et al.
(2011) [105]
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Table 3. Cont.

Population Sample Type of Defect and
Localization Material Tested and Follow-Up Period Reference

6 female goats, 2 years,
±25 kg

42 mm defect in the
diaphyseal region of the tibia

Polycaprolactone scaffold seeded with goat
BMSCs cultured in a perfusion bioreactor
Timepoints: 6 and 12 weeks

Gardel et al.
(2014) [115]

BM—bone marrow, SPCL—blend of starch with polycaprolactone, BMSCs—bone marrow derived-mesenchymal
stem cells, PLGA—poly(lactic-co-glycolic acid), PRP—platelet-rich plasma, PPP—platelet-poor plasma, DMEM—
Dulbecco’s modified Eagle’s medium, HASi—bioactive triphasic ceramic-coated hydroxyapatite scaffold, α-
TCP—alpha-tricalcium phosphate, nHACP/CF—nano-hydroxyapatite/collagen/poly(L-lactic acid)/ chitin fibers,
β-TCP—beta-tricalcium phosphate.

Small ruminants have also been used as an animal model to study the pathophysiology
of osteopenia or post-menopausal osteoporosis [116]. Goats provide a promising model
for studying osteoporosis caused by a lack of estrogen [117]. A study carried out by Cao
et al. (2012) demonstrated that estrogen deficiency is an obstacle to cell therapy for bone
regeneration. This study proved that β-TCP with autologous BMSCs as a bone substitute
has successfully repaired critical size bone defects in the femur of osteoporotic goats [117].

Recent studies in goats also combined tissue-engineered bone and gene therapy to treat
critical size bone defects. They used BMSCs transduced with human morphogenetic protein-
2 (hBMP-2) to provide osteoprogenitor cells, osteoinductive factors, and osteoconductive
carriers, improving healing capacity. The results were better in the groups treated with
BMSCs combined with hBMP-2 than those treated with BMSCs alone [118].

5.1.6. Vertebral Column

Intervertebral disc (IVD) disease is a chronic progressive and painful disease that
affects millions of people worldwide. This disease is one of the most common causes of
low back pain [119,120]. IVD disease typically begins with tears in the outer ring of the
IVD (annulus fibrosus), which can lead to a reduction in the water content of the soft gel
center of the disc (nucleus pulposus). The wear and tear of IVDs may result from normal
aging or may be due to long-standing trauma [119,120].

Although no animal model could completely reproduce the clinical conditions in
humans, large animal models are preferable since in small rodents or rabbits it is more
difficult to administer cells into the disc due to the very small size of the IVDs [121]. Goats
represent a suitable model, as their discs are similar in shape and size to humans [121,122].

Currently, treatment options for this disease, such as physical rehabilitation, pain
management, and surgical intervention for disc decompression, provide only temporary
pain relief [122]. Surgical techniques include spinal fusion to decrease pain and neurolog-
ical deficit in selected patients. To decrease excessive spinal motion and restore proper
alignment and intervertebral height, a spinal fusion should be considered. To achieve spinal
fusion, several techniques have been proposed, including the use of an interbody spacer
(cage) [123], which can be filled with autologous iliac crest bone graft (ABG) or substitute
scaffolds. It is likely that the poly(L-lactide-co-caprolactone) (PLCL) scaffold binds to ASCs,
which rapidly proliferate and lead to their differentiation into osteocytes [124]. However,
Kroeze et al. (2014) demonstrated that while the addition of stem cells to the PLCL scaffolds
did not result in adverse effects, it also did not increase the rate and number of interbody
fusions. Future studies are needed to optimize the spinal fusion model with PLCL scaffolds
and MSCs [123].

Other new minimally invasive disc therapeutic approaches are being studied, such as
the combination of hydrogels, MSCs, and PRP [125,126]. Unlike MSCs, studies with goat
models of IVD disease with stromal vascular fraction (SVF) therapy have been contradictory,
with some inflammatory adverse effects [127]. Table 4 presents the main MSCs studies
performed in the caprine model for vertebral column repair.
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Table 4. MSCs studies in the caprine model for vertebral column repair.

Population Sample Type of Defect and
Localization Material Tested and Follow-Up Period Reference

7 mature female goats

8 mm hole was created
through the IVD and the

adjacent endplates of L1-2 and
L3-4 v ertebrae

Treatment with a spinal cage
(10 mm × 10 mm × 18 mm) filled with

autologous bone from iliac crest or filled
PLCL scaffold seeded or not with SVF

Timepoints: 1, 3, and 6 months

Vergroesen et al.
(2011) [124]

24 male goats, 4 years
L1-2 and L3-4 vertebrae were

injured by an nº 15 blade
scalpel with a 15 mm depth

Influence of BMSCs therapy suspended in
hydrogel compared with control groups

without BMSCs. Stem cells increase
proteoglycan levels

Timepoints: 3 and 6 months

Zhang et al.
(2011) [121]

36 mature female goats,
54–103 kg

8 mm hole was created
through the IVD and the

adjacent endplates of L1-2 and
L3-4 v ertebrae

Treatment with a spinal cage
(10 mm × 10 mm × 18 mm) filled with:

- autologous bone graft,
- PLCL alone,
- PLCL seeded with SVF,
- PLCL seeded with ASCs

Timepoints: 3 and 6 months

Kroeze et al.
(2014) [123]

12 female adult goats

Injection of 0.25 U/mL
chondroitinase ABC in five
lumbar discs through a left
retroperitoneal approach

SVF to establish intervertebral disc
regeneration

Timepoints: 1 and 3 months

Detiger et al.
(2015) [127]

6 male goats, 6 months,
23–25 kg

Damage to the annulus
fibrosus of the intervertebral

discs T1 to L5, with a
1 × 1 cm2 gap

Treatment with a combination of BMSCs and
PRP in a cell suspension with a gelatin

sponge (1 × 1 cm2)
Timepoints: 3, 6, and 12 weeks

Xu et al.
(2019) [126]

3 adult male goats, 3 years
Injection of 1 U chondroitinase
ABC in lumbar discs through
a left retroperitoneal approach

Treatment with a hydrogel composed of
dextran, chitosan, and teleostean for

augmentation of the nucleus pulposus

Gullbrand et al.
(2017) [125]

9 male goats, ±3 years

L1-2, L2-3, L3-4, and L4-5
lumbar discs were

randomized to receive either
subtotal nucleotomy, saline

sham injection, or
chondroitinase ABC (0.1 U,

1 U, or 5 U)

Evaluation of inflammatory cytokines
(TNF-α, IL-1β, IL-6) and catabolic enzymes

(MMPs-1 and 13, and ADAMTS-4)
expression.

Timepoint: 12 weeks

Zhang et al.
(2020) [120]

10 mature male goats, 2–4
years

Injection of 1 U
chondroitinase ABC in five

lumbar discs (L1-L5) through
a left retroperitoneal approach

Three groups treated with:

- hydrogel alone,
- combined hydrogel + MSCs,
- untreated control.

2 weeks after treatment

Zhang et al.
(2021) [119]

IVD—Intervertebral disc, PLCL—poly(L-lactide-co-caprolactone), BMSCs—bone marrow derived-mesenchymal
stem cells, SVF—stromal vascular fraction, ASC—adipose-derived mesenchymal stem cells, PRP—platelet-rich
plasma, TNF-α—tumor necrosis factor-alpha, IL-1β—interleukin 1-beta, IL-6—interleukin-6, MMPs—matrix
metalloproteinases, ADAMTS-4—A Disintegrin and Metalloproteinase with Thrombospondin Motif-4.

5.2. Dermatology

Chronic cutaneous wounds and ulcers represent a therapeutic challenge, due to the
difficulty of clinical management, high recumbence rate, and scar formation, both in human
and veterinary medicine. Its incidence has increased due to population aging, diabetes,
obesity, and concomitant diseases [2].

MSCs present an important role in all phases of tissue repair: inflammation, prolif-
eration, and remodeling [2,3]. These cells also promote angiogenesis and show evidence
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of antimicrobial properties. A failure in the angiogenesis process during wound healing
can induce the development of chronic wounds [2,3]. MSCs have already been shown to
promote wound healing through a paracrine molecular cascade in goat models [128,129].
Furthermore, MSCs may have direct involvement in various stages of the wound healing
process that need to be further explored [129].

Although goats have not generally been used as research models for cutaneous wound
healing, they are a good choice as they have a mild temperament and a good anatomical
skin surface available for creating lesion models of different shapes and sizes [16].

Studies with the goat model for wound healing have used different sources of MSCs
with excellent results. Pratheesh et al. (2017) showed evidence of better wound healing
with MSCs from the amniotic fluid origin than caprine BMSCs, by revealing greater ep-
ithelialization, neovascularization, and collagen development in the histomorphometric
analysis [130]. Azari et al. (2011) also showed the re-epithelization capacity of transplanted
Wharton’s jelly MSCs from caprine umbilical cords, revealing complete re-epithelization of
cutaneous wounds in 7 days [131].

In addition, MSCs showed great capacity for wound regeneration and reduced healing
time and plasticity, as they are capable of converting into cells of different tissues. A study
carried out by Yang et al. (2007) with goats confirmed that epidermal adult stem cells can
differentiate into different functional cells in vivo or in vitro, demonstrating the plasticity
of stem cells [132].

5.3. Ophthalmology

In recent years, ophthalmologists have placed a great focus on stem cells to treat vari-
ous traumatic and degenerative disorders due to their unique biologic properties [133]. The
cornea is a protective barrier and is formed by three layers with different germinal origins:
the epithelium (originated from superficial ectoderm) and the stroma and endothelium
(originated from neural crest cells) [134]. Experimental studies have proved that there is
a variety of stem cells present in each of these layers [134,135]. For example, limbal stem
cells (residing in the limbus) maintain epithelial homeostasis and regenerate the cornea,
with epithelial cell deficiency being the leading cause of blindness worldwide [134].

Stem cells have high potential in the treatment of eye diseases characterized by
permanent cell loss, such as glaucoma, age-related macular degeneration, photorecep-
tor cell degeneration, hereditary retinopathy, and mechanical and ischemic retinal in-
juries [134,136,137]. The eyes of small ruminants are anatomically different from human
eyes [16,138], however the resemblance in structure, size with, some properties and param-
eters to the human eye made possible to use these models successfully. Goats have been
used mostly to study corneal epithelium reconstruction and transplant.

Studies have shown that epidermal adult stem cells (EpiASCs) from goat ear skin
can be used to successfully repair damaged cornea with total limbal stem cells (LSCs)
deficiency [139,140]. Moreover, these results demonstrated that EpiASCs can be induced to
differentiate into corneal epithelial cell types in vivo in a corneal microenvironment, and
had the skill to trigger corneal genetic programs [139].

In a study carried out by Mi et al. (2008), cryopreserved limbal corneal stem cells
were applied in goats with damaged cornea with excellent results. The therapeutic effect of
transplantation may be associated with the inhibition of inflammation-related angiogenesis
after transplantation of cryopreserved LSCs [141].

5.4. Dentistry

There are only a few published studies with goats for stem cell therapy in dentistry,
probably due to the anatomical differences between human and goat dentition. Because
it is a ruminant species, it only has incisors in the mandible, being absent in the upper
jaw. It has no canines and only premolars and molars, the latter fulfills the function
of rumination of plant foods. Stem cell research in dentistry aims at the regeneration
of damaged tissues such as periodontal tissues, dentin, pulp, and resorbed roots and
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the repair of endodontic iatrogenic perforations [142]. It is mainly used for periodontal
regeneration and in association with biomaterials to optimize tooth regeneration in the goat
model [143,144]. Undifferentiated MSCs are able to differentiate, providing the three critical
tissues essential for periodontal tissue regeneration: cementum, bone, and periodontal
ligaments, making stem cells a new approach for periodontal tissue regeneration [145]. The
association of MSCs and fibrin glue using particulate mineralized bone has also shown
promising results for vertical bone augmentation in animal models [146].

There is a growing need to use dental implants and improve their function to enhance
normal dental physiology and proprioception [142]. An osseointegrated implant can closely
resemble a natural tooth. Nevertheless, the absence of periodontal ligament and connective
tissue results in important differences in implant adaptation to occlusal forces [145]. Several
studies for tooth regeneration with scaffolds based on biomaterials and stem cells have
shown very positive effects on regeneration [143–145,147]. Dense collagen gel scaffolds
seeded on MSCs and nanostructured titanium surfaces have increased interest in bone
regeneration due to the good osteointegration effect [148,149].

The placement of implants can be problematic, as, after a tooth loss, anatomical
pneumatization of the maxillary sinuses can occur, as well as atrophy of the alveolar
ridge, limiting the bone volume available to the implant placement. Maxillary sinus floor
elevation is one of the preferred surgery options to solve this problem, where bone graft
material is placed in the maxillary sinus to provide adequate support to the implants [143].
Zou et al. (2012) associated this grafting material with BMSCs and calcium phosphate
cementum, promoting earlier bone formation and mineralization, and maintaining the
height and volume of the augmented maxillary sinus in a goat model [143].

Bangun et al. (2021) proved that MSCs can improve earlier bone repopulation and
complete faster bone regeneration in tissue-engineered bone grafts, supported by the
paracrine activity of the resident stem cells [144].

It is also known that TGF-β1 plays an important role during tooth formation, this GDF
can directly induce the differentiation of odontoblast-like cells, and positively regulate the
secretion of matrix components in the dentin-pulp complex, being a potential therapy to
induce tissue formation after dental pulp capping treatments [150].

5.5. Pneumology

Stem cells have been a promising therapy for asthma non-responsive to conventional
therapy [1,42], as a potential treatment for destructive lung diseases including chronic
obstructive pulmonary disease [151], and as a treatment for bronchopleural fistula (BPF),
due to its plasticity and ability to differentiate into different cells [152].

Goats have been successfully used in a bronchopleural fistula model. In cases of
lung cancer with limited disease, the most effective method of controlling the primary
tumor is surgical resection, as it offers the best chance of cure. Pulmonary resection can
lead to the development of a pathological connection between the airway (bronchus)
and the pleural space, known as a post-resection BPF [152]. This research proved that
bronchoscopic-guided transplantation of BMSCs successfully closes bronchopleural fistula
by extraluminal fibroblast proliferation and collagenous matrix development [152].

5.6. Cardiology

The goat seems to be the ideal model for cardiovascular diseases, due to its anatomical
dimensions and physiological similarities to the human heart. Additionally, parameters
such as heart rate, coronary architecture, and capillary density are more similar to those of
man [9,14].

One of the main causes of morbidity and mortality in cardiovascular diseases is
myocardial infarction, characterized by the ischemic lesions of cardiac muscle tissue due
to an occlusion of one of the coronary arteries or one of its branches by a thrombus [17].
This disease is increasing and gaining more importance due to the general aging of the
population and the change in lifestyle [17,18].
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The goat has been studied for the treatment of myocardial infarction through in vitro
and in vivo studies. So far, several different sources of adult stem cells have been identified
as a healing approach for infarcted myocardium. The most promising stem cells that have
so far shown the best results in these studies are BMSCs. A study carried out by Liao et al.
(2006) uses BMSCs enriched by small intestinal submucosal (SIS) films to treat myocardial
infarction in goat models, the MSCs-SIS film was implanted and sutured in the infarct area.
The obtained results revealed that this therapy can prevent ventricular chamber dilatation
and can improve myocardium contractility, cardiac function, and collateral perfusion [18].

Another promising source of stem cells is glandular stem cells that can be easily
extracted from exocrine glands, such as the salivary glands or the pancreas [17,153,154].
Maass et al. (2009) showed that glandular stem cells obtained from the submandibular
gland can spontaneously differentiate into cardiac-like mesodermal cells in vitro. These
results suggest that implanting these cells directly into infarcted myocardium can improve
heart regeneration [17].

5.7. Urology

Cell-based therapy is emerging as a great alternative in the treatment of stress urinary
incontinence. Goats are also an ideal model to study this subject, as the female caprine
urethra has similar parameters to those reported in humans, by measuring the urethral
pressure profile, making them a suitable experimental animal for testing intraurethral cell
transplantation [155].

Burdzinska et al. (2017) demonstrated that caprine muscle-derived cells (MDCs) and
MSCs can be expanded in vitro and applied for intraurethral injections [155]. In 2018,
Burdzinska proved that both MSCs and MDCs collaborated in the formation of striated
muscle when they were transplanted directly into the external urethral sphincter. This
study suggests that MDC-MSC co-transplantation improves urethral closure better than if
transplantation of each cell population is performed alone [156].

6. Conclusions

MSC-based cell therapy has the potential to treat diseases and injuries with excellent
and safe results in several areas. They have the ability to replace damaged cells and
modulate the immune system in vivo. These characteristics combined with their ease
of isolation, expansion, and manipulation in vitro, make MSCs attractive candidates for
numerous therapeutic conditions [14].

The goat model has been studied mainly in the orthopedic field, probably due to
its similarity with human stifle joint and also because of its body weight and long bone
sizes proportionally compatible with humans. Furthermore, the goat model appears to
be extremely useful for the study of cardiac and urologic diseases, such as myocardial
infarction and stress urinary incontinence due to the similarity in the anatomy of the goat
heart and urethra, respectively, to those of humans. Given the similarity between the goat
and man regarding the anatomy of the bones, heart, and urethra, the most promising areas
to be studied with the goat model are orthopedics, including cartilage, bone repair and also
IVD disease, cardiology, and urology.

Almost all studies in the goat model revealed good to excellent results with MSCs
therapy alone or in combination with other therapies, such as PRP, GDFs, biodegradable or
nonbiodegradable scaffolds, namely in the regenerative medicine and tissue engineering
studies of the musculoskeletal system. One of the preferable sources of MSCs is bone
marrow, especially in the orthopedic field, as BMSCs seem to be a better source of cells for
bone regeneration [157].

In conclusion, the goat is an appropriate model for studying a wide range of diseases.
Further research in large animal models will be needed to ensure safety and efficacy, as
well as establish appropriate stem cell therapy protocols, including doses and routes of
administration. It is expected that in the future a considerable number of studies using
large animal models will be performed to improve regenerative medicine in the veterinary
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field and also as models for reproducing the disease in preclinical experimental studies,
establishing the goat as an important translational model for human medicine application.
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