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Precise wiring of neural circuits is essential for brain connectivity and function. During
development, axons respond to diverse cues present in the extracellular matrix or at
the surface of other cells to navigate to specific targets, where they establish precise
connections with post-synaptic partners. Cell adhesion molecules (CAMs) represent a
large group of structurally diverse proteins well known to mediate adhesion for neural
circuit assembly. Through their adhesive properties, CAMs act as major regulators of
axon navigation, fasciculation, and synapse formation. While the adhesive functions of
CAMs have been known for decades, more recent studies have unraveled essential,
non-adhesive functions as well. CAMs notably act as guidance cues and modulate
guidance signaling pathways for axon pathfinding, initiate contact-mediated repulsion
for spatial organization of axonal arbors, and refine neuronal projections during circuit
maturation. In this review, we summarize the classical adhesive functions of CAMs in
axonal development and further discuss the increasing number of other non-adhesive
functions CAMs play in neural circuit assembly.
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INTRODUCTION

Forming precise neural circuits is critical for nervous system function. Defects in neuronal
connectivity have notably been observed in multiple neurodevelopmental disorders including
fragile X syndrome (Swanson et al., 2018), autism spectrum disorders (McFadden and Minshew,
2013; Di Martino et al., 2014; Avital et al., 2015), tuberous sclerosis complex (Widjaja et al., 2010;
Baumer et al., 2015; Im et al., 2016) and others, making the wiring of axonal connections a subject
of intense research.

Developing axons navigate along precise paths toward their target by responding to attractive
and repulsive guidance cues present in their environment. Navigation is ensured by highly motile
structures at the leading end of axons, the growth cones, which harbor a unique repertoire
of receptors at their surface that allow them to interpret the various extracellular signals they
encounter. Many secreted and membrane-anchored factors including cell adhesion molecules
(CAMs) (Tessier-Lavigne and Goodman, 1996), the canonical guidance cues Ephrins, Netrins,
Semaphorins, and Slits (Dickson, 2002), neurotrophic and growth factors (Charoy et al., 2012),
and morphogens (Sánchez-Camacho and Bovolenta, 2009; Yam and Charron, 2013), provide long-
range or contact-mediated signals. Growth cones integrate the guidance information they receive
from these signals and in turn, transduce the mechanical forces required for axon extension and
turning (Kerstein et al., 2015). After reaching their final destination, axons stop elongating, branch
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extensively to form a terminal arbor and establish specific
synaptic connections with appropriate partners. Patterns of
connectivity are subsequently remodeled and refined in an
activity-dependent manner, leading to the establishment of
precise local circuits for an efficient transfer of information
(Kutsarova et al., 2017). Axon pathfinding, selective target
innervation and specificity of synapse formation are central
aspects of circuit wiring that all critically rely on long-range
as well as contact-mediated signaling between axons and their
substrate or surrounding cells.

CAMs form a very large group of transmembrane or
glycophosphatidylinositol (GPI)-anchored proteins that mediate
contacts between cells or cells and a substrate via homophilic
or heterophilic interactions. First identified in the mid-70s as
molecules mediating cell-cell adhesion (Rutishauser et al., 1976),
CAMs have historically been classified into four main families
including integrins, CAMs of the immunoglobulin superfamily
(IgSF), cadherins, and selectins based on the structural
composition of their extracellular domain (Bock, 1991). However,
this classification omits molecules discovered afterward that also
act as cell adhesion proteins such as neuroligins, neurexins,
teneurins, and synaptic proteins containing extracellular leucine-
rich repeats (LRRs) (Figure 1). Thanks to their diverse
extracellular domains conferring distinct adhesion modalities
and engaging in unique protein interactions, CAMs regulate
many aspects of neural development ranging from neurogenesis
(Homan et al., 2018; Huang et al., 2020) and neuronal
migration (Schmid and Maness, 2008; Solecki, 2012; Chen et al.,
2018) to neurite development (Pollerberg et al., 2013; Missaire
and Hindges, 2015), synaptogenesis (Gerrow and El-Husseini,
2006; Yogev and Shen, 2014) and myelination (Rasband and
Peles, 2021). Not surprisingly, many mutations in CAMs have
been linked to neurodevelopmental and psychiatric disorders
(Sakurai, 2017; Cuttler et al., 2021; Jaudon et al., 2021).
Interestingly, whereas CAMs have long been known to regulate
axonal development and synaptogenesis through their adhesive
properties, other non-adhesive and perhaps counterintuitive
functions of CAMs have more recently emerged. In this review,
we summarize the classical adhesive functions of CAMs in axonal
and synaptic development and further discuss the increasing
number of other non-adhesive roles CAMs play in neural circuit
assembly and maturation.

ADHESIVE FUNCTIONS OF CAMS IN
CIRCUIT WIRING

Through their adhesive properties, CAMs mediate stabilizing
contacts and attachment between axons and their surrounding
environment that are critical for axon navigation, fasciculation,
target selection, and synaptogenesis.

Interactions With the Extracellular Matrix
and Glial Cells for Axon Navigation
Proper axon pathfinding requires a tightly controlled adhesion of
growth cones to their substrate. The assembly and detachment
of adhesions to the extracellular matrix (ECM) is especially

critical for the advance of pioneer axons that are the first to
extend in a particular region. Like non-neuronal cells that form
integrin-mediated focal adhesions at their leading edge during
migration (Mishra and Manavathi, 2021), growth cones assemble
similar integrin-dependent adhesions named point contacts with
the ECM (Gomez et al., 1996; Woo and Gomez, 2006). Point
contacts form after integrins at the surface of growth cones
bind ECM ligands, leading to the clustering of integrins and
subsequent recruitment of adaptor proteins linking integrins
to the actin cytoskeleton (Figure 2A). By stabilizing filopodial
protrusions and restraining the retrograde flow of actin at the
growth cone periphery, point contacts promote the advance
of the growth cone and axon extension (Woo and Gomez,
2006; Myers and Gomez, 2011; Nichol et al., 2016; Kershner
and Welshhans, 2017). Interestingly, many extracellular factors
regulate axon elongation and cell migration by modulating
integrin-mediated adhesions (Nakamoto et al., 2004; Bechara
et al., 2008). Substrates or guidance cues that promote or inhibit
the localized assembly and turnover of point contacts lead to
growth cone turning in vitro (Hines et al., 2010; Myers and
Gomez, 2011; Nichol et al., 2016; Kerstein et al., 2017), further
suggesting a direct role for integrin-mediated attachment in axon
pathfinding. In mammals, 18 α and 8 β integrins can assemble
into 24 heterodimers that bind with different affinities to a large
diversity of ECM ligands (Hynes, 2002). Inhibiting integrin β1
that forms the majority of integrin heterodimers reduces retinal
axon elongation in zebrafish (Lilienbaum et al., 1995). It also
prevents ipsilateral retinal projections from innervating a specific
sublamina of the superior colliculus that expresses the ECM
glycoprotein Nephronectin in mouse (Su et al., 2021; Figure 2B).
Thus, integrin-mediated interactions between growth cones and
the ECM not only regulate the rate of axon elongation but
also directly specify target selection for circuit wiring. To what
extent a cell-specific integrin code generated by the different
combinations of α and β integrins contributes to the specificity
of network assembly remains to be elucidated.

In addition to adhering to the ECM, pioneer growth
cones directly interact with surrounding glial cells such as
neuroepithelial cells, radial glial cells, and astrocytes during
their navigation (Rigby et al., 2020). Glial cells often localize at
intermediate choice points along migratory routes where they
act as guideposts providing contact-mediated spatial information
or acting as a permissive substrate for growth. For instance,
radial glia create a palisade at the optic chiasm where they
directly contact and guide retinal axons (Marcus et al., 1995).
More recently, neural stem cells residing in the ventricular
zone of the forebrain medial ganglionic eminence have been
shown to use their radial fiber scaffold to direct corticospinal
axons at the junction between the striatum and globus pallidus
(Kaur et al., 2020). Most adhesive contacts between navigating
growth cones and glial cells appear to be mediated by CAMs
of the Immunoglobulin and Cadherin superfamilies. N-cadherin
and NCAM, for instance, promote retinal axon outgrowth over
astrocytes in vitro (Neugebauer et al., 1988). They also mediate
strong interactions between growth cones of olfactory axons and
ensheathing cells in vivo, enabling olfactory axons to ride along
ensheathing cell bodies as they pioneer the path toward the

Frontiers in Neuroscience | www.frontiersin.org 2 April 2022 | Volume 16 | Article 889155

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-889155 April 25, 2022 Time: 14:31 # 3

Moreland and Poulain CAMs Orchestrate Neural Circuit Assembly

FIGURE 1 | Main families of CAMs expressed in the nervous system. CAMs have historically been classified into families based on the structural composition of their
extracellular domain. Integrins form obligate heterodimers composed of α and β integrin subunits that cluster at the plasma membrane to mediate adhesion to the
extracellular matrix. CAMs of the Immunoglobulin Superfamily (IgSF) are characterized by the presence of one or more Ig-like domains that can be followed by
Fibronectin type III domain (Fn3) repeats. IgSF CAMs mediate adhesion by engaging in homophilic or heterophilic interactions. Most of them include a
transmembrane and intracellular domains, but some like Contactins are GPI-anchored. CAMs of the Cadherin Superfamily mostly engage in homophilic interactions
and are characterized by the presence of one or more calcium-binding cadherin repeats. The Leucine-rich repeat (LRR) Superfamily includes adhesion molecules
that are characterized by the presence or LRRs and can include Ig or Fn3 domains in their extracellular domain. LRR CAMs are often found at synapses and engage
in both homophilic or heterophilic trans-interactions. Neurexins and Neuroligins engage in heterophilic interactions in trans at nascent synapses to promote synaptic
differentiation and stabilization. Teneurins are type II single-pass transmembrane proteins that interact homophilically or engage in trans-interactions with Latrophilins,
a class of adhesion G-protein coupled receptors (not shown).

olfactory bulb (Su and He, 2010). In the spinal cord, NrCAM
expressed by floor plate cells guides commissural axons across
the midline by, in part, interacting with Contactin-2 (Cntn2, also
known as TAG-1 or axonin-1) at the axonal surface (Stoeckli
et al., 1997; Fitzli et al., 2000). NrCAM is also expressed by radial

glia at the optic chiasm and promotes the crossing of NrCAM-
positive retinal axons projecting contralaterally (Williams et al.,
2006; Kuwajima et al., 2012). Along the optic tract, NF-
protocadherin, a member of the Cadherin superfamily, mediates
interactions between retinal axons and their neuroepithelial
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FIGURE 2 | Adhesive functions of CAMs in circuit wiring. (A) Integrins mediate adhesion to the ECM for growth cone advance. Binding of integrins to ECM ligands
leads to the clustering of integrins and the recruitment of adaptor proteins linking integrins to the actin cytoskeleton. The point contacts hence formed promote
growth cone advance by stabilizing filopodial protrusions and restraining the retrograde flow of actin at the growth cone periphery. (B) Integrins mediate adhesion to
the ECM for target selection. In the visual system, integrin α8β1 is selectively expressed by retinal ganglion cells projecting ipsilaterally. Its ligand, the ECM
glycoprotein Nephronectin, is restricted to a sublamina at the target. Interaction between integrin α8β1 and Nephronectin is necessary for the laminar targeting of
ipsilateral axons to the rostral stratum opticum (SO). Deleting integrin α8β1 or Nephronectin causes a dramatic loss of ipsilateral projections while contralateral
projections remain unaffected in the stratum griseum superficial (SGS). Adapted from Su et al. (2021). (C,D) Protocadherin-17 (Pcdh17) mediates trans-axonal
interactions for proper tract formation. (C) Pcdh17 accumulates at homotypic contacts between growth cones and axons from amygdala neurons, where it recruits
the WAVE complex, Lamellipodin, and Ena/VASP proteins that remodel the actin cytoskeleton and promote membrane protrusion. Pcdh17-mediated adhesion
enhances growth cone motility and enable growth cone advance along homotypic axons. (D) Pcdh17 is required for the extension of amygdala axons through the
stria terminalis toward the hypothalamus. Adapted from Hayashi et al. (2014). (E) A CAM code specifies laminar targeting and synaptic specificity in the retina. Sdk1,
Sdk2, Dscam, DscamL, and Cntns (not all a represented here) are expressed in non-overlapping subsets of bipolar (green), amacrine (orange), and retinal ganglion
cells (purple) and engage in homophilic trans-interactions to direct synapse formation between matching partners in specific laminae (S1–S5) of the inner plexiform
layer (IPL). Classical cadherins (Cdh) also contribute to the molecular code specifying connections. INL, inner nuclear layer; GCL, ganglion cell layer. Adapted from
Sanes and Zipursky (2020).

substrate for proper pathfinding (Leung et al., 2013). Retinal
axons expressing L1CAM are then guided in the superior
colliculus by collicular cells expressing ALCAM (also called
BEN, DM-GRASP, SC1, or Neurolin) (Buhusi et al., 2009).
In the absence of ALCAM, axonal branches fail to extend
mediolaterally, leading to defects in retinotopic map formation.
Outside the visual system, recent work has revealed that Celsr3, a

member of the Flamingo group within the Cadherin superfamily,
is present at the surface of commissural growth cones and
promotes axon pathfinding across the floor plate by binding in
trans to Dystroglycan, a transmembrane protein at the surface of
neurepithelial cells (Lindenmaier et al., 2019). Interestingly, other
families of CAMs such as teneurins and neuroligins have been
found to accumulate in growth cones during axon elongation
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(Suzuki et al., 2014; Gatford et al., 2021). Determining whether
they also mediate adhesion between pioneer growth cones and
glial cells will be important to gain a more comprehensive view of
the inter-cellular interactions that govern neural circuit assembly
during early development.

Axon Fasciculation for Tract Formation
Pioneer axons play a critical role in neural circuit assembly, not
only by defining first itineraries toward appropriate targets, but
also by acting as guides and providing a scaffold for later-born
axons that follow them (Pike et al., 1992; Hidalgo and Brand,
1997; Rash and Richards, 2001). In the olfactory and retinotectal
systems, for instance, ablation of early-born pioneer neurons
causes follower axons to misroute and fail to build proper
connections (Whitlock and Westerfield, 1998; Pittman et al.,
2008; Okumura et al., 2016). The formation of axon tracts en
route to a target involves homotypic or heterotypic fasciculation
between axons, which are usually initiated after a growth cone
contacts the shaft of a neighboring axon and moves along it.
Alternatively, axon shafts can dynamically interact, leading to
a zippering behavior triggering their fasciculation (Šmít et al.,
2017). Extensive literature has demonstrated a major role for IgSF
CAMs in regulating homotypic axon-axon interactions (Spead
and Poulain, 2021). CAMs engaged in homophilic (between
same CAMs) or heterophilic (between different CAMs) trans-
interactions mediate the selective recognition between elongating
growth cones and pre-existing axon shafts, thereby dictating
the specificity of axonal bundling for tract formation. They also
provide the adhesive force required for growth cone advance
through their coupling to the actin cytoskeleton (Pollerberg et al.,
2013; Abe et al., 2018). Not surprisingly, the loss of specific CAMs
leads to disorganized tracts in many circuits. Blocking L1CAM in
the chick hindlimb, for instance, causes a defasciculation of both
motor and sensory axons that fail to project to their respective
targets (Landmesser et al., 1988; Honig and Rutishauser, 1996;
Honig et al., 2002). L1CAM is also required for the fasciculation
between axons innervating the peduncle of the mushroom bodies
in Drosophila (Siegenthaler et al., 2015). Likewise, ALCAM and
DSCAM both regulate the fasciculation of retinal axons in the
visual system (Pollerberg and Mack, 1994; Ott et al., 1998; Weiner
et al., 2004; Bruce et al., 2017). Continuous synthesis of ALCAM
in growth cones is notably required for the preferential growth
of retinal axons on ALCAM substrates and maintained by local
mRNA translation (Thelen et al., 2012). In the mouse motor
system, Cntn2 accumulates in the distal segment of motor axons
extending in the periphery and controls their fasciculation (Suter
et al., 2020). Conversely in the peripheral system, SynCAM2
and SynCAM3 were found to regulate contacts between sensory
afferents as they enter the dorsal root entry zone of the spinal
cord (Frei et al., 2014). Similarly to IgSF CAMs, members of the
Cadherin superfamily have also emerged as important regulators
of tract organization. Tectofugal projections innervating different
parts of the brain elongate along pre-existing axonal pathways
expressing the same cadherin, demonstrating that cadherins
mediate selective axon fasciculation through homotypic trans-
interactions (Treubert-Zimmermann et al., 2002). As such,
cadherins organize axonal tracts depending on their selective

expression in the nervous system. N-cadherin and Cadherin-8,
for instance, are both required for the fasciculation of mossy
fibers in the hippocampus (Bekirov et al., 2008), while Cadherin-
11 promotes the bundling of motor axons (Marthiens et al., 2005).
More recently, Protocadherin-17 (Pcdh17) has been found to
regulate the formation of homotypic contacts between amygdala
axons elongating toward the hypothalamus and ventral striatum
(Hayashi et al., 2014; Figures 2C,D). Growth cones lacking
Pdch17 no longer migrate along Pdch17-positive axons, whereas
axons ectopically expressing Pdch17 intermingle with axons
expressing endogenous Pdch17.

Guidance cues can regulate axon fasciculation and pathfinding
by modulating the levels of CAMs at the axonal surface.
Semaphorin3D, for instance, promotes the bundling of medial
longitudinal fascicle axons in zebrafish by increasing L1CAM
protein levels (Wolman et al., 2007). In Drosophila, Semaphorin-
1a reverse signaling promotes the fasciculation of photoreceptor
axons by inhibiting Rho1, a small GTPase known to mediate
the degradation of the NCAM ortholog Fasciclin 2 (Hsieh
et al., 2014). Conversely in the Xenopus visual system,
Semaphorin-3A (Sema3A) prevents retinal axons from exiting
their normal trajectories by inducing the local translation of
NF-protocadherin in retinal growth cones (Leung et al., 2013).
Alternatively, extracellular factors can regulate the strength of
growth cone adhesion by modulating the coupling of CAMs
to the actin cytoskeleton. Netrin-1, for instance, promotes
traction force for growth cone migration by enhancing the
coupling of L1CAM to F-actin via the adaptor Shootin1a
(Kubo et al., 2015; Baba et al., 2018). Whether other guidance
cues such as Ephrins (Luxey et al., 2013) or Slits (Jaworski
and Tessier-Lavigne, 2012) regulate axon fasciculation by
modulating CAMs and their adhesive properties remains
to be determined.

Trans-Interactions for Synaptic
Specificity
CAMs not only regulate axon growth, fasciculation and guidance
toward a main target but also dictate the specificity of synapse
formed between axons and dendrites. After reaching their main
target area, axons must establish synapses with appropriate
partners while avoiding unsuitable ones. Synaptic specificity is
achieved by both laminar targeting, during which axon terminals
and dendrites of post-synaptic neurons sharing similar functional
properties assemble into local layers within the main target, and
specific cellular and sub-cellular synapse assembly.

Studies on the mechanisms governing laminar targeting in the
visual system have demonstrated critical roles for IgSF CAMs and
cadherins in mediating trans-cellular recognition between correct
synaptic partners (Huberman et al., 2010; Sanes and Zipursky,
2020). In the chick retina, Sidekick 1 (Sdk1), Sdk2, Dscam,
DscamL, and Cntns were found to be uniquely expressed in non-
overlapping subsets of two classes of interneurons, the bipolar
and amacrine cells, as well as in their post-synaptic partners, the
retinal ganglion cells (RGCs) (Figure 2E). Interestingly, RGCs
and interneurons with matching expression of these IgSF CAMs
form synapses in specific sublaminae of the inner plexiform
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layer (Yamagata et al., 2002; Yamagata and Sanes, 2008, 2012).
Modifying the “CAM code” a neuron expresses by depleting
or overexpressing any of these CAMs diverts axonal arbors to
sublaminae expressing the matching set of CAMs, indicating
an essential role for homophilic trans-interactions in laminar
targeting. Similar laminar targeting defects were observed in
mice lacking Sdks, DSCAM, or Cntn5, suggesting conserved
roles for these CAMs across vertebrates (Fuerst et al., 2010;
Krishnaswamy et al., 2015; Peng et al., 2017; Yamagata and
Sanes, 2019). However, whereas Sdks and Cntn5 regulate laminar
targeting by homophilic interactions in both mouse and chick,
DSCAM appears to exert its function differently in mouse by
masking signaling from cadherins (Simmons et al., 2017; Garrett
et al., 2018). Indeed, cadherins also contribute significantly
to the coding of laminar targeting through their homophilic
interactions. Among the 15 different classical cadherins detected
in the direction-selective circuits in the retina, six are expressed
in combination or individually in populations of functionally
distinct interneurons and RGCs and control their laminar
connectivity (Duan et al., 2014, 2018). Cadherin-8 (Cdh8) and
Cdh9, for instance, direct axons of a subset of bipolar cells to
RGCs responding to bright or dark moving objects, whereas
Cdh7 and Cdh18 specify synapses formed between amacrine
cells and RGCs responding to nasal motion. Cdh6, on the
other hand, targets not only amacrine cell axons to RGCs
responding to ventral motion in the retina, but also RGC axons
to their specific visual targets in the brain (Osterhout et al.,
2011). A similar coding principle for axon-target matching
has been observed in other circuits. In the hippocampus, for
instance, Cdh9 specifically regulates the formation of mossy fiber
synapses between dentate gyrus and CA3 neurons (Williams
et al., 2011). Likewise in the cerebellum, Cdh7 mediates synapse
formation between pontine axons and granule neurons (Kuwako
et al., 2014). More recently, IgSF11 has been identified as the
homophilic adhesion molecule controlling synapse formation
between inhibitory chandelier cells and pyramidal neurons in the
cortex (Hayano et al., 2021).

Other CAMs besides IgSF CAMs and cadherins regulate
synaptic specificity. Teneurins, for instance, are expressed in
several inter-connected regions in the nervous system and
form trans-synaptic interactions by binding homophilically or
heterophilically to Latrophilins, a class of adhesion G-protein
coupled receptors (Boucard et al., 2014; Araç and Li, 2019).
The role of teneurins in synaptic partner matching was first
established in Drosophila, in which Ten-a and Ten-m instruct
target selection in the motor and olfactory systems (Hong et al.,
2012; Mosca et al., 2012). Teneurins were found afterward to
also specify connectivity in the hippocampus and the visual
system of vertebrates. Teneurin-2 (Tenm2) promotes synapse
formation between CA3 Schaffer collaterals and CA1 pyramidal
hippocampal neurons by forming a trans-synaptic complex
with Latrophilin-3 (Lphn3) and FLRT3 (Sando et al., 2019). In
contrast, Tenm3 homophilic interactions are required for the
precise targeting of proximal CA1 axons to the distal subiculum
(Berns et al., 2018). Tenm3 also regulates the connectivity of
orientation-selective RGCs in the zebrafish retina and optic
tectum (Antinucci et al., 2013, 2016).

Thus, homophilic and heterophilic trans-interactions between
specific CAMs generate a combinatorial recognition code for
synaptic matching in addition to signaling for axon growth
termination and synapse formation. This code not only specifies
connectivity between distinct sets of neurons but can also
direct synaptic specificity at a sub-cellular level through the
accumulation of CAMs at defined sites. In the cerebellum, for
instance, the IgSF CAM Neurofascin-185 accumulates in the
axon initial segment (AIS) of Purkinje cells and directs the
formation of pinceau synapses by basket interneurons (Ango
et al., 2004). Similarly in the cortex, anchoring of L1CAM
to the AIS of pyramidal neurons is required for selective
innervation by Chandelier cells (Tai et al., 2019). The code
specifying cellular or sub-cellular synaptic interactions is most
often generated by the differential expression of CAMs among
neurons but can also be achieved by the temporal regulation
of CAM expression. In Drosophila, for instance, N-Cadherin
is expressed by both R7 and R8 photoreceptors, albeit at
different levels and moments. N-Cadherin expression peaks
in R8 cells at the time R8 axons arrive at their target layer
in the medulla, leading to axonal innervation of that layer.
In contrast, R7 axons that express high levels of N-cadherin
at a later timepoint bypass the R8 target and terminate in a
more distant layer (Petrovic and Hummel, 2008). Alternatively,
CAM trans-interactions can be modulated by alternative splicing.
Splicing of Tenm2, for instance, changes the structure of Tenm2’s
extracellular β-propeller domain and determines which trans-
synaptic partner Tenm2 interacts with (Li et al., 2018, 2020).
Tenm2 lacking the splice insert interacts with Latrophilins
to promote excitatory synapse formation, whereas Tenm2
containing the insert cannot and specifies inhibitory synapses
instead. Contact-mediated signaling between matching trans-
synaptic partners eventually initiates synapse formation and
stabilization by recruiting additional CAMs such as neurexins,
neuroligins and LRR-containing adhesion molecules. As for
synaptic matching, the assembly of synapses with specific
properties is governed by the type of trans-synaptic molecules
engaged. This vast field of research falls outside the scope of this
review, but we refer interested readers to excellent recent articles
on that topic (Schroeder and de Wit, 2018; Gomez et al., 2021;
Südhof, 2021).

BEYOND GLUE: THE NON-ADHESIVE
FUNCTIONS OF CAMS IN CIRCUIT
WIRING

Although the adhesive properties of CAMs play critical
roles at all stages of circuit wiring, CAM functions go far
beyond adhesion and mechanical stabilization. Through their
intracellular domains and interactions with other receptors at the
plasma membrane, CAMs can activate or modulate a panoply
of intracellular signaling pathways leading to morphological
or transcriptional changes. They can also be cleaved from the
plasma membrane and act as bona fide signaling ligands in the
extracellular environment. CAMs have thus emerged as major
signaling orchestrators of nervous system assembly.
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Transcriptional Regulation of Axon
Growth
Axons elongating over long distances require the synthesis
of new raw materials to sustain the assembly of cytoskeletal
structures and membrane components. While local mRNA
translation can be activated in growth cones to induce
rapid changes in response to local cues (Dalla Costa
et al., 2020; Agrawal and Welshhans, 2021), a constant
communication between the growth cone and the nucleus
regulates nuclear transcription to adjust gene expression
to axonal needs. An increasing body of evidence indicates
that CAMs regulate transcription in developing neurons,
both indirectly by regulating the activation or trafficking
of transcription factors, and directly, by acting in the
nucleus themselves.

Several CAMs stimulate gene transcription by activating
intracellular signaling pathways, either through the activity
of their intracellular domain or by interacting with signaling
receptors (Figure 3A). L1CAM and NCAM, for instance, were
both reported to activate mitogen-activated protein kinase
(MAPK) pathways to promote neurite outgrowth (Kolkova et al.,
2000; Schmid et al., 2000; Poplawski et al., 2012). NCAM interacts
with the fibroblast growth factor receptor (FGFR) to activate
MAPK and, in turn, the transcription factors CREB and c-Fos
(Jessen et al., 2001; Niethammer et al., 2002). Activation of MAPK
by L1CAM, on the other hand, requires L1CAM internalization
(Schaefer et al., 1999; Schmid et al., 2000). Alternatively,
CAMs might regulate transcription by directly modulating
the nuclear trafficking of proteins with transcriptional activity.
The intracellular domain of NF-protocadherin, for instance,
directly binds TAF1, a component of the basal transcription
factor complex TFIID (Heggem and Bradley, 2003). Inhibiting
either NF-protocadherin or TAF1 severely impairs retinal axon
initiation and elongation, suggesting that NF-protocadherin
might regulate TAF1-dependent transcriptional programs to
promote axonal growth (Piper et al., 2008). Conversely, classical
cadherins constitutively retain the transcriptional coactivators
β-catenin and p120 at the plasma membrane, thereby preventing
them from translocating to the nucleus (Nelson and Nusse, 2004).
Whether such a sequestration contributes to the transcriptional
regulation of axonal development remains, however, unclear.

In addition to activating transcriptional pathways from the
plasma membrane, a number of CAMs have recently emerged
as transcriptional activators or repressors acting directly in the
nucleus for controlling axon elongation (Figure 3A). Indeed,
several proteases including caspases, matrix metalloproteases,
and members of the ADAM family, can cleave the intracellular
domains of transmembrane CAMs, which then translocate to
the nucleus to regulate transcription. Activation of NCAM, for
instance, leads to its cleavage by a serine protease and the
subsequent nuclear import of a C-terminal fragment that is
necessary for NCAM-induced axon growth (Kleene et al., 2010;
Homrich et al., 2018). Interestingly, the fragment generated after
cleavage includes not only the intracellular domain of NCAM but
also its transmembrane domain and a stub of its extracellular
domain, indicating that NCAM is proteolytic processed by an
extracellular enzyme. Modification of the extracellular stub by

polysialic acid, a glycan known to modulate NCAM function,
does not prevent its nuclear import but leads to the transcription
of a distinct set of genes, demonstrating a unique role for NCAM
glycosylation in transcriptional regulation (Westphal et al.,
2016, 2017a,b). L1CAM, DSCAM and DSCAML1 also regulate
transcription after cleavage. Like NCAM, activated L1CAM
undergoes a serine protease-dependent cleavage at the plasma
membrane that generates a fragment containing the intracellular,
transmembrane and part of the extracellular domains (Lutz et al.,
2012, 2014). The sumoylated L1CAM fragment hence generated
traffics to endosomes and the cytoplasm before translocating in a
sumoylation-dependent manner to the nucleus where it interacts
with multiple nuclear proteins (Girbes Minguez et al., 2020).
Interaction with heterochromatin protein 1 is notably required
for L1CAM-mediated neurite outgrowth in cultured cortical
neurons (Kleene et al., 2022). Conversely, the intracellular
domains generated after cleavage of DSCAM and DSCAML1
by γ-secretase alter the transcription of genes regulating circuit
formation and inhibit axon growth when overexpressed in
cortical neurons (Sachse et al., 2019). Other CAMs besides IgSF
CAMs appear to directly regulate transcription in the nucleus.
The intracellular domain of Tenm2, for instance, is released
after homophilic interaction and represses the activity of Zic1,
a transcription factor known to regulate the targeting of mossy
fibers in the cerebellum (Bagutti et al., 2003; Dipietrantonio
and Dymecki, 2009). Conversely, Tenm3’s intracellular domain
interacts with Zic2, another member of the Zic family that
specifies binocular vision by regulating the guidance of retinal
axons projecting ipsilaterally in the visual system (Herrera
et al., 2003; Glendining et al., 2017). Both Zic2 and its
transcriptional target EphB1 are upregulated in Tenm3 mutants,
which likely explains the strong ipsilateral targeting defects
observed in these mice (Leamey et al., 2007; Dharmaratne
et al., 2012). As for Tenm1, its intracellular domain has been
shown to regulate transcription by binding to the transcriptional
repressors MBD1 and HINT1 (Nunes et al., 2005; Schöler
et al., 2015). Defining the mechanisms controlling the release
and transport of CAM intracellular domains, and identifying
the cell-specific nuclear partners they interact with, remain
important questions to address for better understanding how
long distance communication between axons and soma modulate
axon guidance at choice points and target innervation.

Repulsive Signaling for Axon Pathfinding
Although CAMs were first shown to promote axon growth
through their adhesive properties, many of them have since
emerged as signaling receptors or ligands instructing growth
cone guidance independently of adhesion. Perhaps unexpectedly,
CAMs were found to actively participate in the control of axon
repulsion by dictating the axon’s sensitivity to repulsive signals.
Many IgSF CAMs, for instance, form signaling complexes with
receptors to repulsive guidance cues. L1CAM directly binds in
cis to Neuropilin-1 (Nrp1), the receptor to Sema3A, and is
required for Sema3A-induced growth cone collapse (Castellani
et al., 2000, 2002). L1CAM mediates both signaling downstream
of Nrp1 and Nrp1 internalization upon Sema3A binding, thus
coordinating signaling cascades instructing growth cone collapse
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FIGURE 3 | Non-adhesive functions of CAMs in circuit assembly. (A) CAMs regulate transcription for axon growth by activating intracellular signaling pathways from
the plasma membrane (1), acting directly in the nucleus after proteolytic cleavage (2), or regulating the transport of molecules with transcriptional activity (3). NCAM,
for instance, interacts with FGFR to activate the MAPK pathway and in turn, transcription (1). Alternatively, proteolytic processing of NCAM releases a fragment that
is trafficked through endosomes and the endoplasmic reticulum (ER), released in the cytoplasm, and finally translocated into the nucleus where it regulates
transcription (2). NF-protocadherin (NF-Pcdh) directly interacts with TAF1, a component of the basal transcription factor complex TFIID, suggesting that NF-Pcdh
might regulate axon elongation through TAF1-mediated transcriptional control. (B) CAMs instruct axon repulsion by modulating signaling pathways. Both L1CAM
and Cntn2 form a complex with Nrp1, the receptor to the repulsive guidance cue Sema3A, at the plasma membrane. Cntn2 modulates axon response to Sema3A
by regulating the endocytosis of the Nrp1/L1CAM/Sema3A complex. After internalization, L1CAM and Nrp1 become segregated by Cntn2 into two distinct
trafficking pathways. Nrp1 is routed to endocytic compartments where its increased association with PlexinA4 signals for collapse. Adapted from Law et al. (2008)
and Dang et al. (2012). (C) CAMs instruct repulsion by acting as guidance cues. In the hippocampus, reciprocal repulsions mediated by Tenm3 and Lphn2 ensure
proper target selection. Axons originating from proximal CA1 (pCA1) neurons (green) express Tenm3 and project to the distal subiculum (dSub) after being repelled
by Lphn2 (pink) present in the proximal subiculum (pSub). Conversely, distal CA1 (dCA1) axons expressing Lphn2 (pink) are repelled by Tenm3 in dSub (green) and
project to pSub. Adapted from Pederick et al. (2021). (D) Clustered Pcdhs regulate self-avoidance. Pcdh genes are organized into three adjacent clusters that
include several variable exons. Each variable exon codes for an extracellular and transmembrane domains and is preceded by a promoter randomly activated in
individual neurons to drive transcription. Stochastic promoter choice leads to the production of different Pcdh isoforms from each of the three clusters in a

(Continued)
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FIGURE 3 | cell-specific manner, thereby generating a unique combination of Pcdh α, β, and γ expression in each neuron. Sister branches from the same terminal
arbor express the same code of Pcdhs at their surface and repel each other after Pcdhs interact homophilically in trans. (E) CAMs ensure tiling of terminal arbors. In
the Drosophila visual system, DSCAM2, Turtle (Tutl), and Flamingo (Fmi) together with Gogo engage in homophilic trans-interactions to activate repulsion, thereby
control the proper spacing of L1-L5, R8, and R7 terminal arbors, respectively, in the medulla. Adapted from Spead and Poulain (2021).

with a decreased adhesiveness (Castellani et al., 2004; Bechara
et al., 2008). Interestingly, Cntn2 also forms a complex with
Nrp1 and L1CAM at the plasma membrane and regulates axon
response to Sema3A by modulating the endocytosis of the
Nrp1/L1CAM/Sema3A complex (Law et al., 2008; Figure 3B).
L1CAM and Nrp1 are endocytosed together but become
segregated by Cntn2 into two distinct trafficking pathways (Dang
et al., 2012). Nrp1 is notably routed to endocytic compartments
where it increases its association with PlexinA4, which in turn
signals for collapse. In the absence of Cntn2, Nrp1, and L1CAM
are no longer separated intracellularly and signaling is reduced.
Similarly to L1CAM that associates with Nrp1, NrCAM forms a
complex with Nrp2 and PlexinA3 (Falk et al., 2005; Demyanenko
et al., 2011). In response to Sema3F, NrCAM clusters Nrp2 and
PlexinA3 at the plasma membrane, which activates signaling for
growth cone collapse. Thalamocortical axons lacking NrCAM are
no longer sensitive to Sema3F in vivo and misproject caudally
in the ventral telencephalon (Demyanenko et al., 2011). Other
guidance pathways besides Semaphorin signaling are controlled
by IgSF CAMs. NCAM, for instance, clusters and activates EphA3
in response to ephrin-A5, thereby eliciting RhoA-dependent
growth cone collapse in GABAergic interneurons (Sullivan et al.,
2016). Similarly, DSCAM interacts with Unc5 to trigger the
repulsion of cerebellar axons away from Netrin-1 (Purohit et al.,
2012). More recently, the LRR-containing adhesion molecule
FLRT3 was shown to directly interact with Robo1, a receptor
to Slits (Leyva-Díaz et al., 2014). FLRT3 not only modulates the
repulsion of rostral thalamocortical axons in response to Slit1
in vitro, but also their attraction toward Netrin-1 in a Robo1-
dependent manner in vivo.

In addition to forming signaling complexes with guidance
receptors, CAMs can act directly as instructive cues for axon
repulsion. In Drosophila, for instance, Integrins α1 and α2
mediate trans-axonal repulsive signaling between motor axons
to induce their defasciculation and target them to proper
targets (Huang et al., 2007). Mutants lacking either of these
integrins have increased axon fasciculation that causes a lack
of muscle innervation. Likewise in vitro, the close homolog
of L1CAM, Chl1, engages in homophilic interactions to repel
ventral midbrain dopaminergic axons (Alsanie et al., 2017). Very
recently, repulsive interactions between Tenm3 and Lphn2 were
shown to topographically direct CA1 axons to the subiculum
in the hippocampus (Pederick et al., 2021; Figure 3C). CAMs
can instruct axon repulsion not only locally by signaling
from the surface of cells or others axons, but also distally
by acting as a gradient after shedding of their extracellular
domain. The ectodomains of FLRT2 and FLRT3, for instance,
are released after cleavage by metalloproteases and act as
repulsive guidance cues for hippocampal axons expressing Unc5
(Yamagishi et al., 2011). While many CAMs are processed by
metalloproteases (Saftig and Lichtenthaler, 2015), the functions

of their ectodomains in circuit assembly remain surprisingly
unknown. We can anticipate, though, that ectodomain release
would increase the functional diversity of CAMs and provide
an additional level of spatiotemporal regulation for signaling.
The ectodomain of Tenm2, for instance, is proteolytically
cleaved during development and was recently shown to attract
hippocampal axons in vitro by binding to Lphn1 (Vysokov et al.,
2016, 2018).

Contact-Mediated Self-Avoidance and
Tiling
Neuronal connectivity and function rely on the precise
innervation of targets by axons. After reaching their final
destination, axons branch extensively to form elaborate terminal
arbors within specific territories. Branching patterns form
dynamically and become spatially organized to maximize the
coverage of an area while minimizing redundancy of targeting.
Optimal coverage is achieved through two main mechanisms
(Grueber and Sagasti, 2010). Isoneural spacing or self-avoidance
refers to the repulsion between axonal branches of a same neuron,
so that branches avoid overlapping with each other. Likewise,
arbors from distinct neurons that share the same function do
not overlap, a phenomenon referred to as heteroneural avoidance
or tiling. Both self-avoidance and tiling pertain to axons as well
as dendrites and are achieved by contact-mediated repulsion
(Sagasti et al., 2005).

First described in studies analyzing the receptor fields of
sensory neurons in the leech (Nicholls and Baylor, 1968), self-
avoidance relies on the ability of sister branches from the
same terminal arbor to discriminate “self ” from “non-self ”
before repelling each other. This selective recognition is achieved
by the expression of a cell-surface molecular code that is
common to sister branches but distinct among branches from
different neurons. In Drosophila, DSCAM1 generates such a
code. Alternative splicing of DSCAM1 pre-mRNA produces
38,016 distinct isoforms that differ in their ectodomain and
are expressed in a probabilistic way (Schmucker et al., 2000).
Consequently, each isoform gives an individual neuron a unique
molecular identity. As only identical ectodomains can engage in
homophilic trans-interactions due to conformational constraints,
only sister branches sharing the same isoform will recognize
each other (Wojtowicz et al., 2004, 2007). DSCAM1-mediated
homophilic interactions initiate repulsion rather than adhesion in
this context, which contrasts with the known function of DSCAM
in promoting axon fasciculation (Bruce et al., 2017). DSCAM1-
mediated self-avoidance enables the proper spatial organization
of both axonal and dendritic arbors in diverse neuronal
populations (Wang J. et al., 2002; Zhan et al., 2004; Hattori et al.,
2007; Matthews et al., 2007; Soba et al., 2007). In the absence
of DSCAM1, branches fail to separate and overlap or fasciculate
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instead. Interestingly, although the vertebrate ortholog DSCAM
and its homolog DSCAML mediate self-avoidance in the mouse
retina (Fuerst et al., 2008, 2009), they are not highly spliced and
thus do not generate a molecular code like DSCAM1. Instead,
DSCAM appears to mask adhesion-promoting signaling from
other CAMs like cadherins (Garrett et al., 2018). If not DSCAM,
which cell-surface molecules generate a recognition code in
vertebrates? Like DSCAM1, clustered Protocadherins (Pcdhs)
exist in a multitude of isoforms and as such, represent the largest
subgroup in the Cadherin superfamily. About 60 Pcdh genes are
organized into three adjacent clusters designed as Pcdh α, β, and
γ (Wu and Maniatis, 1999; Figure 3D). Each cluster includes
several variable exons that each codes for an extracellular and
transmembrane domains. Each variable exon is further preceded
by a promoter that is randomly activated in individual neurons to
drive transcription (Tasic et al., 2002; Wang X. et al., 2002). Thus,
stochastic promoter choice leads to the production of different
Pcdh isoforms from each of the three clusters in a cell-specific
manner, thereby generating a unique combination of Pcdh α, β,
and γ expression in each neuron (Esumi et al., 2005; Kaneko et al.,
2006; Thu et al., 2014; Mountoufaris et al., 2017). Clusters α and γ

further include constant exons coding for a common intracellular
domain that are combined to each variable exon by alternative
splicing. Like DSCAM1, Pcdhs engage in strict homophilic trans-
interactions and as such, provide a recognition code for sister
branches of the same neuron (Hasegawa et al., 2012; Thu et al.,
2014; Mountoufaris et al., 2017). They also form multimers in
cis at the plasma membrane and signal through the intracellular
domain of Pcdhs α and γ to initiate repulsion. Thanks to their
diversity, Pcdhs have emerged as the main mediators of axonal
and dendritic self-avoidance in vertebrates (Lefebvre et al., 2012).
Deleting all three Pcdh clusters in mice, for instance, causes a
loss of self-avoidance and severe arborization defects in olfactory
axons (Mountoufaris et al., 2017). Conversely, “erasing” the
Pcdh code by overexpressing a single-tricluster gene repertoire
prevents olfactory axons from converging into stereotypically
positioned glomeruli in the olfactory bulb.

Protocadherins also appear to regulate axonal tiling in
addition to self-avoidance. In the basal ganglia and hippocampus,
for instance, serotonergic axon terminals are evenly spaced in
their target fields but become clumped together in mice lacking
Pcdhαc2, the only Pcdhα isoform expressed in serotonergic
neurons (Chen et al., 2017). Whether tiling of other axonal
populations is similarly regulated by the expression of unique
Pcdhs remains to be determined. Other CAMs, however, have
been identified as tiling regulators. DSCAM is notably required
for proper axonal and dendritic tiling of bipolar cells in the
retina (Simmons et al., 2017). Likewise in the Drosophila
visual system, DSCAM2, the atypical cadherin Flamingo (Fmi),
and the IgSF CAM Turtle (Tutl) enable proper spacing of
distinct classes of axons in spatially restricted columns in the
medulla (Millard et al., 2007; Tomasi et al., 2008; Ferguson
et al., 2009; Hakeda-Suzuki et al., 2011; Figure 3E). Tutl
engages in homophilic trans-interactions to prevent adjacent
R7 photoreceptor cell terminals from overlapping (Ferguson
et al., 2009). Similarly, Fmi mediates repulsive trans-interactions
between R8 photoreceptors axons. Fmi interacts in cis with

Gogo, another transmembrane receptor eliciting repulsive axon-
axon interactions, suggesting that both proteins might act as
a complex at the surface of branches to ensure tiling (Tomasi
et al., 2008; Hakeda-Suzuki et al., 2011). Lastly, DSCAM2
ensures proper spacing of L1 axonal arbors, thereby restricting
them to specific columns. In dscam2 mutants, L1 axons still
innervate the correct layer of the medulla but are no longer
restricted to a single column (Millard et al., 2007). Altogether,
these studies indicate that the selective expression of individual
or combined CAMs generates a cell-surface recognition code
that ensures the segregation of terminal arbors into non-
overlapping domains while instructing laminar targeting and
synaptic specificity.

CONCLUSION AND PERSPECTIVES

In conclusion, a large body of literature now demonstrates
that CAMs orchestrate a striking number of developmental
processes that are critical for neural circuit wiring. By engaging
in homophilic and heterophilic trans-interactions, CAMs not
only provide the adhesion and mechanical stabilization required
for proper axon guidance and fasciculation, but also generate
a cell-surface recognition code essential for synaptic specificity
and contact-mediated self-avoidance and tiling. CAMs further act
as bona fide signaling factors instructing growth cone behavior,
modulating the activities of guidance receptors, and controlling
transcriptional programs for axonal development.

Surprisingly, whether CAMs also contribute to the regressive
events that refine neural circuits remains poorly known. Selective
axon degeneration, for instance, is used to remodel axonal
projections during metamorphosis in insects or prune exuberant
axons or axonal branches in vertebrates (Riccomagno and
Kolodkin, 2015; Schuldiner and Yaron, 2015). In the visual
system, retinal axons that missort along the optic tract selectively
degenerate, leading to proper pre-target topographic ordering
of retinal projections (Poulain and Chien, 2013). Refinement of
terminal retinal arbors also occurs at the target in an activity-
dependent manner, leading to the sharpening of retinotopic maps
and the segregation of ipsi- and contralateral axons into eye-
specific territories in animals with binocular vision (Stellwagen
and Shatz, 2002; Chandrasekaran et al., 2005; Ben Fredj et al.,
2010). Interestingly, Cntn2 was recently identified as a key
regulator of retinotectal map sharpening in zebrafish (Spead et al.,
2021). Nasal retinal axons progressively refine their projection
domain to the posterior tectum in wild-type but not in the
absence of Cntn2, causing a lack of retinotopic map refinement
along the antero-posterior axis. How Cntn2 remodels axon
terminal arbors remains to be determined but might involve
an interplay between Cntn2 signaling and neuronal activity.
Indeed, neuronal activity might modulate the targeting of Cntn2
to the plasma membrane, just as it regulates that of Cntn1 in
hypothalamic axons (Pierre et al., 2001). Conversely, Cntn2 could
modulate neuronal activity by regulating sodium or potassium
channels. Cntn1, for instance, interacts with several voltage-
gated sodium channels and increases their density at the plasma
membrane (Kazarinova-Noyes et al., 2001; Liu et al., 2001).
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Dissecting the cross-talk between CAMs and other signaling
pathways will be critical to fully comprehend the multiple
roles CAMs play at various stages of circuit assembly. It might
also provide new strategies for correcting mechanisms that get
dysregulated in the context of neurodevelopmental disorders.
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