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Abstract 

Background:  The aim of this study was to investigate the potential use of renal ultrasonography radiomics features 
in the histologic classification of glomerulopathy.

Methods:  A total of 623 renal ultrasound images from 46 membranous nephropathy (MN) and 22 IgA nephropathy 
patients were collected. The cases and images were divided into a training group (51 cases with 470 images) and 
a test group (17 cases with 153 images). A total of 180 dimensional features were designed and extracted from the 
renal parenchyma in the ultrasound images. Least absolute shrinkage and selection operator (LASSO) logistic regres-
sion was then applied to these normalized radiomics features to select the features with the highest correlations. 
Four machine learning classifiers, including logistic regression, a support vector machine (SVM), a random forest, and 
a K-nearest neighbour classifier, were deployed for the classification of MN and IgA nephropathy. Subsequently, the 
results were assessed according to accuracy and receiver operating characteristic (ROC) curves.

Results:  Patients with MN were older than patients with IgA nephropathy. MN primarily manifested in patients as 
nephrotic syndrome, whereas IgA nephropathy presented mainly as nephritic syndrome. Analysis of the classification 
performance of the four classifiers for IgA nephropathy and MN revealed that the random forest achieved the highest 
area under the ROC curve (AUC) (0.7639) and the highest specificity (0.8750). However, logistic regression attained the 
highest accuracy (0.7647) and the highest sensitivity (0.8889).

Conclusions:  Quantitative radiomics imaging features extracted from digital renal ultrasound are fully capable of 
distinguishing IgA nephropathy from MN. Radiomics analysis, a non-invasive method, is helpful for histological clas-
sification of glomerulopathy.
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Background
Kidney disease is thought to be a substantial world-
wide clinical and public health problem [1]. In China, 
the overall prevalence of chronic kidney disease (CKD) 

is 10.8% [1]. CKD is a “silent killer” due to its insidious 
onset and slow progression to end-stage renal disease. 
Early diagnoses and rational therapeutic strategies are 
critical for controlling the progression and improving 
the prognoses of patients with CKD. Primary glomeru-
lopathy is the most common cause of CKD. It includes 
several pathological types, such as IgA nephropathy, 
membranous nephropathy (MN), minimal-change glo-
merulopathy and focal segmental glomerulosclerosis. 
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Epidemiological investigations have shown that IgA 
nephropathy and MN are the most common pathologi-
cal types [2]. Accurate classification of glomerulopathy 
is very important for both treatment optimization and 
prognosis prediction. For example, according to KDIGO 
guidelines [3], for patients at high risk of disease progres-
sion, steroids should be considered for IgA nephropathy 
(recommended level: 2B). However, the use of immuno-
suppressants is controversial. Unlike the recommended 
treatment for IgA nephropathy, steroids combined with 
immunosuppressants are recommended for patients with 
MN (recommended level: 1B).

The diagnosis and classification of primary glomeru-
lopathy are based mainly on clinical manifestations, 
laboratory examinations and renal pathological diag-
nosis. However, clinical manifestations and laboratory 
test results usually lack specificity. Pathology depending 
on renal biopsy is the gold standard for accurate diag-
nosis and classification of glomerulopathy. However, 
the examination is an invasive test with many complica-
tions and contraindications, which limits its use in clini-
cal settings [4]. In addition, many hospitals with limited 
resources lack adequate facilities to perform kidney biop-
sies. Therefore, a non-invasive test that can replace renal 
biopsy is urgently needed.

Renal ultrasound is widely used in the clinical examina-
tion of patients with nephropathy due to its simple oper-
ation, rapidity, and low cost. Sonography of the kidneys 
provides information on kidney size, kidney thickness, 
and renal cortex echogenicity. This technique is fre-
quently employed during the evaluation of renal failure 
degree, and the findings often provide the bases for deci-
sions about whether a renal biopsy should be performed. 
In glomerulonephritis, renal ultrasound shows paren-
chymal diffuse echo changes. Additionally, the relation-
ship between the degree of renal cortical echogenicity 
and renal histological change has been demonstrated [5]. 
Several studies have also shown that the degree of echo-
genicity of the renal cortex might reflect the severity of 
glomerular sclerosis/crescent formation, tubular atrophy, 
and interstitial inflammation/fibrosis [6]. However, it is 
not clear whether the specific sonographic appearance 
is related to the pathological classification. Fortunately, 
the achievements of radiomics in ultrasonography-based 
diagnosis have enabled a breakthrough.

Radiomics is a newly developing technique that extrac-
tion and analysis of a large number of advanced quanti-
tative image features from radiographic images, such as 
computed tomography (CT), magnetic resonance imag-
ing (MRI), and positron emission tomography (PET) fea-
tures [7]. Multiple studies have shown that radiomics can 
automatically extract and analyse histogram, texture, and 
shape information from imaging data that might not be 

evident to the naked eye and convert it to quantitative 
and minable high-dimensional data [8, 9]. The technique 
has achieved impressive success in tumour diagnosis, 
accurate classification, treatment response assessment, 
and prognosis [10]. Ultrasound-derived quantitative fea-
tures using radiomics have been used to discriminate 
malignant tumours from benign tumours in thyroid [11] 
and breast [12] tissues. However, radiomics has not yet 
been applied to kidney disease. Since the degree of renal 
cortical echogenicity can reflect the extent of renal paren-
chymal lesions, we attempted to apply radiomics to renal 
ultrasound and extract renal ultrasonographic features to 
aid the histologic classification of glomerulopathy.

In this study, we analysed the potential application 
value of radiomics based on renal ultrasound images 
in the classification of IgA nephropathy and MN. The 
method in this study will provide an unprecedented 
opportunity to improve nephropathy diagnosis and deci-
sion support in nephropathy treatment. To the best of 
our knowledge, this is the first study to analyse the appli-
cation of radiomics features in renal ultrasound images 
for the classification of IgA nephropathy.

Methods
Patient characteristics
This study was a cross-sectional study. The study was car-
ried out in the Department of Nephrology, First Affili-
ated Hospital of Zhengzhou University, from July 2019 to 
December 2019.

Inclusion criteria: 1. Patients who were adults and who 
had undergone renal biopsy for diagnosis of the cause of 
proteinuria, haematuria, azotaemia, and/or renal insuffi-
ciency; 2. patients whose pathological results confirmed 
IgA nephropathy or MN; and 3. patients not adminis-
tered glucocorticoids or immunosuppressants before 
renal biopsy.

Exclusion criteria: 1. Non-MN and non-IgA nephropa-
thy patients; 2. patients whose disease co-existed with 
other pathological types (e.g., patients with MN coex-
isting with IgA nephropathy); 3. patients who had 
previous undergone renal biopsy; 4. renal transplant 
recipients; and 5. patients with kidney stones, renal cysts, 
or tumours.

Clinical data collection
For each patient, demographic data, including age and 
sex, were recorded. Blood pressure was measured with a 
sphygmomanometer at 8:00 am by qualified physicians. 
Venous blood samples were collected from all subjects in 
the fasting state at admission before renal biopsy. Com-
plete blood counts and routine urinary and biochemical 
analyses were performed with standard laboratory meth-
ods in the clinical laboratory. The estimated glomerular 
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filtration rate (eGFR) was calculated with the CKD Epi-
demiology Collaboration (CKD-EPI) equation [13]. 
Twenty-four-hour urine was collected, and urinary pro-
tein was quantified.

Ultrasound measurement and image capture

1.	 Instrument Ultrasound testing was performed with a 
Mindray Resona 7 colour Doppler ultrasound with a 
convex array probe of 3.5 MHz.

2.	 Examination Methods The test was performed on 
the day before renal biopsy by the same operator 
for all patients. The subjects were usually positioned 
in a prone position. The longitudinal diameter and 
renal parenchymal thickness of the right kidney were 
measured in the maximum long-axis and transverse 
views. Ultrasound images of the kidney at different 
cross-sections were acquired. All images were col-
lected with the same model of ultrasound machine 
with the same parameters and saved as DICOM data 
to ensure the consistency of images.

3.	 Grouping Ultimately, 623 renal ultrasound images 
from 46 MN patients and 22 IgA nephropathy 
patients were obtained. To reduce bias, these images 
were randomly divided into a training data set (51 
cases with 470 images) and a validation data set (17 
cases with 153 images) based on the assumption that 
all data exhibited the same data distribution.

Renal biopsy
For all patients, renal biopsy was performed after ultra-
sonographic assessment. It was performed under local 
anaesthesia with lidocaine, and 16- or 18-G biopsy nee-
dles were used. The renal biopsy specimens were pre-
served in 10% formaldehyde, embedded in paraffin, 
sectioned at 6–8  µm, and subsequently stained with 
haematoxylin–eosin, trichrome Gomori, and periodic 
acid-Schiff. Finally, the samples were assessed by at 
least two pathologists via light microscopy and electron 
microscopy.

Radiomics analysis
In the kidney ultrasound images, the renal parenchyma 
in each slice was manually segmented as the region of 
interest (ROI). Subsequently, we designed and extracted 
a total of 180 dimensional radiomics features based on 
the ROIs. Next, the least absolute shrinkage and selec-
tion operator (LASSO) logistic regression algorithm was 
used to reduce the dimensionality of the extracted radi-
omics features and select the most related features. Four 
classifiers (logistic regression, a support vector machine 

(SVM), a random forest, and the K-nearest neighbour 
(KNN) method) were used to distinguish the pathologi-
cal types of glomerulopathy. The diagnostic performance 
was evaluated according to classification accuracy, the 
area under the receiver operating characteristic (ROC) 
curve (AUC), sensitivity, and specificity. The analysis 
details are given below.

Ultrasound image segmentation
Since the ultrasound images of the kidneys contained 
non-renal parenchymal parts, which might have con-
fused the classifiers during discrimination of nephropa-
thy, the renal parenchyma was first extracted to ensure 
that the model focused on that region rather than the 
other parts of each image. This step was beneficial for 
nephropathy classification. We delineated the renal 
parenchyma in every slice (through manual segmenta-
tion). The first row in Fig. 1 shows the renal parenchyma 
extraction process. The renal parenchyma in ultrasound 
images often appeared in the annulus, which is deline-
ated in Fig. 1b. To reduce errors, the renal parenchyma in 
all renal ultrasound images was outlined using a labelling 
tool that we developed and modified with two other pro-
fessional radiologists. In cases of disagreement, the final 
renal labelling was decided through discussion among 
these two radiologists and their colleagues.

Radiomics feature extraction and selection
Based on the delineated renal parenchyma regions, a 
total of 180 dimensional features were designed and 
extracted. These features contained 14 dimensional gray-
level features, 9 dimensional texture features derived 
from the gray-level co-occurrence matrix (GLCM) [14], 
13 dimensional texture features derived from the gray-
level run-length matrix (GLRLM) [15, 16], and 144 
dimensional gray-level and texture features based on sub-
images obtained by two-dimensional discrete wavelet 
decomposition at a single level (Table  1). All radiomics 
features mentioned were examined in every kidney image 
slice with the MATLAB programming platform (ver-
sion R2014b). All the radiomics features were normal-
ized to a 0–1 scale in our experiments. Considering that 
high-dimensional features could easily lead to overfitting 
of the learning algorithm and that some features might 
have no impact on the task of nephropathy classification, 
we employed supervised LASSO regression to select the 
most related features and to decrease the dimensionality 
of the features [17]. LASSO regression estimated a vec-
tor of regression coefficients by minimizing the residual 
sum of squares subject to a constraint on the L1-norm 
of the coefficient vector. Because our focused nephropa-
thy classification was actually binary classification, the 
linear model was replaced in LASSO regression with 
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logistic regression. LASSO logistic regression was used 
for nephropathy classification, which was further per-
formed in R (version 3.5.1; open-source software, https://​
www.r-​proje​ct.​org/).

Classification algorithms
To confirm the relationships of the quantitative radiomics 
imaging features with glomerulopathy, the selected radi-
omics features were used as the inputs for four machine 
learning algorithms, namely, logistic regression, an SVM 
algorithm, a random forest and a KNN algorithm, to 
differentiate MN and IgA nephropathy on ultrasound 
images. A non-invasive radiomics signature prediction 
model was constructed. These four machine learning 
algorithms were implemented with the sklearn package 
(version 0.19.1; https://​scikit-​learn.​org/) in Python.
Statistical analysis
The data in this study with normal distributions are 
shown as the means ± standard deviations (SDs), whereas 
data with non-normal distributions are reported as the 
median and interquartile range. Independent-sample 
t-tests and Mann–Whitney U tests were applied for sta-
tistical analysis. All p values are two-sided, and a p value 
of less than 0.05 was considered to indicate significance. 

The analyses were conducted by using SPSS statistics ver-
sion 22.0 (IBM Corp., Armonk, NY, USA).

Results
Patient characteristics
A total of 68 adult patients were enrolled, including 46 
MN and 22 IgA nephropathy patients diagnosed by renal 
biopsy. The clinical characteristics, biochemical data, and 
ultrasonographic kidney measurements are summarized 
in Table 2. Patients with MN were older than those with 
IgA nephropathy. Total cholesterol, low-density lipopro-
tein, and 24-h urinary protein levels were significantly 
higher in patients with MN than in patients with IgA 
nephropathy (p < 0.05). Kidney size was not significantly 
different between the indicated two groups (p > 0.05).

For analysis, the images in the two groups were divided 
into two other groups: a test group and a training group. 
Seventy-two images of 8 patients in the IgA group and 
81 images of 9 patients in the MN group were randomly 
selected as the validation set. The remaining images of 
each group were included in the training set. The clinical 
characteristics, biochemical data, and renal ultrasono-
graphic measurements of the training set and validation 
set for the IgA patients and MN patients are summarized 

Fig. 1  The feature analysis workflow of kidney image. a–c are the extracting route of the renal parenchyma region. a kidney image; b renal 
parenchyma extraction; c renal parenchyma region; d–f are the radiomics feature computation. d gray value statistics; e features statistics; f wavelet 
decomposition

https://www.r-project.org/
https://www.r-project.org/
https://scikit-learn.org/
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in Table  3. No indicators were significantly different 
between the training set and validation set for either 
group.

Selection of radiomics features
For LASSO logistic regression, we selected an appro-
priate regularization parameter (λ) according to the 
cross-validated deviance. The data in Fig. 2 describe the 
mapping relationship of the cross-validated deviance 
with non-zero coefficients (that is, the number of selected 
radiomics features) and the lambda fit by LASSO logis-
tic regression. The top axis is the number of non-zero 
coefficients. The left vertical dashed line represents the 
λ providing the smallest cross-validated deviance. Addi-
tionally, the right vertical dashed line represents the 
minimum deviance plus no more than one standard devi-
ation. Collectively, we selected 33 features based on the 

smallest cross-validated deviance. Table  4 shows the 33 
selected radiomics features.

Nephropathy classification performance
We then evaluated the classification performance of 
our proposed algorithms for the collected data. Figure 3 
shows the training ROC curves of the different classifi-
ers for the image slices, and Table 5 shows the classifica-
tion performance of the different classifiers for the image 
slices in the training stage. The accuracy, AUCs, speci-
ficity, and sensitivity of the four classifiers based on the 
selected 33 features for the validation set are shown in 
Table 6. Since every patient had several ultrasonographic 
slices and since the nephropathy was identical, we com-
puted the accuracy and AUC values for ultrasonographic 
slices and patients, respectively. The mean predicted 
probability of all slices in each patient served as the prob-
ability for that patient. The validation performance was 
slightly lower than the training performance, which was 
normal, and the difference between the training and vali-
dation performance was slight, indicating that the train-
ing set was not severely over-fitted. Notably, the feature 
dimensions and classifier capacity were matched.

The four classification models all exhibited good per-
formance based on the extracted and selected radiomics 
features. The AUCs of all models were higher than 0.7 for 
the test data, and the random forest had the highest AUC 
at 0.7639. Logistic regression had the highest accuracy at 
0.7647, while the KNN method had the lowest accuracy 
at 0.5294. The random forest and KNN model had the 
highest specificity (0.8750), suggesting that their ability to 
recognize IgA nephropathy was strong and that these two 
classifiers had a lower misdiagnosis rate than the others. 
Logistic regression and the SVM had the highest sensi-
tivity at 0.8889, suggesting that their ability to recognize 
MN was strong and that these two classifiers had a lower 
missed diagnosis rate than the other classifiers. Impor-
tantly, the ROC curves shown in Fig. 4 also confirmed the 
sensitivity and specificity of the different classifiers.

Discussion
Here, we performed radiomics analysis to quantitatively 
characterize the ultrasonographic imaging features of IgA 
nephropathy and MN. Our results revealed that the radi-
omics-based method exhibited excellent performance for 
differentiating IgA nephropathy from MN on ultrasound 
images. To our knowledge, this is the first application of 
radiomics for prediction of the renal pathologic type of 
primary glomerulopathy on the basis of renal ultrasound.

Glomerulopathy can be classified according to demo-
graphic characteristics (such as age and sex) and clinical 
manifestations (such as haematuria and urinary protein) 

Table 1  Extracted Radiomics features in our paper

Feature type Feature name

Gray-level Energy
Entropy
Kurtosis
Maximum
Mean
Mean absolute deviation
Mediam
Minimum
Rang
Root mean square
Skewness
Standard deviation
Uniformity
Variance

GLCM Energy
Contrast
Entropy
Homogeneity
Correlation
Variance
Sum average
Dissimilarity
Autocorrelation

GLRLM Short Run Emphasis
Long Run Emphasis
Gray-Level Nonuniformity
Run-Length Nonuniformity
Run Percentage
Low Gray-Level Run Emphasis
High Gray-Level Run Emphasis
Short Run Low Gray-Level Emphasis
Short Run High Gray-Level Emphasis
Long Run Low Gray-Level Emphasis
Long Run High Gray-Level Emphasis
Gray-Level Variance
Run-Length Variance

Wavelet Gray-level and texture features calculated on 
four non-decimated 2-D wavelet decom-
position
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Table 2  Comparison of clinical parameters between IgA patients and MN patients

P < 0.05 has been accepted to be significant. Normal distribution data are presented as means ± SD. Abnormal distribution data are presented as median, 25 
percentile, and 75 percentile

SBP systolic blood pressure, DBP diastolic blood pressure, Hb hemoglobin, TP total protein, Alb albumin, BUN blood urea nitrogen, Cr creatinine, UA uric acid, TC total 
cholesterol, TG triglyceride, HDL high-density lipoprotein, LDL low-density lipoprotein

IgA(n = 22) MN(n = 46) P value

Male (%) 12 (40.9%) 30 (65.2%) 0.317

Age (year) 39.29 ± 10.80 49.48 ± 12.62 0.002

SBP (mmHg) 132.57 ± 18.27 133.09 ± 14.92 0.903

DBP (mmHg) 82.76 ± 10.53 88.16 ± 15.59 0.156

Hb (g/L) 121.57 ± 20.35 129.99 ± 17.19 0.084

BUN (mmol/L) 8.06 (3.60, 15.40) 5.86 (2.30, 10.90) 0.141

Cr (mmol/L) 106.14 (53.00, 222.00) 73.19 (36.00, 137.00) 0.361

UA (mmol/L) 378.0 ± 127.47 336.61 ± 112.96 0.186

eGFR (ml/min.1.75m2) 73.67 (13.60, 122.74) 92.94 (39.54, 141.08) 0.722

Alb (g/L) 35.42 (13.60, 44.10) 25.01 (15.10, 41.20) 0.316

TC (mmol/L) 4.69 ± 1.12 7.31 ± 2.29 0.000

TG (mmol/L) 1.56 (0.58, 4.85) 2.77 (0.87, 5.89) 0.053

HDL (mmol/L) 1.34 (0.76, 2.86) 1.72 (0.67, 4.28) 0.877

LDL (mmol/L) 2.96 ± 0.90 4.96 ± 2.12 0.000

Hematuria(%) 19 (86.4%) 24 (52%) 0.050

Urinary protein quantitative (g/24 h) 1.38(0.73, 2.30) 4.59 (2.64, 6.42) 0.000

Renal longitudinal diameter (mm) 103.20 (90.00, 130.00) 108.84 (93.00, 130.00) 0.968

Renal parenchyma thickness (mm) 14.73 (10.00, 20.00) 15.35 (12.00, 20.00) 0.508

Table 3  Comparison of clinical parameters between the training set and validation set of IgA patients and MN patients

P < 0.05 has been accepted to be significant. The p values of the above statistical results were all greater than 0.05. Normal distribution data are presented as 
means ± SD. Abnormal distribution data are presented as median, 25 percentile, and 75 percentile

SBP systolic blood pressure, DBP diastolic blood pressure, Hb hemoglobin, Alb albumin, BUN blood urea nitrogen, Cr creatinine, UA uric acid, TC total cholesterol, TG 
triglyceride, HDL high-density lipoprotein, LDL low-density lipoprotein

IgA(n = 22) MN(n = 46)

Training set
(n = 14)

Validation set
(n = 8)

Training set
(n = 37)

Validation set (n = 9)

Age (year) 37.08 ± 9.27 42.88 ± 12.74 49.59 ± 12.48 49.00 ± 13.98

SBP (mmHg) 127.38 ± 6.87 141.00 ± 27.24 131.83 ± 13.40 138.11 ± 20.10

DBP (mmHg) 80.15 ± 6.62 87.00 ± 14.44 87.31 ± 11.92 91.56 ± 26.43

Hb (g/L) 116.42 ± 19.44 129.94 ± 20.16 129.29 ± 17.47 132.87 ± 16.65

BUN (mmol/L) 7.62 (4.00, 15.40) 8.72 (3.60, 14.50) 5.68 (3.20, 10.60) 6.71 (2.30, 10.90)

Cr (mmol/L) 104.65 (53.00, 189.00) 108.25 (53.00, 222.00) 72.27 (36.00, 102.00) 77.45 (36.00, 137.00)

UA (mmol/L) 351.89 (244.00, 624.00) 366.42 (84.00, 538.00) 336.54 ± 117.83 336.89 ± 96.42

eGFR (ml/min.1.75m2) 70.93 ± 35.46 69.09 ± 33.54 93.47 ± 19.50 88.99 ± 29.48

Alb (g/L) 36.45 (19.30, 44.10) 33.87 (13.60, 43.8) 24.78 ± 6.76 24.80 ± 6.42

TC (mmol/L) 4.94 (2.61, 6.17) 4.56 (3.24, 5.57) 7.39 ± 2.19 6.97 ± 2.75

TG (mmol/L) 1.54 (0.58, 4.85) 1.60 (0.66, 3.40) 2.90 ± 1.36 2.43 ± 1.33

HDL (mmol/L) 1.29 (0.84, 2.70) 1.41 (0.76, 2.86) 1.49 ± 0.52 2.20 ± 1.26

LDL (mmol/L) 3.21 ± 1.01 2.61 ± 0.59 5.14 ± 2.09 4.18 ± 2.16

Hematuria(%) 11 (79%) 8 (100%) 22 (59%) 2 (22%)

Urinary protein quantitative (g/24 h) 1.58 (0.67, 2.70) 1.20 (0.75, 1.50) 3.90 (2.44, 6.34) 5.62 (4.00, 7.61)

Renal longitudinal diameter (mm) 103.77 ± 10.16 103.25 ± 10.79 108.62 ± 7.51 110.33 ± 14.00

Renal parenchyma thickness (mm) 15.33 (10.00, 20.00) 13.83 (12.00, 16.00) 15.22 (12.00, 20.00) 16.00 (13.00, 19.00)
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[18]. In our study, IgA nephropathy occurred frequently 
in adolescents. The clinical features were chronic glo-
merulonephritis characterized by asymptomatic haema-
turia with urinary protein that generally did not exceed 
2.0  g/24  h. In contrast, MN primarily affected middle-
aged adults. It often manifested as nephrotic syndrome 
including significant proteinuria, hypoproteinaemia and 
hyperlipidaemia. Therefore, the clinical parameters of 
IgA nephropathy and MN presented in Table 2 were con-
sistent with those in a previous study [18]. However, the 
accuracy of the predictions was not as high as expected. 
Li C et  al. [19]. trained and validated a machine learn-
ing algorithm using data from 222 patients (88 MN, 28 
IgA) to build a pathological prediction model for pri-
mary nephrotic syndrome. The algorithm identified 17 
of 33 variables as contributing strongly to the type of 
renal pathology. The accuracy of model prediction for 
MN was 76.1%, whereas the accuracy for IgA nephrop-
athy was only 57.1%. In addition to assessment of clini-
cal manifestations, several other methods are commonly 
used to distinguish the pathological types of kidney dis-
ease, such as renal biopsy and biomarker analysis. Renal 
biopsy is the gold standard for diagnosis. However, due to 
the invasiveness of examination and the many contrain-
dications, its clinical application is limited. Importantly, 
the discovery of biomarkers has improved the accuracy 
of non-invasive diagnosis of glomerulonephritis. In 
2009, podocyte phospholipase A2 receptor (PLA2R) was 
reported as an antigenic target in autoimmune adult MN. 

Fig. 2  Cross-validated deviance with the number of non-zero 
coefficients and Lambda fit by LASSO logistic regression

Table 4  The selected 33 radiomics features by LASSO logistic 
regression

Feature type Feature name

Gray-level Entropy

Uniformity

GLCM Contrast

Sum average

GLRLM Short Run Low Gray-Level Emphasis
Short Run High Gray-Level Emphasis
Long Run Low Gray-Level Emphasis
Long Run High Gray-Level Emphasis
Gray-Level Variance

Wavelet Entropy
Mediam
Contrast
Variance
Sum average
Gray-Level Nonuniformity
Run-Length Nonuniformity

Mediam
Energy
Correlation
Sum average
Short Run Emphasis

Contrast
Correlation
Gray-Level Nonuniformity
Short Run Low Gray-Level Emphasis
Run-Length Variance

Kurtosis
Skewness
Energy
Gray-Level Nonuniformity
Short Run Low Gray-Level Emphasis
Gray-Level Variance
Run-Length Variance

Fig. 3  Training ROC curve of different classifiers on image slices

Table 5  Training classification performance of different 
classifiers on image slices

LR KNN SVM RFC

Accuracy 0.8128 0.7723 0.8234 0.7213

AUC​ 0.8570 0.8003 0.8992 0.7922
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Anti-PLA2R antibodies in serum have high specificity 
(close to 100%) and sensitivity (70–80%) for diagnosis of 
primary MN [20]. Notably, the antibody tests can only be 
used to identify primary MN. Specific biomarkers have 
not been discovered for IgA nephropathy or other types 
of glomerular diseases, which limits the clinical applica-
tion of biomarkers [21].

Renal ultrasound can indicate the shape, blood sup-
ply and elasticity of the kidney and is used to evalu-
ate kidney function and pathology [5, 6]. However, this 
technique has not been used for the pathological classi-
fication of glomerulopathy due to technical limitations. 
Radiomics feature analyses and machine learning algo-
rithms are promising methods for optimization of radi-
ology evaluation and have been shown to perform well 
for various classification problems and imaging modali-
ties. Radiomics has been used to predict the histological 
subtypes of renal tumours preoperatively [22]. However, 
unlike the focal lesions of renal cell carcinoma, glomer-
ular lesions are usually diffuse lesions in both kidneys 
and are examined by ultrasound, not CT or MRI. This 
is the first attempt to classify diffuse glomerular lesions 
by using ultrasound imaging analysis-based radiomics. 
In this study, a series of 180 dimensional features were 
extracted from renal ultrasound images of IgA nephropa-
thy and MN to describe renal characteristics. We used a 

supervised feature selection algorithm (LASSO regres-
sion), which differs from several other dimension reduc-
tion methods that do not consider the object class, to 
find the features most related to nephropathy for classi-
fication. The highest classification AUC of 0.7639 and the 
highest specificity of 0.8750 were achieved by the random 
forest. Logistic regression attained the highest accuracy 
of 0.7647 and the highest sensitivity of 0.8889. Our model 
based on ultrasound images was significantly better than 
a model based on clinical data [19]. Our study demon-
strates that biopsy-free prediction of the pathologic type 
of glomerulopathy based on renal ultrasonography radi-
omics is feasible and promising.

Based on the LASSO logistic regression coefficients 
assigned to each feature, the increased weights of the 
33 selected features were obvious. The features with 
the highest weights were as follows: the gray-level vari-
ance; the sum average and run-length non-uniformity 
of 2-dimensional wavelet AA decomposition; the energy 
of 2-dimensional wavelet AD decomposition; the cor-
relation, gray-level non-uniformity, and short-run 
low-gray-level emphasis of 2-dimensional wavelet DA 
decomposition; and the kurtosis, skewness, energy, gray-
level non-uniformity, short-run low-gray-level emphasis, 
gray-level variance, and run-length variance of 2-dimen-
sional wavelet DD decomposition (‘A’ stands for the low-
pass filter, and ‘D’ stands for the high-pass filter). We 
found that the features with the highest weights were 
texture features based on the GLCM and GLRLM. Tex-
ture is an important characteristic for identifying objects 
or ROIs in an image. Textural features are based on gray-
tone spatial dependencies and distributions. The distribu-
tions of run lengths and the distributions of gray values of 
runs are distinct entities. In addition, texture is correlated 
with image scale, and wavelets are suitable for extracting 
multi-scale texture features. The renal parenchymas in 
different ultrasound images have different shapes, scales, 
and views. Therefore, texture features based on wavelet 
decomposition are very useful for image recognition, and 
the aforementioned highest-weighted features also prove 
this.

The effect of feature selection was also evaluated 
through comparison of the classification performance 
between all the radiomics features and selected features. 
We implemented fivefold cross validation to select 33 
features based on the smallest cross-validated deviance. 
The accuracy of logistic regression and the SVM for 
the selected features was higher than that for the non-
selected features (Additional file 1:  Table 1). The AUCs 
of the logistic regression, random forest and KNN meth-
ods for the selected features were also higher than those 
for the non-selected features. Therefore, feature selection 
plays a positive role in nephropathy classification because 

Table 6  The nephropathy classification performance of four 
classifiers

Model Accuracy AUC​ Specificity sensitivity

Logistic regres-
sion

Test set 0.7647 0.7500 0.7500 0.8889

SVM Test set 0.7059 0.7222 0.7500 0.8889
Random forest Test set 0.7059 0.7639 0.8750 0.6667

KNN Test set 0.5294 0.7361 0.8750 0.5556

Fig. 4  The ROC curve of four classifiers on nephropathy classification
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LASSO logistic regression is a supervised algorithm that 
can select features that are related to nephropathy types. 
There are also other object optimization criteria in addi-
tion to deviance, such as the mean squared error (MSE), 
mean absolute error (MAE), misclassification error, and 
AUC. MSE and MAE are not suitable for classification 
tasks due to their use for regression. Deviance is evalu-
ated according to the log-likelihood error, and the AUC 
is the most popular evaluation criterion. Decreasing the 
deviance error is very important, as a small deviance 
represents good classification and optimization ability. 
Thus, we obtained the regression coefficients based on 
the smallest deviance. We also attempted to use the AUC 
criterion to select features, and the results changed little 
with deviance.

In the renal ultrasound image dataset, each patient had 
at least 9 image slices with different kidney representa-
tions and imaging views to facilitate renal status obser-
vation by radiologists. The combination of multiple slices 
was indeed beneficial for discriminating renal status. 
The classification performance comparison revealed that 
the accuracy and AUC of these four classifiers (logistic 
regression, SVM, random forest, and KNN) for patients 
were at least 5% better than those for individual slices 
(Additional file  1: Table  2). The reason is that multiple 
ultrasonic slices with different imaging views comple-
ment each other to aid in the final classification. We have 
therefore demonstrated that the integration of multi-
ple ultrasonic slices can improve the final classification 
performance and contribute to the discrimination of 
nephropathies. In the future, exploration of new algo-
rithms to utilize multiple ultrasonic slices will be a prom-
ising research topic.

In this study, we verified the feasibility of histologi-
cal classification with ultrasound images and provided 
an alternative diagnostic technique. The technique is 
non-invasive and shows great promise with significant 
safety and efficacy benefits. Although the data in this 
study were of high quality and were meticulously col-
lected, there were some limitations of the study. For 
example, it had a limited sample size and few clinical 
types and was a single-centre study. The limited sample 
size might have resulted in overfitted and overly opti-
mistic results. The analyses were restricted to the most 
common subtypes (IgA nephropathy and MN) and 
thus did not reflect the clinical diversity, and the lack 
of sub-stratification of IgA nephropathy and MN limits 
the clinical applicability of the results. To enable broad 
clinical application of this approach and to improve 
the classification effectiveness, large-scale prospective 
multi-centre studies are needed to validate our results. 
In addition, considering the sample size of the patient 
cohort evaluated, the lack of an independent external 

test dataset may limit the generalizability of our results 
despite the variety of measures used in our study, such 
as cross-validation. This limitation might influence the 
applicability of our findings to other patient popula-
tions. Finally, the main aim of this study was to assess 
whether renal ultrasonography radiomics features 
could be used for the histologic classification of glo-
merulopathy; therefore, we evaluated this possibility 
through simple feature extraction and classification. 
In the future, we will also deploy a novel deep learn-
ing method to improve classification performance. 
Furthermore, the underlying bio-pathological changes 
associated with specific radiomics feature profiles of 
glomerulopathy subtypes need further investigation.

Conclusions
In conclusion, radiomics signatures extracted from 
renal ultrasound images can help to differentiate IgA 
nephropathy from MN. Radiomics analysis, a non-inva-
sive method, is helpful for histological classification of 
glomerulopathy. This study may have a clinical impact, 
providing an unprecedented opportunity to improve 
the diagnosis of nephropathy and decision support for 
nephropathy treatment. In the future, in-depth studies 
are needed to confirm these findings.
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