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Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated
until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially
effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a
preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such
as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in
the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility
to dysfunction, exploring this region’s proneness to structural and functional imbalances, metabolic pressures, and oxidative stress.
We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss
how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective
studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the
onset of psychosis.

Translational Psychiatry          (2022) 12:344 ; https://doi.org/10.1038/s41398-022-02115-5

INTRODUCTION
Hippocampal dysfunction is a robust feature in the pathophy-
siology of psychosis [1, 2]. In patients with a psychotic disorder
such as schizophrenia, hippocampal volume is reduced [3–5]
and function is abnormal: neuroimaging measures of resting
activity including positron emission tomography (PET) [6],
resting-state functional MRI (rs-fMRI) [7–10], and resting
cerebral blood volume (CBV) [11–13], converge to suggest
that the hippocampus is hyperactive in psychosis. Moreover,
hippocampal alterations are already present before illness
onset in people at clinical high-risk (CHR) of psychosis,
including increased hippocampal resting cerebral blood flow
(rCBF) [14, 15] and disrupted hippocampal-basal ganglia and
hippocampal-prefrontal connectivity [16–18]. These human
findings are broadly consistent with preclinical data demon-
strating that hippocampal hyperactivity drives the develop-
ment of striatal dopamine dysfunction [19] and associated
psychosis-relevant behaviours [20]. If hippocampal dysfunction
plays such a key role in the onset of psychosis, correcting this
dysfunction may represent a promising strategy for the
development of new treatments and preventive interventions.
The aim of the present review is to explore recent develop-
ments in the study of hippocampal circuit dysfunction in
psychosis, understand what they mean in the context of
normal hippocampal neurodevelopment or under exposure to
known environmental risk factors for psychosis, and how these
findings can inform the development of novel treatments.

HIPPOCAMPAL CIRCUITRY
The hippocampal formation comprises several distinct, densely
packed, highly connected areas (Fig. 1). The circuitry of the
hippocampus is inextricably linked to its functions—pattern
completion and separation—which requires distinct subfield
contributions [2]. Hippocampal cells also recruit distal cortical
regions in hippocampal-cortical circuits, processing information
involving memory, spatial navigation, emotion, and stress [21].
Together, these hippocampal-cortical circuits form a systematic

mental representation of accumulated knowledge and experi-
ences, which can be conceptualised as a ‘cognitive map’ [22].
When a neuronal assembly relating to a particular cognitive map is
cued, this triggers a sequence of oscillatory signalling which
preferentially follows an encoded representation, thereby sup-
porting the prediction of event consequences and prompting
behaviour. These patterns are believed to be consolidated and
integrated during rest, when hippocampal sharp-wave ripple
oscillations reactivate the sequence of neural assemblies in the
absence of the original stimuli—a process known as neural replay
[23]. The circuitry of hippocampal subregions is crucial for
processes used to distinguish between (pattern separation) and
link (pattern completion) cognitive maps [2]. Cognitive maps are a
useful framework for understanding psychotic symptoms. If the
dynamics cueing neurons and attracting signal through a
cognitive map become imbalanced, pattern separation and
completion processes are compromised [2]. The resulting “shallow
cognitive maps”—over-general pattern completion and reduced

Received: 1 August 2022 Revised: 9 August 2022 Accepted: 11 August 2022

1Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK. 2Center for Psychiatric Neuroscience, Department of
Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland. 3Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
4Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK. 5NIHR Maudsley Biomedical Research Centre, London,
UK. 6MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK. ✉email: samuel.knight@kcl.ac.uk

www.nature.com/tpTranslational Psychiatry

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-022-02115-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-022-02115-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-022-02115-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-022-02115-5&domain=pdf
http://orcid.org/0000-0003-3420-3722
http://orcid.org/0000-0003-3420-3722
http://orcid.org/0000-0003-3420-3722
http://orcid.org/0000-0003-3420-3722
http://orcid.org/0000-0003-3420-3722
http://orcid.org/0000-0003-1102-2566
http://orcid.org/0000-0003-1102-2566
http://orcid.org/0000-0003-1102-2566
http://orcid.org/0000-0003-1102-2566
http://orcid.org/0000-0003-1102-2566
http://orcid.org/0000-0003-4931-9007
http://orcid.org/0000-0003-4931-9007
http://orcid.org/0000-0003-4931-9007
http://orcid.org/0000-0003-4931-9007
http://orcid.org/0000-0003-4931-9007
http://orcid.org/0000-0001-5690-1252
http://orcid.org/0000-0001-5690-1252
http://orcid.org/0000-0001-5690-1252
http://orcid.org/0000-0001-5690-1252
http://orcid.org/0000-0001-5690-1252
http://orcid.org/0000-0003-4381-0532
http://orcid.org/0000-0003-4381-0532
http://orcid.org/0000-0003-4381-0532
http://orcid.org/0000-0003-4381-0532
http://orcid.org/0000-0003-4381-0532
http://orcid.org/0000-0002-7870-066X
http://orcid.org/0000-0002-7870-066X
http://orcid.org/0000-0002-7870-066X
http://orcid.org/0000-0002-7870-066X
http://orcid.org/0000-0002-7870-066X
https://doi.org/10.1038/s41398-022-02115-5
mailto:samuel.knight@kcl.ac.uk
www.nature.com/tp


pattern separation—could give rise to the cognitive impairments,
thought disorder, and aberrant salience in psychosis through the
reinforcement of loosely associated circuits during neurodevelop-
ment (see [24] for a review).

NEURODEVELOPMENT OF HIPPOCAMPUS
The internal circuitry of the hippocampus develops in a complex
and lengthy process. Neural cell proliferation, migration, differ-
entiation, and synaptogenesis all begin prenatally and extend
through the first years of postnatal life, with synaptogenesis
continuing right through to adolescence [25]. The developmental
timeframe of these processes reflects critical or sensitive periods
of brain maturation—developmental windows where brain
circuitry is shaped by postnatal sensory stimulation—that are
essential for healthy neurodevelopment [26].
During early life, sensory information in the environment

influences the organisation of the brain through effects on
synaptogenesis, pruning, and myelination. Development is rapid
through the first year of postnatal life; most structures are already
established, and the pace of subsequent synaptogenesis slows
[27]. A critical period for synaptogenesis is estimated to close in
early childhood [28, 29], as the mental representations of early life
experiences become encoded and distributed in neural circuits.
This leads to another critical period in human development in
adolescence, with synaptic pruning and myelination processes
accelerating to solidify these neural patterns, before tapering off
in early adulthood [25].
Specific maturational processes are difficult to characterise

in vivo [30], although these are indirectly reflected through MRI-
derived grey matter volume decreases and white matter volume
increases between childhood and early adulthood [31]. Unlike
much of the cortex, several subcortical structures including the
hippocampus display a contrasting lack of hippocampal grey
matter decline over adolescence and early adulthood [32–34],
suggesting that the processes involved in synaptic pruning over
neurodevelopment may be occurring over a protracted period
and potentially leaving the hippocampus more vulnerable to
aberrant adolescence development. Unlike other structures, there
is also ongoing postnatal neurogenesis within the dentate gyrus
(DG), likely contributing to protracted hippocampal development.
The rate of neurogenesis appears to taper off in early adulthood

[35], though there is other evidence that it persists into adulthood
[36]. Overall, the role of ongoing neurogenesis is undoubtedly
important for hippocampal development and the emergence of
psychotic phenotypes (see [37–39] for reviews).
Developmental changes within the hippocampus are also not

uniform. The posterior/dorsal hippocampus, most often associated
with memory and spatial learning, gains in volume as a ratio to its
size at age four, over 19 years of subsequent development [40].
Conversely, the anterior/ventral hippocampus, with projections to
the prefrontal cortex and amygdala and associated with socio-
emotional and stress response processes, decreases in relative
volume over the same period. The differences in anterior/posterior
specialisation and development are relevant for psychosis, as
socio-emotional and stress response abnormalities in psychosis
[41] are particularly accentuated in adolescence [42].
This vulnerability of the hippocampus may particularly impact

normal development by its dense connectivity. The hippocampus
is part of the so-called “rich club” of hub brain regions (including
the superior frontal cortex, precentral gyri, thalamus, and puta-
men), with particularly high network centrality and vulnerability to
dysfunction [43, 44]. There is diverse connectivity between
hippocampal subfields and known resting-state networks in
mature brains [45]; these networks are already partially estab-
lished by age four and continue to consolidate over childhood
[46]. Together, the protracted neurodevelopment and high
connectivity of the hippocampus may leave immature neurons
vulnerable to damage during a period where risk factors for
psychosis may be particularly influential.

HIPPOCAMPAL ALTERATIONS IN PSYCHOSIS
Hippocampal volume deficits are evident at the first episode of a
psychotic disorder (FEP), when the clinical diagnosis is first made,
and are most marked in anterior cornu ammonis (CA) regions [47].
These reductions also appear to be greater in patients with
relatively severe positive symptoms [48], as well as in those in
whom there was a long delay before treatment was initiated [49],
though hippocampal volume reductions do not appear to be
progressive from FEP to chronic illness [47, 50, 51].
Abnormal metabolic activity within the hippocampus may

precede and drive hippocampal volume loss [1]. Elevated CBV left
anterior CA1 was found in CHR individuals who subsequently

Fig. 1 Hippocampal subfield anatomy. A The subdivisions of the hippocampus along its long axis—the dentate gyrus (DG) and four sections
of the cornu ammonis (CA1 red; CA2, blue; CA3, green; CA4/DG, yellow; subiculum, cyan)—are demarcated early in prenatal
neurodevelopment through specific genetic molecular markers. Segmentation derived from cytoarchitectonic anatomical probability map
[244]. B Cross-section of left hippocampi, highlighting primary internal circuitry of the hippocampal formation. Solid lines reflect the
‘trisynaptic circuit’, dash lines reflect supporting entorhinal circuitry. Each subdivision of the hippocampus is linked to the neighbouring
entorhinal cortex through the ‘trisynaptic circuit’, an excitatory projection that links hippocampal subregions via the perforant pathway to
granule cells in the DG. These granule cells are linked to pyramidal cells in region CA3 via mossy fibres, which in turn project to pyramidal cells
in CA1 via Schaffer collaterals, before exiting the hippocampus via the subiculum [245]. In addition to the trisynaptic circuit, there are
supporting connections between the entorhinal cortex and CA1 and CA3, and subiculum, as well as projections between CA1 and CA3. The
hippocampus receives input primarily from the entorhinal cortex but is also extensively connected with proximate regions, including the
anterior cingulate (ACC), medial prefrontal cortex (mPFC), and amygdala [246]. The hippocampus sends direct outputs to the nucleus
accumbens, hypothalamus, and thalamus, and indirect outputs to the striatum via the nucleus accumbens and ventral tegmental area [247].
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transitioned to psychosis [52]. After a 24-month follow-up, higher
CBV was also evident in the subiculum in the CHR subgroup that
transitioned to psychosis, overlapping with longitudinal MRI
volume loss. Parallel animal model work involving the chronic
administration of ketamine produced a similar pattern of
hippocampal CBV increase and volume reduction, suggesting
that these MRI-based changes may be driven by local glutama-
tergic dysfunction [52]. In humans, longitudinal neuroimaging
data suggest that increased hippocampal rCBF normalises in CHR
individuals who subsequently remit from the CHR state [15],
whereas in CHR subjects with adverse clinical outcomes, elevated
hippocampal rCBF has been associated with lower striatal
dopamine synthesis capacity [53]. Small hippocampal volume
reductions been reported in people at CHR for psychosis [54, 55],
which may be more prominent in CA1 [56]. There is also evidence
that these reductions at baseline are more pronounced in the
subgroup of CHR subjects go on to develop psychosis, and that
they continue to decrease longitudinally as these individuals
transition to psychosis [57, 58]. However, a recent meta-analysis
suggests these findings have not been consistently replicated [59].
In the most recent structural MRI study to date in CHR individuals,
baseline grey matter volume in the hippocampus or other cortical
regions was not predictive of remission or transition to psychosis
[60]. Longitudinal studies in an early psychosis or CHR population
are therefore necessary to expand on the links between increased
hippocampal metabolism, glutamate dysfunction, and subsequent
volume loss.
Alterations in hippocampal structure and function have also

been associated with psychotic-like experiences in the general
population [61–63] (although see [64]). Moreover, hippocampal
dysfunction is shared across other neuropsychiatric disorders
[65, 66], which is perhaps unsurprising given the large overlap in

genetic risk and symptoms [67]. Due in part to this overlap,
hippocampal circuit dysfunction specific to psychosis is often
difficult to discriminate [6, 68]. Notwithstanding, there is some
evidence that hippocampal alterations are most pronounced in
schizophrenia, decreasing in severity along the psychiatric
spectrum [4, 69, 70]. The nature and specificity of hippocampal
dysfunction in psychosis is thus still being parsed, and while
beyond the scope of the present review, this overlap has broad
transdiagnostic implications for the pathophysiology and putative
treatment of other disorders.

CAUSES OF HIPPOCAMPAL ALTERATIONS IN PSYCHOSIS
Excitation–inhibition imbalance
The balanced interplay between excitatory and inhibitory (E/I)
neural activity is crucial for regulating brain excitability and the
synchronisation of signalling between disparate cortical regions
involved in cognitive functioning [71]. Psychosis may involve an
imbalance between E/I signalling (Fig. 2), proposed to drive
hippocampal hyperactivity and “shallow cognitive maps”, resulting
in aberrant coupling between loosely associated neural assem-
blies [24]. One example of this is impaired hippocampal neural
replay in schizophrenia, where abnormal hippocampal oscillations
impair learning [72].
In most cortical regions, ~80% of neurons are excitatory

glutamatergic pyramidal cells, whereas in the hippocampus these
cells represent ~90% of all neurons [73]. Because only ≈10% of
hippocampal neurons are inhibitory GABAergic interneurons, this
region may be more susceptible to E/I imbalance. For example, the
hippocampus is a source of high-frequency gamma oscillations
(~30–100 Hz range) that are implicated in memory encoding,
storage, and retrieval [74, 75], and known to be disrupted in

Fig. 2 Model of hippocampal hyperactivity in early psychosis, highlighting potential targets for detection/intervention. A Stressors lead
to cascade of down-scale imbalances, including increased hippocampal metabolism and network (blue spheres) dysfunction (red spheres).
Hub regions, including the hippocampus, are most likely to be impacted [43]. B Excitatory/inhibitory imbalance and hyperactivity in
hippocampal subregions (enlarged arrows). C Oxidative stress damages metabolically demanding parvalbumin-positive interneurons (PVI),
resulting in N-methyl-D-aspartate receptor (NMDAR) hypofunction and (1) altered pyramidal signalling; (2) reduced pyramidal input to
interneurons; (3) reduced interneuron inhibition of pyramidal cells, and a cascade of up-scale imbalances These processes are accentuated in
those at highest genetic risk. Diagram adapted in part, with permission [248].

S. Knight et al.

3

Translational Psychiatry          (2022) 12:344 



psychosis [76]. Gamma oscillations are regulated by fast-spiking
GABAergic parvalbumin-positive interneurons (PVI) [77, 78]. In
transgenic mice, optogenetic stimulation of PVI generates gamma
oscillations and improves cognitive performance [79], while
disruptions to N-methyl-D-aspartate receptor (NMDAR) input on
PVI impair gamma oscillations [80]. PVI play a role in hippocampal
neurogenesis [81], and constitute around 20% of hippocampal
inhibitory neurons, somewhat more concentrated in CA1 and CA3
than in the DG [82]. This compares to around 40% of cortical
interneurons [83].
In psychosis, reductions in hippocampal PVI density have been

found in post-mortem studies [84, 85] and hippocampal PVI cell
loss is evident in several animal models of psychosis [52, 78]. There
is also significant post-mortem and in vivo evidence of synaptic
deficits in psychotic disorders [86–89], which may be a result of
PVI impairments and may drive hippocampal hyperactivity. PVI
synaptogenesis is regulated by Neuregulin 1 and Erbb4 receptors,
which are also implicated in neurodevelopmental and psychotic
disorders [90]. Experiments in a genetic animal model involving
Erbb4 deletion from PVI show lower synaptic density as indexed
by synaptic vesicle glycoprotein 2A (SV2A) sampling, together
with increased rCBF in the ventral hippocampus [91]. These results
resemble neuroimaging findings associated with psychosis-risk
[14, 86], linking PVI and SV2A deficits with hippocampal
hyperactivity.
PVI dysfunction has also been linked to NMDAR hypofunction in

psychosis [92, 93]. NMDAR antagonists such as phencyclidine
decrease PVI count [94], thereby leading to lower PVI inhibition of
pyramidal neurons. Moreover, activation of the NR2A subunit of
NDMARs contributes to the maturation of PVI [95] and therefore
NMDAR hypofunction may be most detrimental to PVI early in
development [96].
Single-photon emission computed tomography (SPECT) and

PET have been used to quantify NMDAR density in vivo in patients
with psychosis. While the specificity of these radioligands for the
receptor remains controversial, one SPECT study reported reduced
NMDAR binding in the left hippocampus relative to the whole
cortex in unmedicated patients with psychosis, but this deficit was
ameliorated in antipsychotic treated patients [97]. A recent PET
study replicated this finding in early psychosis; FEP patients
showed lower hippocampal NMDAR binding relative to the whole
cortex compared to healthy volunteers, although no differences in
hippocampal NMDAR availability were observed [98]. Overall,
there is some evidence that hippocampal abnormalities in
psychosis may be related to NMDAR hypofunction.
Although currently PVI activity cannot be measured in vivo in

humans, levels of glutamate and GABA partially reflect E/I
processes [99] and can be measured with proton magnetic
resonance spectroscopy (1H-MRS). Meta-analysis of 1H-MRS
studies in patients with schizophrenia, FEP, and CHR individuals
showed elevations in levels of glutamate+ glutamine (Glx) in the
basal ganglia of schizophrenia and FEP patients, regardless of
whether they were medicated [100]. However, hippocampal Glx
was only elevated in unmedicated patients, with no elevations in
basal ganglia Glx in CHR unless combined with patient groups. In
CHR individuals, one study found higher levels of hippocampal
glutamate levels in the CHR subgroup that subsequently
transitioned to psychosis[101], although another study did not
[102]. One multimodal neuroimaging study found that hippocam-
pal glutamate levels and striatal dopamine synthesis capacity were
negatively correlated in CHR individuals who later developed
psychosis [103]. This is an intriguing finding given the proposed
causal link between hippocampal hyperactivity and elevated
striatal dopamine [104], though important to note that Glx signal
acquired through 1H-MRS captures more than hippocampal-
striatal projections and includes inputs to the anterior hippocam-
pus. If inhibitory signalling is perturbed, one would predict a Glx
decrease.

In terms of GABA levels, relatively few studies have investigated
these in the hippocampus in patients with psychosis, partly due to
the technical difficulties in reliably positioning a GABA-edited
1H-MRS voxel in this region [105]. Nevertheless, 1H-MRS studies at
both 3T and 7T have not found significant alterations in absolute
concentrations of GABA in patients with psychosis compared to
healthy controls [106, 107]. In a multimodal imaging study in
people at CHR, GABA levels in the prefrontal cortex were
correlated with hippocampal rCBF, a correlation driven by those
individuals who subsequently transitioned to psychosis [108].
Some of the technical difficulties in measuring hippocampal GABA
in vivo with 1H-MRS may be overcome by using PET imaging. A
recent study reported lower GABAA α5 receptor availability (highly
expressed in hippocampus) only in the subgroup of patients with
schizophrenia that were antipsychotic-free [109], suggesting that
PET measures of GABA dysfunction can be influenced by the
effects of antipsychotic medications [110].

Stress sensitivity
Environmental stressors (including poverty, ethnicity/immigration,
and childhood adversity) are among the strongest risk factors for
psychosis [111]. The hippocampus appears to play a role in
mediating their effects; preclinical studies have found increased
hippocampal activity and PVI loss following environmental
stressors (including maternal separation and random foot shocks)
[112, 113], particularly before adulthood [114]. In children,
environmental stressors such as maltreatment, poverty and
neglect have deleterious effects on anterior hippocampal volume
[115]. While hippocampal volume loss may not occur after a single
traumatic event [116], the extended period of vulnerability allows
for an accumulating cascade of maladaptive environmental
influences on neurodevelopment [117]. In CHR individuals, a
history of childhood trauma has been associated with reductions
in hippocampal volume in early adulthood [14]. The impact of
early life risk factors may vary according to sex: females may be
more resilient to certain types of early maltreatment [118], but
more susceptible to abuse later in life [119]. These differences in
vulnerability to stressors may contribute to the later age of onset
of psychosis in females [120], and raises the possibility of sex-
dependent differences on the putative window for effective
preventive intervention.
A possible mechanism by which early life stressors may

precipitate metabolic pressures on the hippocampus is through
its involvement in stress and emotion processing [121]. The
hypothalamic pituitary adrenal (HPA)-axis regulates the response
to stress through cortisol binding to glucocorticoid and miner-
alocorticoid receptors, which are present at a high density in the
anterior hippocampus [122]. While this stress response is critical
for normal learning [123], repeated activity burdens the system
[124]. Hence, early life stressors may alter hippocampal neuronal
structure [125] and potentially sensitise the HPA-axis. Environ-
mental stressors during key developmental periods may reinforce
a stress-sensitised phenotype, with aberrant synaptic pruning in
adolescence leading to altered E/I balance and dysfunctional
cognitive maps, restricting the deployment of alternative cogni-
tive strategies. For instance, excess glucocorticoid activity reduces
the complexity of CA3 hippocampal pyramidal cells [126] and
inhibits neurogenesis [127]. The effects of these stressors on the
HPA-axis may be especially pronounced in adolescence due to
neurohormonal processes involved in puberty [128]. Sustained
activation of glucocorticoids during vulnerable developmental
periods may also impair energy metabolism in the hippocampus
and lead to oxidative stress [129].

Oxidative stress
Oxidative stress results from an impairment in the redox cycle of
oxygen metabolism. Redox dysregulation occurs when there is an
imbalance between reactive nitrogen and oxygen species (ROS),
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and the capacity of the cells to detoxify the ROS with antioxidant
defences, predominantly through the reduction of glutathione
(GSH) [130]. ROS are deleterious by-products of aerobic metabo-
lism, resulting from the mitochondrial electron transfer chain that
converts glucose and oxygen into adenosine triphosphate [131].
High-energy demands can perturb the redox balance and result in
ROS-mediated damage of surrounding molecules [130]. The
hippocampal region may be particularly vulnerable to oxidative
stress because it is a metabolically active region, with high degree
of connectivity to distal regions and relatively fine-tuned
excitatory/inhibitory cell balance.
PVIs display a high rate of firing relative to other neurons, and

therefore have relatively high metabolic demands [132]. The
generation of gamma oscillations, mediated by hippocampal PVIs,
can require more than double the baseline oxygen consumption,
making PVIs particularly vulnerable to oxidative stress [133].
Glutamate cysteine ligase (GCL) is the rate-limiting enzyme for
synthesising GSH, and a GCL modulatory subunit (M) knockout
model shows depleted GSH [134] and loss of PVI [135]. Indeed,
oxidative stress has been shown to disrupt gamma oscillations from
ventral CA3 in a mouse model of relevance to psychosis [134].
Oxidative stress is a vicious cycle whereby ROS, if not neutralised,
may impair mitochondrial function, generating even more ROS.
Converging evidence links psychosis with increased oxidative

stress [136–138]. Schizophrenia patients have increased DNA
oxidation, lipid oxidation/peroxidation, and free radicals [138], as
well as decreased antioxidants [137]. A meta-analysis of oxidative
stress in schizophrenia found differences in 10 peripheral oxidative
stress markers—from red blood cells, plasma, and serum—depend-
ing on FEP or chronic schizophrenia clinical status [137]. Though
most studies focus on peripheral markers of oxidative stress,
oxidative DNA damage in hippocampal tissue was found to be
10× higher in patients with chronic schizophrenia than in non-
psychiatric subjects by post-mortem examination [139].
Oxidative stress is difficult to spatially localise in vivo, so instead

researchers look for signs of redox dysregulation, with GSH levels as a
widely used marker of an impaired antioxidant system. Animal model
evidence for an association of reduced GSH levels with hippocampal
abnormalities [130] implicates oxidative stress in the pathophysiology
of psychosis. For instance, GSH-deficient transgenic mice show a
time-dependent impairment of PVI functioning in the ventral
hippocampus, linking GSH to PVI damage/loss [134]. In this same
mouse model, reduced fractional anisotropy (FA) and conduction
velocity of slow-conducting fibres of the fornix-fimbria were found
during adolescence [140], suggesting connectivity impairments of
the hippocampus to other subcortical areas. Interestingly, reduced FA
in the fornix is also observed in patients at the early stage of
psychosis, underscoring the potential role of oxidative stress in these
alterations [141].
In humans, recent meta-analyses of 1H-MRS studies found a

persistent pattern of GSH deficits in psychosis [142, 143], with
most studies focusing on the mPFC/ACC. Hippocampal GSH has
not been studied extensively in psychosis, owing to similar
technical limitations to the use of 1H-MRS for measuring
hippocampal GABA levels, although one study found higher
GSH in the medial temporal lobe of FEP patients versus healthy
controls [144]. In this context, peripherally measured redox blood
markers and GCLC genotyping may be more practical markers of
redox status and dysfunction than brain GSH measures. A genetic
polymorphism in the catalytic subunit of the GCL was found to be
associated with schizophrenia and led to decreased brain [145]
and blood GSH levels, as well as GCL activity [146]. One study
found that mPFC GSH became uncoupled from peripheral GSH-
related enzymes in early psychosis patients, but remained
positively correlated in healthy participants [145], whilst another
linked higher peripheral glutathione peroxidase with reduced
hippocampal volume in early psychosis but not in healthy
participants [147]. Moreover, this association was also found in

patients that had experienced childhood trauma, linking adverse
life events with increased oxidative stress and hippocampal
alterations [148]. Though this evidence supports a role for redox
dysregulation in psychosis, further studies are warranted to
determine hippocampal GSH levels in the disorder, and the links
between peripheral redox markers and hippocampal activity.
The effects of oxidative stress in relation to psychosis may be

especially important in preadolescence, when they may affect
perineuronal nets (PNN)—an extracellular matrix of molecules that
enclose neurons and provide them with structural support [133].
Their presence around PVI is essential in closing a period of
plasticity in preadolescence in which synaptic pruning and
apoptosis occur [26, 149, 150]. PNN also protect PVI from oxidative
stress, although they themselves are still vulnerable to oxidative
damage [151]. Post-mortem analyses have found a 70% reduction
of PNN in patients with psychosis in the PFC [152], however,
evidence of PNN deficits in the human hippocampus is extremely
limited [153, 154]. Clearly, further characterisation of PNN in the
human hippocampus is required. However, a study of the
methylazoxymethanol acetate (MAM) preclinical model for psy-
chosis found a reduction in PNN, which was linked to increased
firing of hippocampal pyramidal cells [155]. Furthermore, chronic
stress in adolescence—but not adulthood—reduces PVI and PNN
[114]. Collectively, these observations suggest that oxidative stress
may damage hippocampal PVI and PNN, extending a neurodeve-
lopmental period when there is scope for aberrant plasticity and
synaptic pruning [149].

TARGETING HIPPOCAMPAL DYSFUNCTION IN PSYCHOSIS
This section will consider how the aforementioned hippocampal
circuit abnormalities may be targeted during neurodevelopment
to reduce the cascade to a psychotic disorder (Fig. 3).

E/I imbalance
One method for correcting hippocampal hyperactivity may be
through targeting glutamate. For example, in a mouse model of
psychosis, an mGluR 2/3 agonist prevented ketamine-induced hyper-
metabolism of the hippocampus [52]. Furthermore, peri-pubertally
targeting this receptor with the mGluR 2/3 agonist pomaglumetad
methionil normalised VTA dopamine and ventral hippocampal
pyramidal neuron activity in the MAM model of psychosis [156].
However, to date, results from clinical trials of compounds that target
glutamate function in patients with psychosis have been disappoint-
ing. Pomaglumetad methionil was inferior to aripiprazole in relieving
positive symptoms [157], and no better than placebo as an
adjunctive treatment for negative symptoms [158]. Bitopertin, a
glycine transport inhibitor, was ineffective at improving symptoms in
schizophrenia in phase-III trials [159]. Still, these studies involved
patients with a chronic psychotic disorder, who had been treated
with antipsychotic medications. It is possible that glutamatergic
medications might be more useful if given in the early phase of
psychosis, in FEP or CHR individuals, before receiving prolonged
antipsychotic treatment.
Another strategy to redress E/I imbalance is to target the

GABAergic system to restore inhibition within the hippocampus.
For instance, in the MAM model for psychosis, the experimental
transplantation of GABAergic precursor cells into the ventral
hippocampus normalised hippocampal and striatal dopaminergic
function [160]. Similarly, in the same model, peri-pubertal adminis-
tration of diazepam prevented PVI loss and hyperdopaminergia at
adulthood [161]. To date, experimental interventions with GABA-
enhancing medications have mainly involved benzodiazepines,
which are broad GABAA agonists [162] and there is no evidence
for antipsychotic efficacy of additional benzodiazepine medication in
schizophrenia [163]. Levetiracetam is an antiepileptic drug that binds
to SV2A [164], consequently enhancing GABAergic signalling [165]
and regulating E/I balance [166]. Several clinical trials are currently
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ongoing with levetiracetam in schizophrenia: NCT04317807,
NCT03129360, NCT03034356, and NCT02647437. As with novel
glutamatergic compounds, these trials are being conducted in
patients with well-established psychosis, rather than patients in its
early phase, prior to antipsychotic use. This may reduce the chances
of detecting clinical effects, as antipsychotic medications can
confound or block the effects of GABAergic intervention [109, 167].
Of greater concern are case reports suggesting that levetiracetam
can induce psychosis in patients with epilepsy, particularly in patients
with a history of psychosis, so may be harmful in some patients
[168, 169]. The recent advent of more specific GABAA α5 receptor
subunit modulators are of great interest, due to their relative
specificity for the hippocampus and their effectiveness in animal
models [170].
Sodium Valproate is another anticonvulsant drug often used to

treat mania [171] which has also been used effectively to augment
antipsychotic treatment [172]. Valproate’s acute benefits for mania
and epileptic seizures are likely partially due to an increase of
endogenous GABA levels, but valproate also inhibits histone
deacetylation and may have enduring effects on gene expression
[173]. Interestingly, valproate may be able to reopen certain
critical periods for learning [114, 174]. This raises the possibility
that valproate could be used to retrain maladaptive cognitive
maps and perhaps extend the neurodevelopmental window prior
to psychosis onset to allow PNN to properly develop. However,
extending these critical periods without sufficient support may
leave patients vulnerable to the aforementioned metabolic
pressures [149] and stressors [114].

Oxidative stress
N-acetyl cysteine (NAC) is an antioxidant and a precursor to GSH. Its
administration has been shown to instigate a 23% increase in mPFC
GSH, improvement of cognitive symptoms and increase in white
matter integrity in the fornix [175] of early psychosis patients [176].
Administration of NAC to juvenile and adolescent rats with neonatal
hippocampal lesion—a well-established model for psychosis—

rescued the development of behavioural phenotypes associated
with psychosis in adulthood [177]. NAC also rescues the PVI/PNN
maturation impairments found in GSH-deficient GCLM knockout
mice [135, 178, 179]. Collectively, this preclinical evidence indicates
that NAC has potential as a treatment for psychosis.
A meta-analysis of 7 studies found that in patients with

psychosis, NAC improved both positive and negative symptoms
after 24 weeks of treatment [180]. However, in theory, NAC could
be even more useful if administered prior to the onset of
psychosis. If oxidative stress damages PNN/PVI in adolescence,
before they are mature, it is crucial that strategies tailored to
oxidative stress are developed to target these developmental
periods. In preclinical studies, NAC has been administered to
juvenile and peri-pubertal animals, during PVI/PNN development.
In humans, the earliest that NAC has been given is after the first
episode of psychosis [180], though a clinical trial in CHR subjects is
currently ongoing [181].
In addition to NAC, other food supplements may reduce the

effects of oxidative stress. Sulforaphane is an extract from broccoli
that increases peripheral and hippocampal GSH in healthy volunteers
[182], and is being evaluated in CHR subjects [183]. Nicotinamide
mononucleotide is important in the biosynthesis of nicotinamide
adenine dinucleotide, which itself plays an important role in energy
metabolism [184] and has reduced levels in patients experiencing
FEP and their non-psychotic siblings [185], warranting further
investigation. Resveratrol, another antioxidant, is promising for its
neuroprotective effects in animal model studies but so far has had
little success in human trials [186]. Dietary supplement of ω-3
polyunsaturated fatty acids, antioxidants that reduce inflammation,
may also be beneficial [187, 188]. However, despite initial success
[189], the most extensive clinical trial to date failed to replicate ω-3
reducing CHR transition to psychosis [190]. Future studies investigat-
ing antioxidant supplementation may consider including peripheral
markers of redox status, to identify whether these interventions may
be helpful for a subset of patients with the most compromised
antioxidant defences.

Fig. 3 Prototypical psychosis developmental timeline with suggested periods for targeted interventions to alter psychosis trajectory.
Individuals at higher risk could be identified through normative modelling [232] at different neurodevelopmental timepoints (A). Modelling
may include a regional vulnerability index [50] or other hippocampal markers (Table 1). Personalised treatments could then be tailored to
specific anomalies.
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Cannabidiol (CBD)
Cannabis use is a robust risk factor for psychosis [191], and this effect
is attributable to its constituent delta-9-tetrahydrocannabinol (THC).
However, another of its constituents, cannabidiol (CBD), is anxiolytic
[192], neuroprotective [193], and appears to have antipsychotic
effects [194]. CBD’s precise mechanism of action is unclear but
appears to be different from that of antipsychotic medications and
other potential treatments for psychosis. One plausible mechanism is
through cannabinoid (CB) receptors, where CBD acts as a negative
allosteric modulator and antagonises CB1&2 agonists [195], possibly
in opposition to THC which is a CB1 receptor agonist [196]. The
hippocampus is one of the most densely populated regions with CB1
receptors, along with the frontal cortex and basal ganglia [197].
Likewise, CB2 receptors, once only thought to be expressed
peripherally, have now been found in the hippocampus and
midbrain, though in much lower concentrations than CB1 [198].
CB1 activation disinhibits pyramidal cells and promotes hippocampal
hyperactivity [199], as well as reducing theta, gamma, and ripple
oscillations in the hippocampus [200], conceivably contributing to
the detrimental effects of THC in psychosis. Conversely, CB2
receptors may function in opposition to CB1 [201]. By preventing
endogenous CB1 receptor agonism and activating CB2, CBD may
assist in stabilising this pathway. In support of this view, CBD
increases rCBF in the hippocampus, but not in the amygdala,
orbitofrontal or prefrontal cortices [202]. SPECT studies of CBD also
demonstrate some hippocampal specificity: CBD reduced rCBF in the
hippocampus, parahippocampal and inferior temporal gyri, and
increased rCBF in the posterior cingulate gyrus [203, 204]. Several
other mechanisms of CBD have been proposed including regulating
the GPA axis through facilitating 5-HT1A neurotransmission [205] and
inhibition of fatty acid amide hydrolase [206]. Other putative targets
identified pre-clinically include GPR55 and transient receptor
potential vanilloid type 1 [207, 208], though further work is needed
to understand the role of these receptors in psychosis.
Preliminary work using CBD as a treatment of psychosis

indicates that it is effective in reducing psychotic symptoms,
both alone and when used as an adjunct to antipsychotic
medications [194, 209]. In CHR individuals, a single dose of 600mg
CBD normalised brain activation in regions that showed abnormal
responses under placebo, including the hippocampus [210]. One
week of treatment of 600mg/day CBD significantly reduced
cortisol reactivity in healthy control participants compared with a
placebo-administered CHR group, while the CBD-administered
CHR group experienced an intermediate but non-significant
reduction in cortisol reactivity [211], which may support its use
as a stress-desensitisation treatment. Longitudinal studies in CHR
individuals are needed to ascertain whether CBD reduces
symptoms or likelihood of transition to psychosis.

Behavioural interventions
In theory, stress sensitivity could be targeted through interven-
tions that reduce the risk of exposure to early life stressors, or that
provide individuals with strategies to cope with stressors when
they are active. Environmental enrichment prevented hippocam-
pal hyperactivity in the MAM model for psychosis [212], and may
be particularly effective when combined following NAC treatment
[178]. In a longitudinal community sample, an environmental
enrichment programme focussing on nutrition, education, and
exercise from 3 to 5 years of age was associated with lower
schizotypal personality scores at 17 years old [213]. Stress-coping
skills interventions on children or adolescents, particularly
targeted to vulnerable subgroups, may therefore be a feasible
strategy. However, many of the environmental stressors that
increase psychosis risk, such as poverty, social isolation, and
childhood adversity, are difficult to modify by clinical intervention,
and can only be changed through social and political action.
Aerobic exercise (AE) is one promising candidate intervention

that exerts both antidepressant and anxiolytic effects, and

improves resilience to stress [214]. Patients with schizophrenia
and CHR individuals show poorer aerobic fitness than healthy
volunteers [215, 216] and FEP with lower physical activity have
greater reductions in hippocampal volume compared to FEP with
higher physical activity [217]. A longitudinal population study
found that self-reported physical activity is lower in youth 9–18
years old that went on to develop a psychotic disorder, with one
unit lower on their physical activity index associated with a 26%
higher risk for developing psychosis, but not affective or
substance use disorders [218]. AE specifically targets the
hippocampus, selectively triggering immediate rCBF increases in
healthy adults [219], and longer-term training is associated with
an increase in hippocampal volume [220], particularly in the
anterior hippocampus [221].
AE is effective at reducing symptoms in schizophrenia patients

[222]. However, a meta-analysis of four AE studies revealed no
significant hippocampal volume increases in schizophrenia or FEP
patients [220], though a subsequent study found increased left-
CA1 volume in treatment-resistant schizophrenia patients [223].
Plausibly, the benefit of AE may be most marked earlier in the
stages of increased vulnerability, coinciding with hippocampal
development. In a recent clinical trial, AE improved positive
symptoms in individuals at CHR [224]. Moreover, the AE group had
stable subiculum volume and increased hippocampal-occipital
functional connectivity over the intervention, whereas subiculum
volume decreased in the non-AE group. While positive symptom
improvements were no longer significant at the 12-month follow-
up, these results are encouraging. Large-scale, extended interven-
tions are now needed to determine the effective window for
intervention and prevention.
Interestingly, acute exercise induces redox imbalance [225].

However, this temporary imbalance may be essential for trigger-
ing repair processes and increasing antioxidant efficiencies,
gained through regular training. This double-edged sword of
acute versus regular exercise should be considered when
implementing aerobic interventions in redox imbalance prone
CHR individuals, who are often unreliable reporters of activity
[215], and given unsupervised individual interventions are least
efficacious [222]. One strategy to mitigate engagement issues may
be the use of exercise-oriented videogames [226], which would
come at reduced costs, and could be integrated into other
computerised interventions such as virtual reality tasks [227].

Implementing treatments
Psychosis is heterogeneous and multiple aetiologies may con-
tribute to a common pathophysiology. Individual differences in
hippocampal dysfunction in psychosis likely arise from different
genetic risk, the extent of environmental stressors and protective
factors, recreational drug or medication use, as well as the
neurodevelopmental timing. Moreover, symptoms overlap with
other psychiatric disorders. The aforementioned causes of
dysfunction—stress sensitivity, oxidative stress and E/I imbalance
—are therefore likely to play a role in the aetiology of other
disorders [228, 229], so some treatments may work transdiagnos-
tically. Accordingly, it may be more useful to focus on clusters of
overlapping symptoms [230], such as thought disorder, or specific
socio-emotional and cognitive deficits. For instance, one study
found that thought disorder positively correlated with left
amygdala-hippocampus volume loss across major depressive,
bipolar, and schizophrenia disorders, irrespective of formal
diagnosis [231].
The prospect of prophylactic treatments is tantalising but

attempting to correct for imbalances in immature brains should
be approached cautiously to avoid unintended consequences on
neurodevelopment. Preventive interventions could be provided at
different stages of neurodevelopment (Fig. 3), with varying intensity
according to stage. The choice of treatment could be tailored to the
underlying biology, identified as a deviation from normative markers
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derived from longitudinal population studies [232] (Fig. 3A). For
example, non-specific support could be offered to children and
adolescents at increased risk, along with stress-coping skills training,
while more specific pharmacological interventions might be
appropriate for young adults at CHR, ideally the subgroup of CHR
individuals that are most likely to transition to psychosis. The latter
might be identified through the assessment of hippocampal and
redox dysfunction, with neuroimaging and peripheral blood
measures serving as biomarkers [101, 233]. The promise of targeting
hippocampal circuit dysfunction lies in reducing the likelihood of
transition to psychosis while also addressing underlying transdiag-
nostic symptoms, such as cognitive deficits.

Future directions
Longitudinal studies in CHR and other at-risk populations, as well
as large community samples, will be critical to mapping
maladaptive hippocampal neurodevelopment leading to adverse
clinical outcomes. Moreover, hippocampal circuit abnormalities
are often first detectable in anterior hippocampal subregions,
before dysfunction spreads to surrounding circuits [1]. Conse-
quently, measuring dysfunction within specific hippocampal
subregions may be important for understanding the neurodeve-
lopment of psychosis and time-appropriate treatments. Accord-
ingly, it is crucial that any MRI-based segmentation method should
also be approached cautiously due to the small size of the
hippocampus. A typical voxel size of ~1mm [3] may be insufficient
to segment the hippocampus reliably [234].
Segmentation and functional imaging of the hippocampus will

improve as higher field-strength (7T+) scanners become more
available. Higher field-strengths also afford the possibility of
cortical layer and column analysis [235], allowing for the
delineation of hippocampal layering and more specific imbalance
localisation. Still, several techniques can boost signal-to-noise ratio
(SNR) without new hardware. For instance, reduced-field-of-view
imaging around basal ganglia structures rather than whole-brain
imaging facilitates sub-1mm [3] voxels without the use of
dedicated hardware or invasive imaging contrasts [236].
We have discussed many neuroimaging techniques used to

capture early hippocampal abnormalities; these and several
emerging technologies, such as optically-pumped magnetoence-
phalography [237], or chemical exchange saturation transfer [238],
may eventually lead to new hippocampal biomarkers for clinical

staging in psychosis (Table 1). In addition, other innovative
indicators such as maximal oxygen consumption (a measure of
aerobic fitness), or gut bacteria diversity—which also impact
healthy neurodevelopment and hippocampal processes [239]—
could potentially be used as markers of dysfunction and targets
for treatment [240, 241].
To detect potential markers, the complexity and heterogeneity

of psychosis-risk, and how these patterns are divergent from other
mental health disorders, it is critical that this multidimensional
information is integrated across scales (Fig. 2). This will include not
only multi-modal imaging but also the integration of genetic [242]
and other neurobiological information [243] in the modelling of
the dysfunction. Though the hippocampus is a core hub in the
pathology of psychosis, hippocampal abnormalities across scales
—genetic, cellular/molecular, whole-brain network dysconnectiv-
ity—must be integrated through large-scale collaborative and
integrative computational models.

CONCLUSIONS
Improving our understanding of the role of the hippocampus as a
central hub of abnormality in the pathophysiology of psychosis
may unlock the development of novel treatments and much-
needed preventive interventions. Preclinical models indicate that
hippocampal changes that occur before the onset of frank
psychosis can be reversible, suggesting that clinical interventions
at this premorbid stage in humans might be able to reduce the
risk of illness onset.
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