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The transfer and transformation of 
collective network information in 
gene-matched networks
Takashi Kitsukawa & Takeshi Yagi

Networks, such as the human society network, social and professional networks, and biological 
system networks, contain vast amounts of information. Information signals in networks are 
distributed over nodes and transmitted through intricately wired links, making the transfer and 
transformation of such information difficult to follow. Here we introduce a novel method for 
describing network information and its transfer using a model network, the Gene-matched network 
(GMN), in which nodes (neurons) possess attributes (genes). In the GMN, nodes are connected 
according to their expression of common genes. Because neurons have multiple genes, the GMN 
is cluster-rich. We show that, in the GMN, information transfer and transformation were controlled 
systematically, according to the activity level of the network. Furthermore, information transfer and 
transformation could be traced numerically with a vector using genes expressed in the activated 
neurons, the active-gene array, which was used to assess the relative activity among overlapping 
neuronal groups. Interestingly, this coding style closely resembles the cell-assembly neural coding 
theory. The method introduced here could be applied to many real-world networks, since many 
systems, including human society and various biological systems, can be represented as a network of 
this type.

Many systems can be represented as a network consisting of nodes connected by links1–3. Examples 
include social networks4–6 such as acquaintance networks7 and collaboration networks8, biological net-
works such as neural networks6, food webs9, and metabolic networks10,11, and technological networks 
such as the Internet12 and the World Wide Web13. The existence of a link between nodes indicates that 
interaction or signaling can occur between the nodes. These signals, such as the behaviors of persons in 
a social network14 or neuronal activity in a neural network15–18, transmitted among nodes through links, 
shape the collective information in the network. Thus, the form of the network information is dependent 
on how the signals are transmitted in the network, which is subject to the architecture of the links14,19–21. 
Links are often made according to local rules, such as the attributes or labels of nodes. For example, 
people who possess a common hobby have an increased probability of being acquainted, and proteins 
engaging in a common biological process have an increased probability of functioning together. Such 
local rules hidden in the creation of links may determine the architecture of the network and thus the 
network information shaped by the architecture. Nodes often possess multiple attributes or labels, the 
assembly of which can influence link formation. To analyze the effect of multiple latent node attributes on 
link formation and network structure, Kim and Leskovec developed the latent multi-group membership 
graph (LMMG) model, in which nodes are assigned multiple attributes that influence link formation22–24. 
They showed that their model could explain the structure of real networks; however, they did not analyze 
the effect of multiple node attributes on signal transmission or information transfer.

In this study, we focused on the attributes of nodes that influence link formation, and describe 
the transfer and transformation of network information using these attributes. For this purpose, we 
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established a model neural network called the gene matched network (GMN), which is comprised of 
nodes (neurons) that possess attributes (genes).

Results
The architecture of the GMN. In the GMN, each neuron expresses genes that are randomly selected 
from a gene repertoire (GR), and neurons expressing any common genes are connected, forming sub-
networks (Fig. 1a,b). The neurons express multiple genes (a GMN with two genes is shown in Fig. 1), 
and each neuron belongs to as many complete subnetworks as the number of genes it expresses. This 
overlapping feature of the GMN contributes to the generation of shortcuts between non-adjacent neu-
rons (Fig. 1b). Thus, the GMN is rich in clusters and shortcuts. We found that a GMN consisting of 100 
neurons, each expressing two genes (GE =  5), with a GR of 50 genes (GR =  50), exhibited the character-
istics of a small-world network6 (Fig. 1c,d). Next, we analyzed the effect of the GR size on the GMN’s 
network properties. While the shortest path length of the GMNs at any GR showed little difference from 
that of a random network (Fig. 2a), the clustering coefficients of the GMNs with small GRs (GR =  20, 
50) were much higher than that of the random network, indicating that the GMNs with small GRs were 
small-world networks (Fig. 2b).

Reliable transfer of network information in the GMN. Clusters are reported to influence the 
spreading of behaviors and diseases14,21, implying that clusters have the potential to store information 
transmitted by recurrent signals. Thus, the overlapping of complete subnetworks, a characteristic of the 
GMN, was predicted to influence information flow. To study information transfer in the GMN, we ana-
lyzed multi-layer GMNs. In general, information cannot be reliably transferred in randomly connected 
multi-layer networks, because the signals impinging on each node converge and diverge randomly as 
they move through the layers, which is equivalent to averaging (Supplementary Fig. 1a). In contrast, 
when signal transmission follows the architecture of the GMN, the complete subnetworks in the GMN, 
each of which consists of neurons expressing a particular gene (Supplementary Fig. 1b), may function 
to store, integrate, and convey information to the next layer. If this view is correct, multi-layer GMNs 
with large complete subnetworks, due to a relatively small GR (such as 20 or 50) (see Figs  1b and 
2b; high clustering coefficients reflect large complete subnetworks) should show reliable signal transfer. 
To test this hypothesis, we analyzed the signal transmission obtained using a multi-layer GMN and a 
degree-matched random network. In this experiment, signals are transmitted in a top-down manner 
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Figure 1. Characteristics of the circular GMN. (a) A GMN with eight neurons, each of which expressed 
two genes from a repertoire of six genes (colors). Neurons expressing common gene(s) were connected. 
Subnetworks connected by a single gene are shown below. A subnetwork connected by a single gene 
expressed in three neurons formed a triangle or cluster (genes 1–4). (b) A GMN with 30 neurons, each of 
which randomly expressed 2 genes from a repertoire of 30 genes. Neurons expressing gene 1 (green) and 
gene 2 (red) were re-aligned and extracted from the GMN (below). Shortcuts made by neurons expressing 
both gene 1 and 2 or neurons expressing gene 3 (yellow) are shown. (c,d) The average shortest path length 
(c) and clustering coefficients (d) of a circular GMN with 100 neurons (GR =  50, GE =  5, open bars), a 
random network, and a regular network (lattice as in Watts and Strogatz, 1998). In the GMN used for c and 
d, one connection was defined even when a pair of neurons shared multiple common genes.
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through connections between two neuronal layers (Fig. 3a). The signals are summed in the second layer, 
and the activated neurons in this layer are determined according to the summed input of each neuron 
and the activation percentage (AP) of the layer. The AP is the percentage of neurons being activated in a 
particular layer. The profile of activated neurons is represented by the active-neuron array (Fig. 3a), and 
the profile of genes expressed in the activated neurons is represented by the active-gene array (Fig. 3b). 
If the hypothesis is correct, the active-gene array should carry information and serve as a readout of 
information transfer (See Discussion).

To explore the functionality of the model, graphical images (12 ×  12 pixels, Supplementary Fig. 
2) randomly selected from a photograph (Fig.  4a) were used as input signals in the GMN (GR =  50, 
GE =  5). Figure  4c–f shows four example images and the corresponding responses in each layer with 
an AP of 50%. Note that similar image inputs (Fig.  4c–f) yielded similar active-gene arrays at each 
layer. Conversely, similar images could be found by searching images according to the similarity of their 
active-gene arrays (Supplementary Fig. 3c). Using an AP of 50%, the active-gene arrays of each image 
showed similar patterns at each of the five layers examined (Fig.  4c–f, right), while the active-neuron 
arrays were different in each layer (Fig. 4c–f, left). Notably, even when the active-gene arrays at layer 10 
(template images) were compared to those at layer 2 (candidate images), similar images were observed 
(Fig.  5p, Supplementary Fig. 3f and Supplementary Fig. 4p). These results suggest that the active-gene 
array may be broadly applicable as a representation of network information.

To examine the reliability of information transfer, we analyzed the cross-layer consistency of the 
distance between a pair of inputs as they traveled across layers 2 through 10 in the GMN. If the infor-
mation transfer was reliable, the distance between the input signal pairs should be positively correlated 
with the distance between the output pairs. In other words, similar inputs in a given layer should give 
rise to similar outputs in the following layers, while dissimilar inputs should give rise to dissimilar out-
puts (Supplementary Fig. 5). We calculated the cross-layer consistency of the active-neuron arrays and 
the active-gene arrays in the GMN (GR =  50, GE =  5) and found that both remained high even after 
passing across 8 layers (Fig. 4g,h and Supplementary Fig. 6). In contrast, the cross-layer consistency of 
the active-neuron arrays was lost after passing through several layers of a randomly connected network. 
Thus, the structure of the GMN may serve to maintain the cross-layer consistency.

To obtain further insight into how the structure of the GMN maintains the cross-layer consistency, 
the robustness of the cross-layer consistency was analyzed as the GMN was disrupted by neuron removal, 
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Figure 2. Effect of GR size on the architecture of the circular GMN. Effect of GR on the average shortest 
path length (a) and the clustering coefficient (b) of circular GMNs (open diamonds), random networks 
(closed circles), and regular networks (with lattices as in Watts and Strogatz, 1998, closed triangles). All of 
the networks in a and b were circular networks with 100 neurons and 500 undirected connections. Data 
points were determined from 100 realizations of the network.
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or by random connection replacement or removal. First, we analyzed the effect of neuron removal by 
randomly removing 10% to 90% of the neurons from the same original GMN. Gradual deterioration of 
the cross-layer consistency was observed (Fig. 6a,b). Next, we analyzed the effect of connection replace-
ment by randomly replacing 10% to 90% of the connections from an original GMN with 1000 neu-
rons (GR =  50, GE =  5, AP =  50%). Analysis revealed that the cross-layer consistency from layer 2 to 
layer 10 gradually decreased as more connections were replaced (Fig.  6c,d). Interestingly, in contrast 
to the neuron removal, a sharp drop in consistency after slow deterioration was observed when 50% of 
the connections were replaced, indicating that the architecture of the GMN may serve to maintain the 
cross-layer consistency. A similar pattern of cross-layer consistency degradation was observed when the 
connections in GMNs were randomly removed (Fig. 6e,f). These results suggest that a loss or error in 
GMN connections has a moderate effect on the reliability of signal transfer.

We also examined the effect of the GR size (GR =  20, 50, 100, 1,000, 10,000) on the cross-layer con-
sistency of the GMN. To obtain GMNs with comparable numbers of connections, the number of genes 
expressed (GE) was set to 3, 5, 7, 22, or 71 for a GR size of 20, 50, 100, 1,000, or 10,000, respectively. 
The number of neurons comprising a subnetwork in a layer was 150, 100, 70, 22, and 7.1 on average, 
respectively. We found that the cross-layer consistency deteriorated in the GMNs containing large GRs 
(> 1000, Fig. 6g,h); in these cases, signal re-entry into a complete subnetwork would be unlikely due to 
the small subnetwork size. These findings support the notion that complete subnetworks function to 
store and convey information. Since the size of the subnetworks would be greater when a layer has more 
neurons, layered GMNs with large numbers of neurons would exhibit more reliable cross-layer consist-
ency in large GR size conditions.

Finally, we analyzed the response specificity of individual neurons. For every neuron, the images that 
activated it were averaged, generating the optimum image for that neuron. The averaged images obtained 
from the neurons of the GMN (Supplementary Fig. 7a) and the random network (Supplementary Fig. 7c) 
showed almost the same sharp contrast after passing through one layer. Remarkably, the averaged images 
obtained from the GMN at layer 10 still had sharp contrast (Supplementary Fig. 7b), while the averaged 
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Figure 3. Scheme of information transfer in a multi-layer GMN. (a) A GMN with two layers of neurons, 
each expressing 3 genes from a repertoire of 10 genes. When a neuron in layer 1 is activated (input =  1), 
the signal are multiplied by the number of connections and transmitted to layer 2 neurons. The input to 
each layer 2 neuron is the sum of inputs (Sum input) from activated neurons in layer 1. In this instance, 
the neurons whose summed inputs rank in the upper 50% (AP =  50) are activated, representing the active-
neuron array. (b) Histogram of genes expressed in the activated neurons, representing the active-gene array.
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Figure 4. Transfer of image information in a GMN. (a) Photograph (553 ×  737 pixels) from which small image 
inputs (12 ×  12 pixels) were randomly selected (1000 examples of the small images are shown in Supplementary 
Fig. 2). Locations of the four small image inputs shown in (c–f) are indicated by arrows. (b) Architecture of the 
GMN (GR =  50, GE =  5, AP =  50). Each layer contained 1000 neurons except for the first layer (144 neurons). In 
layer 1, each neuron received input, the value of which corresponded to the pixels in the small images. (c–f) Input 
images and the resulting active neuron patterns (left). (The first 50 of 1000 neurons in each layer are shown.) 
Histograms of the active-gene arrays in layers 1–5 are shown (right). Note that similar images (c–f) had similar 
active-gene arrays. (g,h) Linear regression analysis of the cross-layer consistencies from layer 2 to each of the 
following layers, calculated using the active-neuron arrays of the GMN (solid line in (g)) and a random network 
(dashed line in (g)), and using the active-gene arrays of the GMN (h). Data shown are the means ±  s.d., n =  10.
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Figure 5. Transformation of active-gene arrays by various GMNs. Various GMNs (GR =  50, GE =  5) were 
used. Transmission polarities are specified by arrows (positive) and bars (negative). (a) Template image and 
common layers (1 and 2). AP (layer 2) =  50%. (b) AP (layers 3- 10) =  50%. (c) AP (layer 3) =  50%. (d) GMN 
representing the cerebellar network, with layers 2- 5 corresponding to the pontine nuclei, granule cell layer, 
Purkinje cell layer, and cerebellar nuclei, respectively. AP (layers 3- 5) =  25%. The combination ratio between 
main and side branches was 1:2. (e) GMN representing the basal ganglia, with layers 3- 6 corresponding to 
the striatum, external globus pallidus, substantia nigra pars reticulata, and thalamic nuclei, respectively. AP 
(layers 3, 4, 5, 6) =  25, 10, 25, 25%, respectively. The combination ratio between main and side branches was 
1:2. (f) The active-gene array of layer 2, aligned in descending order, called the input order. (g) The active-
gene array in layer 2 averaged over 5,000 candidate images (s.d., gray area). (h,j,l,n) The active-gene arrays at 
the last layer of GMNs (b,c,d,e) respectively. (i,k,m,o) The active-gene arrays averaged over the 5,000 images 
at the last layer of GMNs (b,c,d,e) respectively (average, solid line; s.d., gray area). (p–s) Sample images 
listed according to the similarity of their active-gene array at layer 2 to the active-gene array of the template 
image in the last layer of GMNs (b,c,d,e) respectively. The active-gene arrays shown in h-s were re-aligned 
in the input order.
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Figure 6. Effect of network deterioration and GR size on information transfer. Slopes were obtained by 
linear regression analysis of the cross-layer consistencies from layers 2 to 10, calculated using the active-
neuron arrays (a,c,e,g) and active-gene arrays (b,d,f,h). Averages and error bars (s.d.) were calculated over 
10 realizations of the network. The input images and the GMN architecture were the same as those shown 
in Fig. 4, except for the parameters mentioned below. (a,b) Cross-layer consistency of the GMNs (GR =  50, 
GE =  5, AP =  50%), in which 0–90% of the neurons were randomly removed. (c,d) Cross-layer consistency 
of the GMNs (GR =  50, GE =  5, AP =  50%) in which 0–100% of the connections were randomly replaced, 
and of the connection-number-matched random connected network. (e,f) Cross-layer consistency of the 
GMNs (GR =  50, GE =  5, AP =  50%), in which 0–90% of the connections were randomly removed. (g,h) 
Cross-layer consistency of GMNs (AP =  50) with different GRs.
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images obtained from the random network became almost uniformly gray (Supplementary Fig. 7d). This 
result indicates that neurons in the GMN maintained their response specificity in the deep layers, while 
neurons in the random network did not, due to the random mixing of information (Supplementary Fig. 
1). Thus, in the GMN, it is possible to describe input images based on the combination of neurons, which 
means that the GMN layers can maintain the information of input images.

Consistent transformation of network information by the GMN. In the above analyses, the AP 
was set to 50%, which resulted in reliable signal transmission that could be explicitly observed in the 
pattern of the active-gene arrays (Fig.  4c–f, right). When the AP was more restrictive (5% and 25%), 
the expression of high-ranking genes was augmented, while that of lower-ranking genes was diminished 
(Fig. 7b). In contrast, when the transmission polarity was negative, representing the case in which neu-
rons in the preceding layer were inhibitory neurons, the expression of low-ranking genes was augmented 
(Fig.  7c). In addition, more complex transformation of the active-gene arrays was achieved by signal 
bifurcation, and by changing the transmission polarity and AP settings (Fig. 5d,e), for example, which 
were modeled based on the excitatory and inhibitory connections following those in the cerebellum 
and basal ganglia, respectively. Notably, the GMN layers were connected on the basis of common gene 
expression, without incorporating any learning steps.

If the active-gene array represented the information in the images, then transformed active-gene arrays 
should be reflected in the images in consistent ways. When similar active-gene arrays at layer 2 were 
searched using the active-gene arrays transformed by negative connection (activation of bottom-ranked 
neurons, Fig. 5c,j,k and Supplementary Fig. 4c,j,k), negative images of the original images were obtained 
(Fig.  5q, Supplementary Fig. 4q and Supplementary Fig. 8b). Similarly, image searches were executed 
using the active-gene arrays transformed by two complex GMNs (Fig.  5d,l,m,e,n,o). These complex 
GMNs yielded neither similar nor negative images of the original, but many of the resulting images 
shared common features with each other (Fig. 5r,s Supplementary Fig. 4r,s and Supplementary Fig. 8c,d). 
Notably, the active-gene array exhibiting augmentation on both ends (Fig. 5n,o) picked up images with 
two white areas on the right and left sides (Fig. 5s and Supplementary Fig. 8d left), which were observed 
separately in in the simple GMNs in Fig. 5p,q, respectively. These results indicate that the transformation 
of image information was consistent with the transformation of active-gene arrays by the non-linear 
activation of neurons in the GMNs.

Discussion
Here we established a network model, the GMN, in which node attributes (genes) influence link forma-
tion, that can be used to describe the transfer and transformation of network information. We showed 
that the GMNs with small GRs exhibited the characteristics of a small-world network, including the 
co-existence of shortcuts and clusters, when the connection numbers were small. In the GMN, the num-
ber of complete subnetworks is equivalent to the GR size, which contributes to its high cluster coeffi-
cients. Each neuron belongs to as many complete subnetworks as the number of genes it expresses. This 
overlapping of complete subnetworks causes the GMN to have a short path length.

We found that the multi-layer GMN faithfully transferred information across multiple layers, while 
information was lost in randomly connected networks. We also found that information transfer in the 
GMN could be followed by assessing either the active-neuron array or the active-gene array. Since the 
active-neuron and active-gene arrays can be viewed as two different coding styles, we have designated 
them as the neuron code and the gene code, respectively.

How do the genes expressed in activated neurons encode information? In the multi-layer GMN, each 
activated neuron transmits its signal to all the neurons in the next layer that share one or more genes; 
the neurons in the next layer receive more inputs when they express genes that are frequently expressed 
in the active neurons in the previous layer. Thus, neuronal activation in this system depends on the genes 
expressed in the neurons. Given that neurons expressing a common gene form a complete subnetwork in 
the GMN, neuronal activation can be viewed as the assignment of an activity (or distribution of a unit 
of information) to each complete subnetwork. Once a unit of information is assigned to a subnetwork 
it can remain there, because of the re-entry of signals into the subnetwork. This notion is supported by 
our finding that GMNs with a large GR failed to transfer information reliably. These GMNs contained 
a large number of complete subnetworks, each of which was composed of a small number of neurons, 
suggesting that signal re-entry was unlikely and that signal mixture with other subnetworks was more 
likely. Since each subnetwork is composed of neurons expressing a common gene, the number of sub-
networks is equivalent to the GR size. Thus, the information in a GMN can be represented as an array of 
information units, each of which corresponds to a different subnetwork, which is the active-gene array. 
The partial removal or replacement of connections had little effect on the reliability of information in the 
GMN, suggesting that the proportion of activated genes was not affected even with moderate (< 30%) 
flaws in connections.

Our findings suggest that the reliability of information transfer depends on how the node attrib-
utes, which are genes in the GMN, determine connections. In the GMN, the number of connections 
between a pair of neurons is proportional to the number of common genes in the neurons. This linearity 
probably explains, at least in part, the existence of subnetworks that can transfer information without 
deformation. Networks with a different connection-attribute contingency, such as the parametric LMMG 



www.nature.com/scientificreports/

9Scientific RepoRts | 5:14984 | DOi: 10.1038/srep14984

model developed by Kim and Leskovec22,23, may have a different condition for information transfer. In 
the model, nodes are assigned multiple attributes, and the probability of forming links is high when 
identical attributes are shared between nodes, similar to the GMN, but the connection probability is not 
linear when multiple attributes are matched between nodes; rather, the connection probability is a prod-
uct of the probability of each matched attribute. Although information transfer was not analyzed with 
the model, the transmission by layers would cause distinct effects rather than the linear transmission 
observed in the GMN.

The present study showed that information was transferred or transformed reliably by the GMN, as 
demonstrated by the similarity of active-gene array inputs and outputs. Since the percentage of activated 
neurons is determined by the AP, the signal input into activated neurons is uniformly transmitted, while 
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through a GMN layer (GR =  50, GE =  5) with an AP of 5, 25, 50, 75, and 95%, when the transmission 
polarity was positive (b) or negative (c). (d,e) Effect of AP on active-gene arrays passing through a GMN 
layer, using 1000 random inputs, and averaged over 10 independent GMNs, when the transmission polarity 
was positive (d) or negative (e).
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the signal input into non-activated neurons is discarded. Thus, GMN layers associated with various 
APs can be considered as nonlinear filters. Surprisingly, information was faithfully transmitted across 
multiple layers of the GMN under these nonlinear conditions. In contrast, under linear transmission 
conditions (i.e., when the neuronal input and output were proportional), the activity levels of neurons 
became similar to each other after signals were passed through a layer, making it difficult to analyze and 
process the information. Thus, nonlinear transmission, controlled by various APs, contributes to differ-
ential neuronal activation, which is required for the effective use of the GMN model.

Highly restrictive AP conditions, with either positive or negative polarity, resulted in increased 
expression of the top- or bottom-ranking genes, respectively. In contrast, under low-stringency AP con-
ditions, the differences between the output of highly and lowly ranked genes were smaller. Notably, 
bottom-ranking neurons can be activated in real neural networks when the neurons in the preceding 
layer are inhibitory neurons. Although each layer of the GMN can only function as a high or low pass 
filter, the GMN can have various functions when layers with different APs are combined, as shown in 
Fig. 5 and Supplementary Fig. 4. Notably, the GMN can be readily connected either in series or in par-
allel by connecting neurons according to their gene expression, without adding any learning steps. Our 
results with the GMN suggest that a layer or a set of layers can function as an information-processing 
element, while in most artificial neural networks, single neurons are considered to be the primary 
information-processing elements. It is noteworthy that neurons in the GMN can also be used as a pro-
cessing unit, even in deep layers, since the response specificity was still sharp in deep layers.

Collective network information is usually represented by a list of activated nodes, which is equivalent 
to the active-neuron array. However, the gene code can also be used to represent network information 
that is associated with overlapping densely connected subnetworks. The densely connected subnetworks 
of community structures25 were demonstrated to have strong effects on certain network dynamics, such 
as the spread of infectious diseases26. Highly connected subnetworks are frequently found in the real 
world such as social and biological networks being two examples. Notably, any network with densely 
connected clusters can potentially be represented and analyzed as a GMN by assigning a gene to every 
densely connected subnetwork. If such networks were analyzed as GMNs, active persons or neurons 
would be represented by the neuron code, while the activity of communities or heavily connected neu-
ronal groups would be represented by the gene code. When subnetworks overlap, separating them into 
discrete subnetworks may not be productive for information analysis. With the GMN, heavily overlap-
ping subnetworks can be analyzed without separating the subnetworks, using the information coding of 
the active gene array. Thus, the GMN may be a new tool for analyzing the information flow in networks 
with overlapping, heavily connected subnetworks.

Many biological networks, such as gene regulatory networks and metabolic protein networks, contain 
heavily connected subnetworks25,27–30. In such networks, if genes could be assigned to each subnetwork, 
the state of a network varying according to inputs could be described by the active-gene array. We found 
that the partial loss or a flaw in the connections of the GMN did not affect the reliability of information 
in the network. This feature of the GMN is beneficial for analyzing real-world networks such as biolog-
ical networks, which are impossible to describe completely, and in which the heavily connected areas 
are not complete.

Notably, the architecture of the circular GMN is equivalent to the one-mode projection of bipartite 
networks, such as the movie-actor network and the collaboration network31. In the movie-actor network, 
“Movie titles” corresponds to genes and “Actors” corresponds to neurons. The information flow in such 
networks may be traced using active-gene arrays.

In the brain, information transfer could be represented by the activity of heavily connected neuronal 
groups or by simultaneously activated neuronal groups, the combination of which changes in response to 
environmental and/or behavior changes. Interestingly, this notion fits well with the cell-assembly theory 
of neural information coding, which proposes that neural information is encoded by the combination of 
active neuron groups that overlap one another15,32,33. In the GMN, the active-gene array represents the 
relative activity among overlapping subnetworks. Thus, use of the active-gene array may contribute to 
the decoding of neural information.

Microcircuits in the brain are rich in bidirectional connections and clusters34–37, suggesting that nor-
mally functioning neuronal networks exhibit features similar to the GMN. Regarding the real genes 
corresponding to the “genes” in the GMN, the clustered protocadherins (cPcdhs), of which there are 58 
members38,39, are among the most plausible candidates. Each neuron expresses 5 to 10 of the 58 mem-
bers in a random manner40,41. The cPcdhs promote cell-cell adhesion such that only cells expressing the 
same cPcdh member adhere to each other42,43. In the present study, genes were randomly expressed by 
neurons in the GMN. The reliable transfer and consistent transformation of information by the GMN 
was based on the nonbiased, yet overlapping distribution of genes, generated as a consequence of random 
expression. Interestingly, the random gene expression generates an enormous variety of neurons, known 
as neuronal diversity, at the neuron level, despite the nonbiased uniformity in the total gene expression 
at the layer or network level.

In conclusion, we found that non-linear activation of the GMN resulted in the systematic processing 
of network information. This process could be explicitly described by a vector representing the expres-
sion of genes in active neurons. These findings may lead to new insights into the information processing 
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by cluster-rich networks in the real world, such as neural networks and human populations, and provide 
a novel method for the prediction and control of collective network information.

Methods
All of the computer experiments were carried out using MATLAB (Mathworks, MA).

Circular GMNs. To analyze the architecture of the GMN, circular GMNs with undirected edges were 
used. Parameters such as neuron numbers, GR size, and the number of genes expressed in each neuron, 
were determined as described in the corresponding sections. In the GMN, a pair of neurons was con-
nected when both expressed one or more common genes. The number of connections between a pair of 
neurons was equivalent to the number of shared genes unless otherwise mentioned.

For the calculations of the short path length and the clustering coefficient, multiple connections 
between any neuron pair were considered as a single connection.

In the experiments in which the effect of GR size was examined using GMNs with various GR sizes, 
the expressed genes were selected randomly from a gene repertoire and assigned to neurons one by one 
in a rotational manner until the number of connections in the network reached 500.

Estimation of the reliability of information transfer in multi-layer GMNs. The faithfulness of 
information transfer was estimated by the cross-layer consistency of distances (L1-norm) between a pair 
of information inputs. The cross-layer consistency was assessed using the active-neuron array and the 
active-gene array. One thousand pairs of inputs were used for each network. The correlation between the 
distances of the same output pairs obtained from a preceding layer and the following layer was plotted 
(Supplementary Fig. 6). The slope obtained by linear regression analysis of the distances plotted was used 
as the score of reliability of a network.

In the experiments analyzing the effect of GR size on reliability, GMNs were constructed in which 
the number of genes expressed per neuron was set to 3, 5, 7, 22, or 71 with gene repertoires of 20, 50, 
100, 1,000, or 10,000 genes, respectively. The number of connections formed between the layers of these 
GMNs was 450,000, 500,000, 512,000, 484,000, and 504,100, respectively.

Signal transmission in complex GMNs. The transmission in the GMN has polarity, positive or neg-
ative. When the transmission polarity was positive, the input vector was used as is. When the transmis-
sion polarity was negative, which corresponded to the situation where the preceding layer was comprised 
of inhibitory neurons, the output vector was multiplied by − 1. When two or more preceding layers were 
connected to a subsequent layer in a complex GMN, such as those shown in Fig. 5d,e, the resulting input 
vectors in the subsequent layer were mixed at a ratio called the combination ratio.
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