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Abstract

Background: Dopamine (DA) is a major neurotransmitter playing an important role in the regulation of vertebrate
reproduction. We developed a novel method for the comparison of transcriptomic and proteomic data obtained from in
vivo experiments designed to study the neuroendocrine actions of DA.

Methods and Findings: Female goldfish were injected (i.p.) with DA agonists (D1-specific; SKF 38393, or D2-specific; LY
171555) and sacrificed after 5 h. Serum LH levels were reduced by 57% and 75% by SKF 38393 and LY 171555, respectively,
indicating that the treatments produced physiologically relevant responses in vivo. Bioinformatic strategies and a ray-finned
fish database were established for microarray and iTRAQ proteomic analysis of the hypothalamus, revealing a total of 3088
mRNAs and 42 proteins as being differentially regulated by the treatments. Twenty one proteins and mRNAs corresponding
to these proteins appeared on both lists. Many of the mRNAs and proteins affected by the treatments were grouped into
the Gene Ontology categorizations of protein complex, signal transduction, response to stimulus, and regulation of cellular
processes. There was a 57% and 14% directional agreement between the differentially-regulated mRNAs and proteins for
SKF 38393 and LY 171555, respectively.

Conclusions: The results demonstrate the applicability of advanced high-throughput genomic and proteomic analyses in an
amendable well-studied teleost model species whose genome has yet to be sequenced. We demonstrate that DA rapidly
regulates multiple hypothalamic pathways and processes that are also known to be involved in pathologies of the central
nervous system.
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Introduction

Cellular regulation of the transcriptome and proteome is

complex and the relationship between gene expression and protein

changes in vivo remain poorly understood in fishes [1]. We used the

adult female goldfish hypothalamus as a model system to

characterize the rapid transcriptomic and proteomic responses to

injection of dopamine (DA) receptor agonists. DA is widely

distributed in the vertebrate brain and is involved in motivation,

cognition, movement, and endocrine responses. DA exerts its

effects via the D1- and D2-classes of 7-transmembrane domain G-

protein-coupled receptors [2]. In fish, it is well understood that

DA, acting through the D1 and D2 receptor, stimulates growth

hormone release and inhibits luteinizing hormone (LH) release,

respectively [3]. Upon ligand binding, the D1-receptor stimulates

adenylate cyclase (AC) activity whereas the D2-receptor inhibits

AC activity [4], leading us to hypothesize that the specific receptor

agonists would lead to distinct transcriptomic and proteomic

profiles in the hypothalamus that reflect the mode of action of the

distinct receptors. Both D1 and D2 receptors also modulate

intracellular calcium levels [2]. We chose to characterize the

response to DA because it is a major central nervous system (CNS)

neurotransmitter with a fundamental inhibitory role in vertebrate

reproduction [3,5] and because of the importance of DA to

neurological disorders in humans [6,7,8].

Our model organism of choice was the goldfish, Carassius auratus

[3] because i) the role of DA as a central regulator of reproductive

processes is best-described in the goldfish; ii) a goldfish EST

project has been initiated; iii) transcriptomic analysis is possible

because of the development of a goldfish-carp cDNA microarray;

iv) it is a member of the Cyprinidae, one of the largest vertebrate

classes with over 2,400 species; and because v) goldfish are more

amenable to physiological and endocrine manipulations than

smaller fish such as zebrafish and medaka. On the other hand, the

paucity of genomic and proteomic data in goldfish, and in many

other important animal models other than laboratory rodents and

humans, presents a major challenge to evolutionary and

comparative physiologists.

To address this challenge, we developed a method for

transcriptomic and proteomic comparison and demonstrate its

utility for use on a model species with value to physiology and

endocrinology but having limited genomic information. We
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provide insights into the hypothalamic processes that are under the

regulation of DA in relation to its potent inhibitory actions on

pituitary luteinizing hormone (LH) release and thus vertebrate

reproductive function [3,5].

Materials and Methods

Ethics Statement
All procedures used were approved by the University of Ottawa

Protocol Review Committee (permit BL-234) and followed

standard Canadian Council on Animal Care guidelines on the

use of animals in research.

Experimental animals and design
Common adult female goldfish were purchased from a

commercial supplier (Aleong’s International Inc., Mississauga,

ON, Canada) and maintained at 18uC under a natural simulated

photoperiod on standard flaked goldfish food. Goldfish were

anaesthetized using 3-aminobenzoic acid ethylester (MS222) for all

handling, injection, and dissection procedures. Sexually mature,

pre-spawning (mid-May; GSI 4.561.3%) female goldfish (15–

40 g) were injected intraperitoneally with either SKF 38393 (D1

agonist; SKF; 1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-

7,8-diol; 40 mg/g) or LY 171555 (D2 agonist; LY; (-)-Quinpirole

hydrochloride; 2 mg/g) purchased from Tocris (Ballwin, MO,

USA). The experimental design and doses chosen were identical to

Otto et al. [9] who showed rapid effects on goldfish brain

somatostatin mRNAs. SKF was first dissolved in a minimal

amount (0.099% final concentration) of dimethylsulfoxide

(DMSO), and subsequently diluted with physiological fish saline

(0.6% NaCl). Concentrations of DMSO up to 0.1% do not affect

GH or LH levels [9]. LY was dissolved in saline. Control fish

received 2 i.p. injections (5 mL/g body weight) of saline or the

DMSO vehicle. SKF and LY-treated animals respectively received

a second injection of either saline or DMSO to control for the 2

different drug vehicles.

After 5 hours, blood was sampled (400–600 mL) by puncture of

the caudal vasculature via a 25-gauge needle attached to a 1-mL

syringe. The fish were sacrificed by spinal transection and

hypothalamic tissues were rapidly dissected and immediately

frozen on dry ice. Hypothalami were pooled (3/tube) to increase

RNA yield prior to RNA isolation. Serum was collected by

centrifuging the blood at 4,000 g at 4uC for 10 minutes. Serum

was stored at 280uC until used for the radioimmunoassay.

Radioimmunoassay for Luteinizing Hormone
The double antibody RIA protocol of Peter et al. [10] was used

to analyze serum LH levels, with minor modifications described by

Zhao et al. [11]. Data were tested for normality using SPSS v17.0

and determined not to be normally distributed. Data were

therefore log-transformed, determined to be normally distributed,

and a one-way ANOVA was performed to test for significant

differences (p,0.05).

RNA isolation and quality and cDNA synthesis
RNA was isolated with the TRIzol method (Invitrogen,

Burlington, ON, Canada) as per the manufacturer’s protocol.

Samples were treated with DNase on-column in an RNeasy Mini

kit (Qiagen, Mississauga, ON, Canada). RNA quantity was

evaluated using the NanoDrop ND-1000 spectrophotometer

(Thermo Fisher Scientific). RNA quality was evaluated using the

2100 BioAnalyzer (Agilent); the RNA integrity number for all

samples was .8.4.

Microarray hybridizations
We previously described and validated the production and use

of our goldfish-carp cDNA microarray [12,13,14]. The array

contains 8832 cDNAs printed in duplicate and a detailed

description is published elsewhere [15]. Four microarray hybrid-

izations were performed for hypothalamic tissue for both D1 and

D2 agonists (total of 8 arrays) to screen for the effects of the

agonists in the neuroendocrine brain. Three separate pools of

RNA from treated fish were hybridized to the microarrays, and a

fourth hybridization was a replicate dye-reversal of one of the

three RNA pooled samples. Hybridizations were carried out

relative to a common pool of control samples (,30 control fish) for

each tissue, which decreases technical variation as only one

reference is utilized while maintaining biological variation of the

treatment samples [16]. All cDNA synthesis, labeling, and

hybridizations were performed using the Genisphere 3DNA Array

900MPX kit according to the manufacturer’s protocol (Geni-

sphere, Hatfield, PA). Hybridizations and scanning protocols were

described previously [12,13,14]. Briefly, microarrays were scanned

at full-speed 10-mm resolution with the ScanArray 5000 XL system

(Packard Biosciences/PerkinElmer, Woodbridge, ON, Canada)

using both red and blue lasers. Images were obtained with

ScanArray Express software using automatic calibration sensitivity

varying photomultiplier (PMT) gain (PMT starting at 65% for Cy5

and 70% for Cy3) with fixed laser power at 80% and the target

intensity set for 90%. Microarray images were analyzed with

QuantArray (Packard Biosciences/Perkin Elmer), and raw signal

intensity values were obtained for duplicate spots of genes. Raw

intensity values for all microarray data and microarray platform

information have been deposited in the NCBI Gene Expression

Omnibus database (Series accession no. GSE14607 (SKF) and

GSE14610 (LY)) under MIAME compliance. Generalized Pro-

crustes Analysis [17] was used for normalization of the array data

and the Significance Analysis of Microarrays (SAM) method [18]

was used to identify significantly regulated transcripts.

Protein quantification and database search using iTRAQ
labeling

The iTRAQ labelling protocol has been previously described in

detail in Martyniuk et al. [19]. Briefly, approximately 20 mg of

hypothalamic tissue was collected and mechanically disrupted and

homogenized in 500 mL RIPA (25 mM Tris-HCl pH 7.6,

150 mM NaCl, 1% nonyl phenoxylpolyethoxylethanol-40, 1%

sodium deoxycholate and 0.1% SDS) (Pierce, Thermo Fisher

Scientific Inc. Rockford, IL., USA) and proteins were precipitated

in 3 mL of acetone. After removal of acetone, proteins were

resuspended in iTRAQ dissolution buffer (Applied Biosystems Inc,

Foster City, CA) and vortexed. Using 100 mg total protein/sample,

we performed three independent iTRAQ labeling experiments

following the manufacturer’s protocol (Applied Biosystems Inc,).

For proteomics analysis, each labeling reaction consisted of a

single hypothalamus for control (label 114), LY 171555 (D2

agonist; label 115), and SKF 38393 (D1 agonist; label 117) (total

n = 9 samples used; n = 3 per iTRAQ experiment). After labelling

the independent samples for each iTRAQ experiment, they were

mixed together and processed through desalting via a macrospin

column Vydac Silica C18 (The Nest Group Inc, Southboro, MA),

each and then subjected to off-line SCX fractionation on a

polysulfoethylA column. The following fractions were collected for

each of the three iTRAQ experiments: 7 (iTRAQ 1), 11 (iTRAQ

2), and 10 (iTRAQ 3). LC-MS/MS analysis on each of these

fractions was performed on a hybrid quadrupole-TOF mass

spectrometer QSTAR XL (Applied Biosystems).

Dopamine on the Fish Brain
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Peptides were searched against a ray-finned fish database

(details in [19] using MS/MS data interpretation algorithms

within Protein PilotTM (ParagonTM algorithm, v 2.0, Applied

Biosystems). The Paragon algorithm searched iTRAQ 4-plex

samples as variable modifications with methyl methanethiosulfo-

nate as a fixed modification [20]. The Protein PilotTM algorithm

was selected to search automatically for biological modifications

such as homocysteines. The confidence level for protein

identification was set up to 1.3 (95%), which is the default setting

for the detected protein threshold in a ParagonTM method.

Proteomics System Performance Evaluation Pipeline (ProteomicS

PEP, Applied Biosystems) in Protein PilotTM was used to create a

reversed ray-finned fish database to calculate a false discovery rate

(FDR). When searching the ProteomicS PEP reverse database,

621 proteins were identified with an FDR of 1%, thus there is high

confidence (.99%) in the peptide-protein assignments in this

study. Differential expression ratios for proteins were obtained

from Protein PilotTM which calculates protein ratios using only

ratios from the spectra that are distinct to each protein, excluding

the shared peptides of protein isoforms. Peptides with low spectral

counts were also excluded from the calculation of averages by

setting the intensity threshold for the sum of the signal-to-noise

ratio for all the peak pairs at .9. A protein with three high quality

peptide spectra used in quantitation is considered to be a confident

quantitation. However, we also report proteins in which two

spectra were used in the quantitation for comparison. To calculate

differential expression ratios, all identified spectra from a protein

were used to obtain an average protein ratio relative to the control

label (i.e. fold change). The p-value was calculated using the

confidence intervals from the error factor generated in Protein

PilotTM.

Bioinformatics
Protein sequences from proteins identified by iTRAQ analysis

as differentially expressed were downloaded from NCBI using

extracted GI numbers with a BioPerl script (Fig. S1). The protein

sequences were converted into a searchable database using

formatdb. All of the nucleotide sequences identified as being

differentially expressed (q,5%) from the agonist experiment were

compared (blast-2.2.19) against the above database through

Blast2GO [21]. A graphical depiction of the workflow is presented

in Fig. S2.

Results and Discussion

Our in vivo treatments both confirmed previous research and

provided new hormone-regulatory data. Circulating serum LH

was rapidly suppressed following DA agonist injections (Fig. 1). It

is well known that DA, via the pituitary D2 receptor, is the

primary inhibitor of LH release in goldfish and numerous other

teleosts [5,22,23,24,25,26,27,28,29,30,31]. Here we corroborate

these findings and show that LY 171555 (LY) rapidly reduced

circulating LH levels to 25% of control. Unexpectantly, we found

that the DA-D1 agonist SKF 38393 (SKF) decreased LH by 43%,

which is a novel finding for DA regulation of in vivo LH release in

fish. It is known that activation of D1-receptors inhibits the release

of gonadotropin-releasing hormone (GnRH) [32], and thus may

have an impact on GnRH-stimulated LH release. We have

subsequently begun further investigation the involvement of D1

receptors in LH release [33]. Most relevant here, however, is that

our DA agonist treatments produced physiologically relevant

changes in circulating hormone levels, so we proceeded to analyse

transcriptomic and proteomic responses in the hypothalamus, the

central integrator of external and endogenous signals. Compared

to other vertebrates, fish have very high hypothalamic levels of DA

due to a duplicated tyrosine hydroxylase gene (th2) [34].

Importantly, the goldfish posterior tuberculum (TPp; or nucleus

posterior tuberis; NPT), a region with intense immunostaining for

th1 but lacking immunostaining for dopamine b-hydroxylase, lies

within the hypothalamus [35,36,37]. Thus, we proceeded to

determine the effects of DA agonist injection on hypothalamic

function.

Transcripts identified in the goldfish hypothalamus as
differentially regulated by dopamine agonists

In total, 3088 ESTs were identified as being statistically (q,5%)

significantly differentially expressed following either D1- or D2-

receptor stimulation in the hypothalamus. Many of these are as yet

uncharacterized (Fig. S3). Of the 1042 ESTs that are annotated,

gene ontology (GO) classifications (Fig. S4) revealed that a large

percentage are involved in the regulation of biological process

(13%), signal transduction (10%) and nucleotide binding (19%).

Furthermore, 29% of the cDNAs were localized to GO Cellular

Component category of the protein complex, suggesting that many

of the proteins are involved in macromolecular complexes,

reflecting the receptor targets for the agonists.

A recent review by Altar et al. [38] summarized targets for the

identification of CNS diseases using transcriptional profiling of

human post-mortem brain, animal models, and cell culture

studies. Many of the transcriptional targets reported by Altar

et al. [38] were also differentially regulated by DA in the goldfish

hypothalamus. For example, mRNAs for glutamic acid decarbox-

ylase (GAD) 1, microtubule-associated protein tau, serpin A,

malate dehydrogenase, regulator of G-protein signaling, transfer-

rin, s100 calcium binding protein, glutathione-S-transferase,

calmodulin, a-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate

(AMPA) receptors, glial fibrillary acidic protein, N-methyl-D-

aspartic acid (NMDA) receptor 1, glutamate transporter, calbin-

Figure 1. Serum LH concentration following DA agonist
injections. Mean (6 SEM) serum LH concentration in control and
injected (40 ug/g SKF 38393 or 2 ug/g LY 171555) female goldfish
(n = 23226 each). Results presented are the average of 2 identical but
independent experiments that showed similar results. Data was log-
transformed to approximate normality and a one-way ANOVA was
performed in SPSS v16 with significance considered at p,0.05, followed
by Tukey’s HSD multiple comparisons as data was homoscedastic.
* signifies p,0.001 relative to control.
doi:10.1371/journal.pone.0012338.g001
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din, alpha enolase, peroxiredoxin, fructose-bisphosphate aldolase

c, glutamine synthetase, and DA receptors and a DA transporter

were all identified as being differentially regulated (Table S1) and

are linked to CNS diseases such as Alzheimer’s disease (AD),

Parkinson’s disease (PD), and schizophrenia, as well as brain aging

[38,39,40].

Injection of SKF modulated hypothalamic mRNA levels for key

transcripts in the glutamate and c-aminobutyric acid (GABA)

pathways (Table S1) in goldfish [3,41]. In goldfish, GABA has a

prominent stimulatory action on LH release by enhancing GnRH

release and by reducing DA turnover in the hypothalamus [42,43].

Our working hypothesis is that GABAergic systems transduce

environmental (e.g. temperature) and endocrine (e.g. sex steroid)

signals by rapid effects on both GnRH and DA to enhance LH

release during seasonal gonadal redevelopment [41,44,45]. Results

from the current study support this hypothesis.

Protein identification in the goldfish hypothalamus
For this experiment, we repeated DA agonist treatments on the

same date the following year using an identical design. Serum LH

was similarly decreased in both years and the data presented were

combined (Fig. 1). The hypothalami from this experiment were

subjected to iTRAQ proteomic analysis.

There were 621 proteins identified in this study using a ray-

finned fish database previously constructed [19] (Table S2). The

total number of peptide spectra detected was 8569, representing

4779 distinct peptides that are listed in Dataset S1. Of the peptides

identified, 59.7% could be assigned to a protein, leaving

approximately 40% of the spectra unidentified by homology

searches against other ray-finned fishes.

Of the 621 identifiable proteins, 42 were determined as being

significantly (p,0.05) differentially regulated by either SKF or LY

(Fig. 2). The protein dataset (for both D1 and D2 results

combined) was analyzed using Blast2GO and binned into their

corresponding GO terms (Fig. 3). Similarly to the mRNAs affected

in this study, many of the proteins affected by the treatments are

localized to the GO Cellular Component of the protein complex

and are involved in a wide variety of biological processes,

including signal transduction, response to stimulus, and both

positive and negative regulation of cellular process. Of interest

here are the proteins in the GO category of Biological Processes as

related to neurotransmitter secretion and calcium ion transport.

Calcium/calmodulin-dependent kinase II a subunit (CaMKIIa),

calbindin 2, neuronal calcium-binding protein 2, plasma mem-

brane calcium ATPase 4, and calmodulin (CaM) proteins were

significantly affected by at least 1 of the DA agonists (Table 1).

Calmodulin protein was decreased by LY, but not SKF,

suggesting that in hypothalamic CaM expression is D2-, rather

than D1-, receptor-regulated. Previous research demonstrated that

CaM is expressed in the hypothalamus and the pituitary of

goldfish and LY, but not SKF, decreased CaM mRNA levels in

goldfish pituitary cells [46]. Together the data indicate CaM is

under the regulation of the D2 receptor in the goldfish

hypothalamo-pituitary system. We have also identified CaM as

being important and regulated in the hypothalamus using a meta-

type analysis of data from multiple goldfish microarray exper-

iments performed across the seasonal breeding cycle. The mRNA

for CaM was relatively highly expressed in the hypothalamus of

sexually mature females in May, compared to both sexually

regressed (August) or recrudescing animals in the gonadal

redevelopment phase (December) [47]. This information, coupled

with the changes in mRNA and protein levels of CaM (this study),

suggests that CaM may be important for DA inhibition on LH

release and thus inhibitory control of reproduction.

CaMKIIa protein levels, whose transcript levels follow the same

seasonal profile as CaM (high in May, low in August and

December) [47], were increased in both D1- and D2-agonist

treated fish suggesting that, as for CaM, CaMKIIa may be

Figure 2. Venn Diagram summarizing the number of cDNAs and proteins found in the hypothalamus of female goldfish. The
comparison of those regulated by DA was limited to cDNAs (q,5%) and proteins (FDR-adj p,0.05) identified as being statistically significant.
Duplicate cDNAs were removed; cDNAs and proteins were counted once regardless if they were regulated by both agonists. The complete listing of
cDNAs and proteins are listed in Tables S1 and S2, respectively.
doi:10.1371/journal.pone.0012338.g002
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Figure 3. GO categorization of differentially expressed proteins identified in the current study. Proteins identified by iTRAQ (42; p,0.05)
were binned into multilevel GO categorizations with a sequence cut-off of 3. Both treatments (D1 and D2) and both directions are included in this
analysis but are counted only once if the protein is common to both treatments.
doi:10.1371/journal.pone.0012338.g003
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Table 1. Proteins and mRNAs identified and affected by DA agonists in the hypothalamus of goldfish.

Protein Corresponding mRNA

Accession Name Fold Change Accession Blast2GO-annotated mRNA (NCBI) Fold Change

SKF LY SKF LY

AAW82445 14 kDa apolipoprotein* 21.3 CA967592 14 kda apolipoprotein 21.6

AAW82445 14 kDa apolipoprotein* 21.5 CF662502 14 kda apolipoprotein 1.9

CAG00145 25 kDa synaptosomal-associated
protein

21.5 CA969142 synaptosomal-associated
protein 25

1.4

NP_956213 adaptor-related protein complex 2,
beta 1 subunit

1.3

AAH83251 Atp2b4 protein 1.4

AAZ38450 beta thymosin-like protein 21.3

AAF79948 brain-type fatty-acid binding protein;
B-Fabp

21.4

CAK04737 calbindin 2, like 21.2

NP_001017741 calcium/calmodulin-dependent protein
kinase II alpha

2.3 1.8

Q71UH6 Calmodulin 21.2 CA969795 calmodulin variant 1 1.4

CAF92971 Creatine kinase, brain 21.4

NP_942096 creatine kinase, mitochondrial 1 1.2

CAK10905 cytochrome c oxidase subunit IV
isoform 1

1.2

AAV52802 glutamine synthetase 1.4 21.3 FG393017 glutamine synthetase 1.9

ABD67511 glutathione S-transferase rho 21.3 21.2 CA964231 glutathione S-transferase rho 21.6

AAV52803 glyceraldehyde-3-phosphate
dehydrogenase

21.4 DY231775 GAPDH 1.6

AAA21578 kainate receptor a subunit 1.8 1.3 FG392717 kainate receptor a subunit 1.4

AAH63955 Krt5 protein 2.6

AAM21708 liver-basic fatty acid binding
protein*

3.6 CA968596 fatty acid binding protein liver
basic

1.4

AAM21708 liver-basic fatty acid binding
protein*

8.6 CA970443 fatty acid binding protein
liver basic

21.5

NP_956241 malate dehydrogenase 1a, NAD
(soluble)

1.2 CA964750 malate dehydrogenase nad 2.0 1.3

ABC69306 myoglobin isoform 2 21.4 CA968088 myoglobin 1.4

NP_958898 N-ethylmaleimide-sensitive factor 1.3 FG392958 n-ethylmaleimide-sensitive factor 1.4

CAN88379 novel protein sim to vert EF hand
calcium binding protein 2 (EFCBP2)

21.1

CAK05381 parvalbumin 21.1 CA969705 parvalbumin 1.5

ABF57553 Pi-class glutathione S-transferase 21.7 21.6

BAA78376 polypeptide elongation factor
1 alpha

1.3 CA967511 eukaryotic translation elongation
factor 1 alpha 1

21.8

XP_001340376 PREDICTED: myelin basic protein
isoform 3

23.9 CA967910 myelin basic protein 2.0

CAF98839 PREDICTED: similar to germinal
histone H4 gene

21.1

XP_001338014 PREDICTED: similar to microtubule-
associated protein 1 A

1.4

XP_696230 PREDICTED: similar to microtubule-
associated protein tau

21.1 CA967834 microtubule-associated protein tau 1.9

XP_001335551 PREDICTED: similar to Myelin basic
protein

21.5 21.5

XP_691535 PREDICTED: similar to Nj-synaphin 2 22.2

CAF95822 Putative histone cluster 1, H2bb 21.6 21.5

AAG14350 putative oncoprotein nm23 21.3 CA964203 non-metastatic cells 2, protein (NM23B) 21.6

AAI14255 short chain dehydrogenase/reductase 21.9 21.5 CA968680 dehydrogenase reductase sdr family
member 12

1.3

Dopamine on the Fish Brain
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important in hypothalamic signalling. CaMKII phosphorylates

cAMP response binding element (CREB) protein, thereby

inhibiting its function [48], which may lead to downstream

transcriptional repression of genes involved in reproduction.

Furthermore, CaMKII positively regulates the D2 receptor

promoter in rats [49], suggestive of a feedback mechanism of

DAergic action.

We observed a decrease in hypothalamic Apo-14 protein

expression with both D1- and D2- receptor agonists. Apo-14

appears to be specific to teleost fish [50], although a recent

phylogenetic analysis revealed that Apo-14 is the homologue to

mammalian ApoA-II [51]. Apo-14 is mainly expressed in liver and

brain of adult orange-spotted groupers and has been suggested to

play a role in neuronal growth and repair [52], similar to ApoE

[53]. Vitale and Carbajal [54] demonstrated that DA induces

substantial cytoskeletal remodelling in rat lactotrophs in vitro. The

decreases in Apo-14, stathmin 1, microtubule-associated protein

tau, along with an increase in microtubule-associated protein 1A

and spectrin alpha 2 (Table 1) suggests that DA may also have

remodelling effects on the cytoskeleton of cells in the goldfish

hypothalamus. The likely high energetic demands for such

remodelling is supported by the observed increase of mitochon-

drial creatine kinase, cytochrome c oxidase subunit IV, and malate

dehydrogenase protein levels (Table 1).

A comparison of the differentially expressed
transcriptome to the differentially expressed proteome in
response to DA agonists

The protein dataset was further compared to the microarray

dataset by extracting the GI numbers from the protein results. A

BioPerl script (Fig. S1) was used to obtain the corresponding

amino acid sequences from GenBank, which were converted into a

database that can be queried using the BLAST algorithm. This

step was necessary in order to obtain the longest possible protein

sequence data for the comparison. The nucleotide sequences

represented on the microarray were compared (BLASTx) to this

differentially-expressed protein database. The results (Table 1)

show directional correlation for some mRNAs and proteins (for

example, kainate receptor a subunit and 14 kDa apolipoprotein

for D1 and liver-basic fatty acid binding protein for D2), while

others are inversely correlated (for example, stathmin 1/oncopro-

tein 18 with either agonist). The mRNAs and their respective

proteins exhibiting discordant directional change following agonist

treatments nevertheless indicate that particular pathways and

processes are DA-regulated. Differences in the direction of change

between transcript and protein is likely related to our single

sampling time-point, as the time-series relationship between

changes in transcript versus protein in vivo are poorly understood

in fish [1]. Furthermore, the regulatory mechanisms of the genome

and proteome are complex and both turnover and stability of

mRNA levels are important for translation of mRNA into protein

[55]. For example, if the mRNA is decreased, but the protein is

increased, it is possible that the mRNA has already begun to be

degraded. Conversely, if the mRNA is increased, but the protein is

decreased, there may be regulation of translational pathways, or

increased protein degradation leading to induced transcription.

These are good candidates for temporal (i.e., 1–3 hr time-course),

biochemical (with/without cycloheximide) and pulse-chase anal-

ysis to better understand the differences. The interest here,

however, lies with those mRNAs and proteins that share a

common direction. In the D1-agonist-treated fish, 8 out of the 14

common mRNAs/proteins (57%) share a common directional

change, whereas only 1 out of 7 of the common mRNAs/proteins

(14%) for the D2-agonist-treated fish that change in parallel

(Table 1). These results are comparable to what has been shown in

the rat colon mucosa in vivo where only 16% direction identity

between the transcriptome and the proteome was found [56].

Furthermore, that study included the development of a TRIzolH-

Protein Corresponding mRNA

Accession Name Fold Change Accession Blast2GO-annotated mRNA (NCBI) Fold Change

SKF LY SKF LY

NP_001091958 spectrin alpha 2 1.3 FG392760 spectrin alpha 2 1.4

NP_001017850 stathmin 1/oncoprotein 18* 21.3 CA969799 stathmin 1 oncoprotein 18 variant 8 1.4

NP_001017850 stathmin 1/oncoprotein 18* 21.5 CA966170 stathmin 1 oncoprotein 18 variant 8 1.5

NP_001018488 synuclein, gamma b (breast cancer-
specific protein 1)

21.5

AAM90972 transferrin variant A1 1.5 CA968595 transferrin variant c 1.9

AAM90973 transferrin variant B1 21.9

NP_705954 triosephosphate isomerase 1b 21.3 21.2 CA968504 triosephosphate isomerase 1b 1.8

NP_997770 tyrosine 3-/tryptophan 5-
monooxygenase activation protein,
epsilon polypeptide

1.1

AAQ94569 ubiquitin C 21.3

Proteins were determined by iTRAQ as being significantly (FDR-adj p,0.05) differentially regulated in the hypothalamus of female goldfish treated with either SKF
38393 (SKF) or LY 171555 (LY) agonists. This table also show the cDNAs corresponding to the proteins identified by microarray analysis as significantly (q,5%) affected
by the same treatments. Negative values indicate a decrease relative to control. Absent values indicate either that no significant change was detected, or, in the case of
the mRNAs, that the corresponding cDNA was not present on the array. mRNAs were annotated using Blast2GO’s Blast Descriptor Annotator with default values except
the Blast ExpectValue was changed from 1.0E-3 to 1.0E-5. Following the Mapping step, the Annotation Configuration E-Value-Hit-Filter was changed from 1.0E-6
(default) to 1.0E-8 to increase the likelihood of proper GO annotation. Duplicates were assessed on the basis of sequence comparison and removed if a similar
expression was observed. In the case where different expression profiles were seen (*), both ESTs were included, as it is possible that the sequences correspond to
separate genes.
doi:10.1371/journal.pone.0012338.t001

Table 1. Cont.
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based method to analyze both the transcriptome and the proteome

from the same sample, which should reduce disagreements in the

gene-protein correlation. Our results show that a comparable

directional correlation from independent animals and experiments

can also be achieved. This is significant, as it shows that the

technique is applicable to a species with limited genomic

information.

While some of the proteins identified as differentially expressed

had corresponding changes in mRNA levels, many other cDNAs

representing coding sequences for other proteins that were

regulated were not printed on our array. For example, the Nj-

synaphin 1 (also known as complexin 1) protein was identified as

being down-regulated 2.2-fold in response to the D2-agonist

(Table 1) but the complexin cDNA was not on the array.

Interestingly, in addition to complexin 1, proteins for both N-

ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment

protein- (SNAP-) 25, all of which are major players in the

exocytosis of neurosecretory vesicles [57], were affected by the D2

agonist. Current evidence [58,59] indicates that complexin holds

the vesicle in a ‘‘ready-to-release’’ state near the membrane, while

preventing the spontaneous zippering of the t- and v-SNAREs and

thus spontaneous fusion of the vesicle to the membrane. Upon

introduction of Ca2+, which binds to synaptotagmin, complexin is

removed and the membranes fuse, resulting in exocytosis. Since

complexin expression is decreased, our results suggest that DA is

stimulating some aspects of exocytosis in the hypothalamus via the

D2 receptor. However, we found that SNAP-25 protein levels

were reduced by the D2-agonist, suggesting that DA may also be

inhibiting some of the exocytotic machinery. Perhaps this is a

homeostatic mechanism to prevent or reduce the release of

neurotransmitters and neurohormones in response to acute

DAergic overstimulation.

NSF protein levels were increased in response to the D2 agonist.

NSF transcript levels were initially found to be decreased in

schizophrenic patients [60] but this was not observed in

subsequent studies [38]. Similarly to CaM, the meta-analysis by

Zhang et al. [47] identified NSF transcripts as being relatively

highly expressed in May when goldfish are sexually mature. This

information, coupled with the D1-mediated increase in NSF

mRNA or D2-mediated increase in NSF protein found in this

study, suggest that the DAergic inhibition of LH release involves

hypothalamic NSF-dependent mechanisms.

Glutamine synthetase (GlnS) mRNA and protein levels were

increased in response to SKF (Table 1). GlnS converts glutamate

(Glu) to glutamine (Gln) and thus may limit the available pool of

Glu, which is an excitatory neurotransmitter stimulating LH

release in vertebrates including goldfish [41]. Increased GlnS

could also potentially limit the Glu available to be converted by

GAD to GABA. The observation in this study that GlnS is

increased in response to a D1-specific agonist supports this

hypothesis and suggests a possible mechanism of decreased LH

secretion via D1-receptor stimulation. In contrast to SKF, GlnS

protein levels were decreased in response to LY, with no

observable effect on GlnS mRNA levels (Table 1). This differential

response to the 2 DA agonists is likely due to responses in

adenylate cyclase (AC) [61] since both receptors act via this second

messenger system [2]. Generally, D1-class receptors, through

interactions with Gs proteins, stimulate AC, whereas D2-class

receptors, through interactions with Gi proteins, inhibit AC [2].

Glutamate can also be converted to glutathione-conjugated

products through multiple enzymatic steps with the final step

being mediated by glutathione S-transferase (GST). GST rho and

Pi-class GST (GSTp) protein levels were reduced by both DA

receptor agonists in the current study. It is not clear at this time

whether the reduced GST protein levels are the result of DA

receptor stimulation or rather a consequence of reduced substrate

flux through that pathway initiated by limited pool of available

Glu, as discussed above. However, it is likely not the latter case, as

GST protein levels were reduced by both DA agonists, but GlnS

protein levels were affected in different directions.

Glutathione is an antioxidant and helps to protect cells against

damage from reactive oxygen species [62]. DA has been shown to

induce apoptotic cell death in a CNS-derived catecholaminergic

cell line [63] and Ishisaki et al. [64] identified GSTp as a candidate

that protects against cell death in PC12 cells. Furthermore,

inhibition of GSTp increased DAergic neuronal cell death in

Swiss-Webster rats treated with MPTP [65], a specific DAergic

neurotoxin. Interestingly, Shi et al. [66] recently reported increased

GSTp protein levels in synaptosomal fractions from the frontal

cortices of patients with pathologically-verified PD and suggest that

GSTp may be important in the progression of the disease. In studies

with GSTp-null mice, Henderson et al. [67] demonstrated that

GSTp may enhance the hepatotoxicity of acetaminophen. While

speculative, the observation of decreased GSTp protein levels in

response to either D1- or D2-specific agonists in the current study

suggests that DA may also modulate hypothalamic neuronal cell

death in fish. This hypothesis is further supported by predominant

increases observed in mRNAs for multiple heat shock proteins,

ubiquitination enzymes, and proteasomal subunits by both D1- and

D2-specific agonists (Table S1).

Several other proteins identified as differentially regulated by

DA in goldfish have also been reported to be involved in human

neurological disorders. For example, malate dehydrogenase, CaM,

transferrin, tyrosine-3-monooxygenase/tryptophan-3-monooxy-

genase activation protein epsilon (YWHAE), microtubule-associ-

ated protein tau and beta-synuclein are among proteins identified

that are known to be involved in neurodegenerative and/or

psychiatric diseases [38].

There is a discrepancy between the number of mRNAs and

proteins that were identified as differentially regulated that must

be addressed. Many mRNAs for abundant ribosomal proteins

were induced, and some of the corresponding proteins were

detected, but did not change. This is not unexpected since it

would be difficult to observe a change in protein concentration

above the background of these proteins found in ribosomes in

eukaryotic tissues. This is similar to what has been demonstrated

in yeast [68]. However, for other mRNAs/proteins, there may be

other factors restricting concordant changes. For example, our

use of a ‘‘snapshot’’ time frame study is a likely limitation that

does not allow us to take into account differences in mRNA

versus protein half-lives. Furthermore, steady-state mRNA levels

for many ESTs were increased by 5 h following agonist

treatments, but the translational machinery may require

additional time to efficiently produce the corresponding proteins.

Importantly, despite the recognized limitations we outline, the

level of concordance in the mRNA and protein changes in the

goldfish brain are well within the ranges seen with better

characterized vertebrate systems [56,69,70]. Future studies

aimed at examining the temporal correlation between the

hypothalamic transcriptome and proteome should reveal further

relationships and critical pathways regulated by the neurotrans-

mitter DA, and provide insights into the neural processes

governing reproduction.

In conclusion, we have demonstrated the applicability of

advanced high-through genomic and proteomic analyses in an

amenable well-studied teleost model species whose genome has yet

to be sequenced. Furthermore, we demonstrate the first evidence

of D1-receptor involvement in the inhibition of LH release and
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suggest a mechanism through the potential modulation of other

stimulatory neurotransmitters, namely glutamate and/or GABA.

Refinement of the bioinformatic methods for time-course analysis

should further reveal the importance of DA in regulating

hypothalamic function.

Supporting Information

Figure S1 Perl script used to extract amino sequences from

GenBank.

Found at: doi:10.1371/journal.pone.0012338.s001 (0.24 MB TIF)

Figure S2 Information workflow diagram for comparing

mRNAs to proteins.

Found at: doi:10.1371/journal.pone.0012338.s002 (0.42 MB TIF)

Figure S3 Number of ESTs identified by microarray analysis as

being statistically (q,5%) differentially regulated by dopamine

agonists in the hypothalamus of female goldfish 5 h post-i.p.-

injection. The data distribution is shown as output from

Blast2GO. Duplicates were removed. Overlapping ESTs (i.e.

ESTs regulated by more than 1 agonist) are indicated as ‘‘Shared

between…’’.

Found at: doi:10.1371/journal.pone.0012338.s003 (0.44 MB TIF)

Figure S4 Multilevel Gene Ontology categorization of the 1042

annotated ESTs into a) Biological Process, b) Molecular Function,

and c) Cellular Component. Annotations were first converted to

GO-Slim annotations (goslim_generic.obo) and the multilevel

chart was constructed using a sequence convergence cutoff of 30 to

reduce the complexity of the chart. Both agonists and both up- and

down-regulated genes (q,5%) are included in this analysis.

Found at: doi:10.1371/journal.pone.0012338.s004 (3.21 MB TIF)

Table S1 Complete list of cDNAs identified as significantly

(q,5%) differentially regulated by SKF 38393 (SKF) or LY

171555 (LY). Negative fold changes indicate a decrease in the

mRNA level.

Found at: doi:10.1371/journal.pone.0012338.s005 (1.07 MB

DOC)

Table S2 All goldfish proteins identified in the hypothalamus in

this study. Proteins in which a single peptide was used in

identification are also presented in this table. % Cov is the amount

of amino acid coverage (%) by peptides. Ratios (e.g. 115:114) are

each treatment (tag 115 or 117) divided by control (tag 114) to

obtain relative fold change. Pval is the p-value after all peptides for

a protein were used for quantitation. The Error Factor (EF)

expresses the 95% uncertainty range for a reported ratio. The true

protein ratio is expected to be found between the (reported

ratio)*(EF) and the (reported ratio)/(EF) 95% of the time. Peptides

used in quantification also included all peptides with post-

translational modifications and all charge states (Dataset S1).

Peptides that do not have a Ratio or P-value were not quantified

because 1) peptide signal was too low; 2) peptide did not meet

standard for quantitation; or 3) peptide belonged to more than one

unique protein.

Found at: doi:10.1371/journal.pone.0012338.s006 (0.75 MB

DOC)

Dataset S1 The total number of peptide spectra detected in the

goldfish hypothalamus

Found at: doi:10.1371/journal.pone.0012338.s007 (2.92 MB

XLS)
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