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ABSTRACT

Copy number variants (CNVs) are known to affect
a large portion of the human genome and have
been implicated in many diseases. Although whole-
genome sequencing (WGS) can help identify CNVs,
most analytical methods suffer from limited sensitiv-
ity and specificity, especially in regions of low map-
pability. To address this, we use Popsv, a CNV caller
that relies on multiple samples to control for techni-
cal variation. We demonstrate that our calls are sta-
ble across different types of repeat-rich regions and
validate the accuracy of our predictions using or-
thogonal approaches. Applying PopsVv to 640 human
genomes, we find that low-mappability regions are
approximately 5 times more likely to harbor germline
CNVs, in stark contrast to the nearly uniform dis-
tribution observed for somatic CNVs in 95 cancer
genomes. In addition to known enrichments in seg-
mental duplication and near centromeres and telom-
eres, we also report that CNVs are enriched in spe-
cific types of satellite and in some of the most recent
families of transposable elements. Finally, using this
comprehensive approach, we identify 3455 regions
with recurrent CNVs that were missing from existing
catalogs. In particular, we identify 347 genes with a
novel exonic CNV in low-mappability regions, includ-
ing 29 genes previously associated with disease.

INTRODUCTION

Genomic variation of 50 bp or more are collectively known
as structural variants (SVs) and can take several forms in-
cluding deletions, duplications, novel insertions, transloca-
tions and inversions (1). Copy number variants (CNVs) are
unbalanced SVs, i.e. affecting DNA copy number, and in-

clude deletions and any type of duplications (tandem du-
plications, triplications and other amplifications). A wide
range of mechanisms can produce SVs and is responsible for
the diverse SV distribution across the genome, both in term
of location and size (1-3). In healthy individuals, SVs are
estimated to cumulatively affect a higher proportion of the
genome as compared to single nucleotide polymorphisms
(SNPs) (4). SVs have been associated with numerous dis-
eases including Crohn’s Disease (5), schizophrenia (6), obe-
sity (7), epilepsy (8), autism (9), cancer (10) and other in-
herited diseases (11,12), and many SVs have a demonstrated
detrimental effect.

While large SVs have been first studied using cytogenetic
approaches and array-based technologies, whole-genome
sequencing (WGS) is in theory capable of detecting SVs
of any type and size (13). Numerous methods have been
implemented to detect SVs from WGS data using either
paired-end information (14,15), read-depth (RD) variation
(16-18), breakpoints detection through split-read approach
(19) or de novo assembly (20). CNVs, potentially the most
impactful SVs, can be detected by any of these strategies
but are often resolved with a RD approach as it directly
looks for signs of copy number changes. However, several
features of WGS experiments result in technical bias and
continue to be a major challenge. For example, GC con-
tent (21), mappability (22,23), replication timing (24), DNA
quality and library preparation (25) have a detrimental im-
pact on the uniformity of the RD (26). Unfortunately, this
variability is difficult to fully correct for as it involves dif-
ferent factors, some of which are unknown, that vary from
one experiment to another. This issue particularly impairs
the detection of CNV with weaker signal, which is inevitable
in regions of low-mappability that represent around 10%
of the human genome (27), for smaller CNVs or in can-
cer samples with cell heterogeneity or stromal contamina-
tion. As a result, existing approaches suffer from limited
sensitivity and specificity (3,13), especially in regions of low-
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complexity and low-mappability (22,23). Even when prob-
lematic regions were masked and state-of-the-art bias cor-
rection (21,28) were applied, we showed that technical vari-
ation in RD could still be found across three WGS datasets
studied (29).

To control for technical variation, we recently developed
a CNV detection method, PopSV, which uses a set of refer-
ence samples to detect abnormal RD (29). In each genome
tested, the RD in a region is compared to the same re-
gion in the reference samples. PopSV differs from most
previous RD methods, such as RDXplorer (30) or CN-
Vnator (17), that scan the genome horizontally and look
for regions that diverge from the expected global average.
Even when approaches rely on a ratio between an aber-
rant sample and a control, such as FREEC (16) or BIC-
seq (31), we showed that they do not sufficiently control
for experiment-specific noise as compared to PopSV (29).
Glusman et al. (32) does go further and normalize the RD
with pre-computed RD profiles that fit the GC-fingerprint
of a sample but this approach excludes regions with extreme
RD and does not integrate the variance observed in individ-
ual regions. PopSV is also different from approaches such
as cn.MOPS (18) and Genome STR1iP (33)thatscan simul-
taneously the genome of several samples and fit a Bayesian
or Gaussian mixture model in each region. Those methods
have more power to detect CNVs present in several sam-
ples but may miss sample-specific events. Moreover, their
basic normalization of the RD and fully parametric mod-
els forces them to conceal a sizable portion of the genome
and variants with weaker signal. Finally, another strategy
to improve the accuracy of CNV detection has been to use
an ensemble approach that combines information from dif-
ferent methods relying on different types of reads. Large re-
sequencing projects such as the 1000 Genome Project (3,34)
and the Genomes of Netherlands (GoNL) project (35,36)
have adopted this strategy and have successfully identified
many CNVs using an extensive panel of detection methods
combined with low-throughput validation. Such a strategy
increases the specificity of the calls at the cost of sensitivity.

Notably, with most of the tools and approaches described
above, repeat-rich regions and other problematic regions of
the genome are often removed or smoothed at some step
of the analysis, to improve the accuracy of the calls. Al-
though some methods (37,38) try to model ambiguous map-
ping and repeat structure, only particular situations are ad-
dressed and, as a consequence, low-mappability regions are
just scarcely covered in the most recent CNV catalogs (34).
This is unfortunate given that CNVs in such regions have al-
ready been associated with various diseases (12,39-42) and
that these regions are also more likely variable. Indeed, dif-
ferent types of genomic repeats are likely to contribute to
CNYV formation. For example, CNVs are known to be en-
riched in segmental duplications (2) and short and long
tandem repeats are also known to be highly polymorphic
(43,44). Moreover, repeat templates, like segmental dupli-
cations or transposable elements, can facilitate the forma-
tion of CNV through non-allelic homologous recombina-
tion and other mechanisms (45).

Given these facts and the growing realization of the im-
portance of repetitive regions in the genome (46,47), we
wanted to investigate the performance of PopSV in low-
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mappability regions and explore the comprehensive CNV
distribution across a large cohort of healthy individuals. Af-
ter showing that population-based RD measures are bet-
ter than existing mappability estimates to correct for vari-
able coverage, we apply PopSV to 640 WGS individuals
from three human cohorts. We compare the performance of
PopSV on these datasets with existing CNV detection meth-
ods in regions of low-mappability and validate the qual-
ity of the predictions across different repeat profiles using
PCR validation. Additionally, using publicly available long-
read sequencing data and assemblies, we show that PopSV
is able to detect some highly ambiguous CNVs. Next, hav-
ing demonstrated the quality of the PopSV calls, we charac-
terize the patterns of CNVs across the human genome and
produce a CNV catalog where variants of different types are
better represented compared to existing catalogs. We fur-
ther find that CNVs are significantly enriched in regions of
low-mappability and in different classes of repeats. Finally,
we identify novel CNV regions in low-mappability regions
that were absent from previous CNV catalogs and describe
their impact on protein-coding genes.

MATERIALS AND METHODS
Data

Three publicly available WGS datasets were used. The first
is a twin study (48) with an average depth of 40x across
45 French-Canadian individuals, including 10 families of
parents and monozygotic twins. The second is a renal cell
carcinoma dataset (49) (CageKid) with 95 tumor/normal
pairs from four European countries and an average depth
of 54x. The third contains 500 unrelated Dutch individuals
from the GoNL (35) dataset with an average depth of 14x.
In each study, the sequenced reads had been aligned using
bwa (50). See Supplementary Information for more details
on access and read processing.

Read count across the genome

The genome was fragmented in non-overlapping bins of
fixed size. As a RD measure we used the number of properly
mapped reads, defined as read pairs with correct orientation
and insert size, and a mapping quality of 30 (Phred score)
or more. In each sample, GC bias was corrected by fitting a
LOESS model between the bin’s RD and the bin’s GC con-
tent. We used a bin size of 5 Kbp for most of the analysis.
When specified, we used smaller bin sizes of 500 bp or 2 kb.

RD and mappability estimates

To compare RD and mappability estimates in the Twin
study, we first removed bins with extremely high RD if de-
viating from the median RD by more than 5 standard devi-
ation. The RD across the different samples were then com-
bined and quantile normalized. For each bin, we computed
the average RD and standard deviation across the samples.
We downloaded the mappability track for hgl9 (27) and
computed the average mappability in each bin. We com-
pared the RD in one randomly selected sample with the
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mappability estimates and with the inter-sample RD aver-
age. To correct for the variation explained by the mappa-
bility estimates we fitted a generalized additive model us-
ing a cubic regression spline between the mappability es-
timates and RD in the sample (see Supplementary Infor-
mation). With these estimations and the global standard
deviation we computed a Z-score for each bin. A similar
set of Z-scores was computed using the inter-sample aver-
age and standard deviation. The normality of these two Z-
score distributions were compared in term of excess kurto-
sis and skewness. The Z-score distributions were also com-
pared in different mappability intervals. Finally, 45 sam-
ples of each cohort were combined and their RD quantile
normalized. The inter-sample RD mean and standard de-
viation were then computed separately in each cohort and
compared with the mappability estimates and RD in the se-
lected sample.

PopsV approach for CNV detection

PopSV was first described and applied in a CNV analysis
of epilepsy patients (29). Briefly, a set of samples are chosen
as reference and used to guide the normalization of each
bin. After normalization the average RD and standard de-
viation in each bin are saved and used to transform the RD
in all samples into Z-scores. CNVs are called in each sam-
ple when the RD is significantly higher or lower than in
the reference samples. The Z-scores can be segmented us-
ing the circular binary segmentation (51) or after statisti-
cal testing at the bin level. As recommended, PopSV was
run separately on each dataset to avoid false positives due
to potential variation in sequencing protocols. More details
are available in the original publication (29) and in the Sup-
plementary Information. With PopSV there is no filtering,
masking, smoothing or altering of repeat-rich regions: all
the regions with properly mapped reads are analyzed.

Coverage track and low-mappability regions

The average RD in the reference samples, a feature used
during CNYV calling, was used as a coverage track. Bins
with a RD lower than 4 standard deviation from the me-
dian were classified as low-mappability (or low coverage). To
highlight the most challenging region, we also defined ex-
tremely low coverage regions if the average RD was lower
than 100 reads. We overlapped these regions with protein-
coding genes and segmental duplications (see Supplemen-
tary Information), and computed the distance to the near-
est centromere, telomere or assembly gap. We also counted
the number of protein-coding genes overlapping at least one
low-coverage region.

CNYV detection using other methods

FREEC (16) and CNVnator (17) were run on each sample
separately starting from the BAM files and using the same
bin size as for PopSV (5 kb). cn.MOPS (18) was run on the
same GC-corrected bin counts than for PopSV and sam-
ples from the same dataset were jointly analyzed. After re-
trieving split reads using YAHA (52), LUMPY (53) was run
and we kept all the deletions and duplications larger than

300 bp. BND variants with both ends more than 300 bp apart
in the same chromosome were also included as they could
be CNVs lacking support to characterize their type prop-
erly. See Supplementary Information for more details.

Clustering samples using the CNV calls

The similarity between two samples is defined by the
amount of sequence called in both divided by the average
amount of sequence called (see Supplementary Informa-
tion). This distance is used for hierarchical clustering of
the samples in the Twin study using different linkage cri-
teria (average, complete and Ward). The clustering was per-
formed using calls in regions with extremely low coverage
(<100 reads on average in the reference samples) only. The
Rand index estimated the concordance between the cluster-
ing and the known pedigree, grouping the samples per fam-
ily (see Supplementary Information).

Replication in twins

For each twin and each method, a CNV call was defined
as replicated if also found in the other monozygotic twin
but in less than 50% of the population to remove systematic
errors. The frequency was computed by counting samples
with any overlapping CNVs. In order to avoid missing calls
with borderline significance, we used slightly less confident
calls for the second twin (see Supplementary Information).
For each method, we computed the number and propor-
tion of replicated calls per sample. We computed these met-
rics using all the calls, calls in low-mappability regions only,
calls in segmental duplications, calls overlapping annotated
repeats and calls overlapping annotated satellites, all using
a minimum overlap of 90% of the call’s sequence. Finally,
we computed the replication estimates for calls located at 1
MbD or less from a centromere, telomere or assembly gap.

Replication between paired normal and tumor samples

The same approach was applied in the renal cancer dataset.
Here, replicated calls were found in a normal sample and its
paired tumor but in <50% of the normal samples.

Replication estimates and reliable regions

Using CNYV calls found in <50% of the population, we de-
fined as reliable a 10 kb region where more than 90% of
the overlapping calls were replicated calls. We then com-
pared the number and proportion of reliable regions for
each method and in different types of region. As before,
we compared regions overlapping low-mappability regions,
segmental duplications, annotated repeats, satellites, or lo-
cated at less than 1 Mb from a centromere, telomere or as-
sembly gap.

Experimental validation

A subset of variants in the Twin study were experimen-
tally validated. First, we randomly selected one-copy and
two-copy deletions, among small (~700 bp) and large
(~4 kb) variants among the calls produced with 500 bp



and 5 kb bins. The calls were visually inspected to de-
sign PCR primers (see Supplementary Information). We
randomly selected 20 regions from those with available
PCR primers. Next, we randomly selected deletions over-
lapping low-mappability regions and called in 6 samples
or fewer. Because RD could not be used efficiently to fine-
tune the breakpoints’ location, we retrieved the reads (and
their pairs) mapping to the region and assembled them (see
Supplementary Information). We randomly selected 17 re-
gions from those with PCR primers. In addition to gel elec-
trophoresis, the amplified DNA of some regions was se-
quenced by Sanger sequencing.

Analysis of CEPH12878

High coverage PCR-free Illumina WGS data for 30 sam-
ples, including CEPH 12878, was downloaded from the 1000
Genomes Project (1000GP) (34) (see Supplementary Infor-
mation). PopSV was run using 5 kb bins and all the sam-
ples as reference. Using the same coverage track as be-
fore we selected all deletions in CEPH12878 overlapping
low-mappability regions (at least 90% of the call). We first
looked for support in CEPH12878 assemblies that used I1-
lumina short-read sequencing, BioNano Genomics genome
maps and either single molecule sequencing from the Pa-
cific Biosciences (PacBio) platform (54) or 10x Genomics
linked-read sequencing (55). For each selected deletion from
PopSV, we aligned the flanking reference sequences to the
assemblies using BLAST (56) (see Supplementary Informa-
tion). When both flanks could be mapped to a contig, we
visually inspected MUMmer plots (57) which either sup-
ported the deletion, the reference genome sequence or were
too noisy to assess. We further annotated the selected calls
if they overlapped with the deletions identified in Pendleton
et al. (54) over a minimum of 1 kb. Finally, we downloaded
the corrected PacBio reads and built a local assembly and
consensus around each selected PopSV deletion (see Sup-
plementary Information). We visually inspected MUMmer
plots of the assembled and consensus sequences to confirm
the presence of the deletion.

CNY catalog

We called CNVs separately in each cohort with PopSV us-
ing as reference samples the 45 samples in the Twin study,
the normal samples in the cancer dataset and 200 samples
in the GoNL dataset. For the Twin study and the renal can-
cer dataset, PopSV was run using 500 bp bins and 5 kb bins.
Because of the lower sequencing depth, PopSV was run us-
ing 2 kb bins and 5 kb bins for the GoNL dataset. For each
sample, calls from the two different runs were merged when
consistent (see Supplementary Information). To compute
the total number of calls, we collapsed calls with a recip-
rocal overlap higher than 50%. The amount of sequence af-
fected in a genome is computed by merging all the variants
in the cohort and counting the affected bases in the refer-
ence genome.

Comparison with public CNV catalogs

We retrieved autosomal deletions, duplications and CNVs
from four public CNV catalogs derived from large-scale
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WGS surveys: the 1000GP SV catalog (34), Genome
STRiP’s catalog from 847 individuals (33), Genome
STRiP calls in 148 high-depth WGS genomes (58), and the
GoNL SV catalog (35) (see Supplementary Information).
To compare the amount of CNV with PopSV, we removed
deletions smaller than 300 bp as well as variants with high
frequency (>80%). We compared CNV frequency between
the 620 unrelated samples and a down-sampled set of 620
randomly selected individuals from the 1000GP CNV cat-
alog. The frequency was derived for all the nucleotide that
overlaps at least one CNV as the proportion of individuals
with a CNYV in this locus. The frequency distribution was
computed separately for the different CNV types.

Comparison with CNV catalogs from long-read studies

The SV catalog from Chaisson et al. (59) was downloaded
and overlapped with the CNV catalogs from 1000GP and
PopSV results on our 640 genomes. Here, the 1000GP cata-
log contained deletions, duplications and CNVs of any size
and frequency. Using control regions and logistic regres-
sion we tested for an enrichment of variants in the SV cata-
log from Chaisson et al. (59) (see Supplementary Informa-
tion). The analysis was performed separately on deletions,
duplications, low-mappability regions and extremely low-
mappability regions. The same analysis was performed us-
ing the SV catalog from Pendleton et al. (54).

Novel CNV regions

Using the 620 unrelated individuals across the three co-
horts, we selected CNVs present in more than 1% of the
population (seven individuals or more) and not overlapping
any CNV in the 1000GP catalog (34). We used deletions,
duplications and CNVs of any size and frequency from the
1000GP. Novel CNVs were collapsed into novel CNV re-
gions, i.e. contiguous regions in which each base is over-
lapped by at least one novel CNV. The novel CNV regions
were annotated using the low-mappability and extremely
low-mappability tracks. We also compared CNVs from the
three other public CNV catalogs to the novel CNV regions.

Distance to centromere, telomere and assembly gaps

The centromeres, telomeres and assembly gaps (CTGs) were
retrieved from the gap track in UCSC (60). In chromo-
somes with missing telomere annotation, we defined the
telomere as the 10 kb region at the ends of chromosome. The
distance from each variant to the nearest CTG was com-
puted and represented as a cumulative proportion. Because
this distribution changes with the size of the variants, we
sampled random regions in the genome with similar sizes
and computed the same distance distribution (see Supple-
mentary Information). Thanks to this null distribution we
were able to see if variants were located closer/further to
CTG than expected by chance.

Enrichment in genomic features

We tested for CNV enrichment in different genomic fea-
tures: genes, exons, low-mappability regions, segmental du-
plications, satellites, simple repeats and transposable ele-
ments. The different satellite families, frequent simple repeat
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motives, transposable element families and sub-families
were also tested. For each sample, we computed a fold-
enrichment as the fold change in proportion of regions over-
lapping a feature between CNV and control regions (see
Supplementary Information). The significance was assessed
using logistic regression on the CNV and control regions.
To control for the enrichment in segmental duplications we
used control regions with similar overlap profile (see Sup-
plementary Information). We also added a variable repre-
senting the overlap with segmental duplications as a co-
factor in the logistic regression model. When numerous tests
were performed, e.g. satellite families, simple repeat mo-
tives, transposable element families or sub-families, the P-
values were corrected for multiple testing using Benjamini-
Hochberg procedure. Finally, for each CNV and control re-
gion, we computed the proportion of the region overlapped
by satellites, simple repeats and transposable elements.

Overlap with gene annotation

Exons of protein-coding genes and promoter regions (10 kb
upstream of the transcription start site) were extracted from
the Gencode annotation v19. We counted how many genes
overlapped a CNV in the population when considering ex-
ons only, exons and promoter region, or gene body and pro-
moter region. In addition, we computed these numbers us-
ing only genes associated with a disease or phenotype in
the OMIM Morbid Map (Online Mendelian Inheritance
in Man; http://omim.org/). These numbers were also com-
puted for CNVs that overlapped >90% of various classes of
repeats. For example, Satellite-CNVs are CNVs with >90%
of their region annotated as satellites.

RESULTS

Modeling RD using population-based measures instead of
mappability scores

When counting uniquely mapped reads, the mappability of
a region is a major predictor of the observed RD. Theoret-
ical mappability estimates (27) strongly correlated with the
RD in a sample but many regions with intermediate map-
pability diverged from the predicted levels of RD (Supple-
mentary Figure S1A). By computing the average RD across
the 45 samples from the Twin study in each 5 kb bin we
found that this divergence is consistent across samples and
not simply due to a high RD variance (Figure 1A). These
mappability estimates only approximate RD variation and
cannot explain the RD profile in numerous regions. In con-
trast, population-based metrics more directly estimate the
expected RD level (Supplementary Figure S1B). Similarly
to what was done in Monlong et al. (29) in high-mappability
regions, we hypothesized that population-based estimates
of RD mean and standard deviation could be used directly
and help analyze regions with reduced RD. To test this hy-
pothesis, Z-scores corrected by the mappability-based es-
timates were compared to Z-scores derived from both the
inter-sample mean and standard deviation. The population-
based Z-scores better followed a Normal distribution with
an excess kurtosis of 0.2 and skewness of 0.004 compared
to 29.4 and -2.284 respectively for mappability-adjusted

Z-scores (Figure 1B). The distribution of the population-
based Z-scores was also more stable across the mappabil-
ity spectrum (Figure 1C). When comparing samples from
the three different datasets, we noticed cohort-specific pro-
files in term of RD level and variance even though RD had
been quantile normalized (Figs S1C and D), suggesting that
population-based estimates will be better at capturing sub-
tle cohort-specific variation.

These results suggest that a population-based strategy
such as PopSV (29) could be extended to investigate CNVs
in regions of low-mappability. To define low-mappability
regions in the population, we used the average RD in the
reference samples track produced by PopSV. In the Twin
study for example, 12.6% of the covered 5 kb bins were la-
beled as low-coverage (Figure 1 D), more than half of which
were regions with extremely low coverage (lower than 100
reads on average). Slightly fewer regions were labeled as
low-coverage in the other cohorts (Supplementary Figure
S2). As expected, low-coverage regions were depleted in
gene content with only 15.3% of the 5 kb bins in these re-
gions overlapping a protein-coding gene versus 48.8% for
other regions. Nonetheless, 4044 protein-coding genes over-
lapped a low-coverage region. Finally, 23.2% of the low-
mappability regions overlapped segmental duplications and
69.1% were located at less than 1 Mb from a centromere,
telomere or assembly gap, versus respectively 2.9% and
8.8% for other regions.

Replication rates in regions of low-mappability

We previously demonstrated that CNV detection with
PopSV was overall more sensitive than FREEC (16), CN-
Vnator (17), cn.MOPS (18) and LUMPY (53) methods (29).
In the following, we focused on the performance of PopSV
in low-mappability regions. We first investigated the general
concordance of the CNV calls with the pedigree in the Twin
study. Using calls in extremely low-mappability regions (av-
erage RD below 100 reads) only, we clustered the individ-
uals and compared the result to the known pedigree. We
found that PopSV showed better concordance, as assessed
by the Rand index (Supplementary Figure S3), compared to
the other methods. Indeed, the clustering dendogram from
PopSV calls, even in these challenging regions, captured al-
most perfectly the family relationships (Figure 2A). We then
investigated if the call replication rate was stable across dif-
ferent mappability profiles. Using calls present in <50% of
the population to avoid systematic bias, the overall repli-
cation rate in the other twin was found to be 89.7%. Fo-
cusing on calls in low-coverage regions, we found a com-
parable replication rate of 92.5%. The replication rate re-
mained constant in regions with different repeat profiles
(Figure 2B) such as regions overlapping segmental duplica-
tion, annotated repeats, or close to centromeres, telomeres
and assembly gaps. In contrast, the other methods showed
a reduced replication and higher variance in repeat-rich re-
gions. The superior replication rate was complemented by
a larger number of calls: PopSV called between 2.7 and
9.9 times more replicated CNVs per sample in low-coverage
regions compared to the other methods. We observed the
same results in the cancer dataset when comparing the
agreement between germline events in normal/tumor pairs.
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PopSV had between 1.8 and 17.8 times more calls in low-
mappability regions compared to the other methods and
a stable replication rate across repeat profiles (Supplemen-
tary Figure S4). We next wanted to assess the performance
in each region of the genome, rather than overall rates per
sample, and used the replication in twins to identify regions
with reliable calls. Again we observed that PopSV was as
reliable overall as in regions with different repeat profiles
(Figure 2C). This analysis also showed that PopSV provides
reliable calls in a larger fraction of the genome compared to
other methods. The strongest gain was observed for regions
overlapping satellites or overlapping almost completely an-
notated repeats, with around twice as many regions reliably
called by PopSV. cn . MOPS showed the second best perfor-
mance, especially in regions overlapping segmental duplica-
tions or close to centromeres, telomeres and assembly gap.

Validation of CNVs in regions of low-mappability

Using Real-Time PCR validation across 151 regions, we
previously demonstrated that the replication estimates from

the Twin dataset are consistent with experimental valida-
tion (29). We had tested variants of different types, sizes
and frequencies and validated 90.7% of the calls, similar to
our twin-based replication estimates. Here we tested addi-
tional deletions in individuals from the Twin study using
PCR validation. We first validated randomly selected dele-
tions and found a validation rate close to the overall repli-
cation rate, with 18 out of 20 deletions (90%) successfully
validated (Supplementary Table S1). In a second validation
batch, we focused on rare deletions in low-mappability re-
gions, of which 11 out of the 17 (65%) were successfully val-
idated (Supplementary Table S2). We noticed that the ma-
jority of the non-validated deletions were predicted to be
smaller than 100 bp and most likely due to a problem dur-
ing the breakpoint fine-tuning. If we consider only deletions
larger than 100 bp, the validation rate in regions of low-
mappability increased to 83% (10/12) once again close to
PopSV’s replication rates in the Twin dataset.

Regions with extreme repeat content remained difficult
to target and validate using PCR approaches. To further in-
terrogate the performance of PopSV in those regions, we
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turned to whole-genome data from long-read sequencing
technology. Publicly available assemblies for CEPH12878
samples confirmed several deletions called by PopSV in
low-mappability regions. Out of the 14 homozygous dele-
tions that could be assessed, 13 were confirmed in a con-
tig, 12 of which were observed in both assemblies (54,55).
Only one region seemed to be a false positive, an assem-
bled contig supporting the reference sequence in one as-
sembly. Eleven regions could not be assessed because the
flanks in the reference genome didn’t map to any assembled
contigs or their MUMmer plots neither supported a dele-
tion nor the reference sequence. In summary, we confirmed
92.8% of the homozygous deletions in low-mappability re-
gions that could be compared with the assemblies. Dele-
tions can be confirmed by direct comparison of the vari-
ant region and, if homozygous, should be present in the as-
sembly. In contrast, heterozygous deletions could be miss-
ing from an assembly if only the reference allele was assem-
bled. We confirmed 27 out of the 44 heterozygous deletions
in low-mappability regions that could be assessed (Supple-
mentary Table S3). As expected, only one allele was sup-
ported for many regions: 16 regions with only the deleted
allele observed and 17 regions with only the reference allele
observed. Both deleted and reference alleles were observed
for 11 variants. Although only 61.3% of the heterozygous

deletion were confirmed, many variants might have been
missed because of assembly preference to one allele, as sug-
gested by the similar number of regions with only one sup-
ported allele. Using variants identified by Pendleton et al.
(54) and by assembling raw PacBio reads, we found sup-
port for three additional homozygous deletions and 15 het-
erozygous deletions that had remained inconclusive in the
assembly comparison. Most of the regions that couldn’t be
confirmed were located close to assembly gaps in the refer-
ence genome (Supplementary Figure S5). This observation
highlighted that even with long-read sequencing data, it is
not straightforward to clearly assess some genomic regions
close to assembly gaps.

Global patterns of CNVs across the human genome

Having demonstrated the robustness of PopSV in low-
mappability regions, we wanted to characterize the global
patterns of CNVs across the human genome. We were es-
pecially interested in looking at calls in regions of low-
mappability which represents between 9% and 12% of the
human genome (Figure 1D and Supplementary Figure S2).
We started with an analysis of the twins and the normal
samples in the renal cancer dataset, both of which have an
average sequencing depth ~40x. PopSV was used to call



CNYV using 500 bp and 5 kb bins, which were then merged
to create a final set of variants. On average per genome, 7.4
Mb of the reference genome had abnormal read coverage, 4
Mb showing an excess of reads indicating duplications and
3.4 Mb showing a lack of reads indicating deletions (Ta-
ble 1). In both datasets, the average variant size was around
3.7 Kbp and 70% of the variants found were smaller than
3 Kbp. We compared our numbers to equivalent CNVs de-
tected in the most recent human SV catalog from the 1000
Genomes Project (1000GP), where 6.1 Mb was found to be
copy-number variable on average in each genome (Supple-
mentary Table S4). In those calls, we notice that no vari-
ants except for a few deletions were identified in regions of
extremely low-mappability regions. Similarly, small dupli-
cations (<3 kb) were absent from that catalog. In contrast,
the set of variants identified by PopSV included variants in
extremely low-mappability regions as well as small deletions
and duplications (Table 1), explaining in part the ~20% in-
crease in affected genome. While the study from the 1000GP
(34) explored a wider range of SVs, our catalog is likely
more representative of the distribution of CNVs in a nor-
mal genome since a larger portion of the genome could be
analyzed. Small duplications and events in low-mappability
regions were also under-represented in more recent CNV
surveys that used higher sequencing depth or joint-calling
of CNVs (33,35,58) (Supplementary Table S4), confirming
the uniqueness of the PopSV catalog.

Next, we applied PopSV to the 500 unrelated samples
from the GoNL cohort (Table 1). Due to a lower sequenc-
ing depth (~13x), we used bins of size 2 and 5 kb, explain-
ing the lower number of variants found in these samples.
Nevertheless, a large sample size helps better characterize
the frequency patterns and provides a more comprehensive
map of rare CNVs. In total, across these three cohorts, 325.6
Mb were found to be affected by a CNV with more du-
plications (50 856) detected than deletions (44 110). This
contrasts with the CNVs reported by the 1000GP (34) that
were heavily skewed towards deletions (Supplementary Ta-
ble S4), likely due to the conservative ensemble approached
used to detect CN'Vs. The frequency distribution of dele-
tions and duplications found using PopSV were also much
more balanced compared with the ones from the 1000GP
(34) (Figure 3A).

We also compared our CNV catalog with an orthogonal
set of calls from Chaisson et al. (59) that were obtained us-
ing long-read sequencing. Although these calls came from
a different genome, we expect both catalogs to share a num-
ber of common variants. We found a significant overlap
between the two catalogs, overall and separately for dele-
tions, duplications, low-mappability regions and extremely
low-mappability regions (Figure 3B). In all categories, the
overlap was stronger for PopSV’s catalog compared to the
1000GP CNV catalog. We noted that the enrichment for
the 1000GP catalog disappeared for duplications and low-
mappability regions but was even stronger for PopSV’s cat-
alog. Like PopsvV, the long-read sequencing study (59) also
found a better balance between deletions and duplications.
Similar observations were made using another set of calls
from long-read sequencing of the CEPH12878 sample (54)
(Supplementary Figure S6).

Nucleic Acids Research, 2018, Vol. 46, No. 14 7243

CNYVs are enriched near centromeres and telomeres and in
regions of low-mappability

Large CNVs have been shown to be enriched near cen-
tromeres, telomeres and assembly gaps (CTGs) (61). We
were interested in exploring this observation further us-
ing the set of high resolution calls from PopSV. We com-
pared the distribution of CNVs calls made across the three
datasets to randomly distributed regions of similar sizes
(Supplementary Figure S7). In an average genome, we
found that 33.5% of the CNVs calls were within | Mbp of a
CTG, while we would have expected only 11.2% by chance.
To verify that these observations were not simply a conse-
quence of the methodology used, we also looked at the so-
matic CNVs (sCNVs) that we could detect in the renal cell
carcinoma dataset. For this purpose, we extracted the vari-
ants found by PopSV in the tumor sample of an individual
but missing from its paired normal sample. Reassuringly,
and in contrast to germline CNVs, sCNVs were not prefer-
entially found near CTGs (Supplementary Figure S7), with
11.1% of the sCNVs within 1 Mb of a CTG.

After correcting for the distance to CTGs, we also ob-
served a 4.7-fold-enrichment of variants in regions of low
mappability (Figure 4A). Segmental duplications (SD),
DNA satellites and Short Tandem Repeats (STR) were
also significantly enriched with fold-enrichment of 3.6, 2.6
and 1.2, respectively. The over-representation of CNVs in
SDs has been described before (2) and in a recent study
(62), half of the CNV base pairs were shown to overlap a
SD. To investigate the contribution of low-mappability re-
gions beyond SDs, we used matched control regions and
included segmental duplication overlap in the logistic re-
gression model. Even after controlling for this known en-
richment, we found that CNVs overlapped low-coverage re-
gions more than twice as much as expected (Supplementary
Figure S8A). This two-fold enrichment is independent of
the SD association and consistently observed in the three
cohorts of normal genomes. In contrast to germline CNVs,
sCNVs were once again found to be more uniformly dis-
tributed (Figure 4A and Supplementary Figure S8§A). These
results suggest that the enrichments of germline CN'Vs near
CTGs and in regions of low-mappability are unlikely to be
the result of a methodological artifact.

Various repeat families are more prone to harbor CNVs

We wanted to further characterize the distribution of
germline CNVs in relation to different repeat classes and
families. By comparing CNVs to the same control regions
with matched overlap with SD and distance to CTGs we
can look for patterns that are specific to repeat sub-families
without the risk of being biased by the global enrichments
(Figure 4B). Using this approach, we found that CN'Vs were
still significantly enriched in satellites repeats and in short
tandem repeats (STRs) (P-value < 10~*, Supplementary
Figure S8A), with fold-enrichments of 2.3 and 1.2 respec-
tively.

Although it is known that DNA satellites and simple re-
peats are more unstable (63), the extent to which CNVs
are found in these regions in humans had, to our knowl-
edge, not been systematically explored. Satellite repeats are
grouped into distinct families depending on their repeated
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Table 1. CNVs in the Twins, CageKid normals and GoNL datasets. WG: whole genome; ELC: extremely low-coverage regions. The 7otal number of
variants is the total number after collapsing recurrent variants. Affected genome represents the amount of the reference genome that overlaps at least one

CNV
Variants Variants <3 Kbp Affected genome (Mbp)
Avg Size

Set Depth Samples Total Per sample (Kbp) Proportion Per sample Total Per sample

wG ELC min mean max
Twin study 42x 45 20222 1637.27 243.24 4.21 0.65 1056.84 62.22 5.30 6.89 9.03
deletion 10 661 727.04 13.20 4.53 0.58 423.80 33.97 2.79 3.30 3.85
duplication 10 396 910.22 230.04 3.94 0.70 633.04 34.20 2.50 3.59 5.29
CageKid normals 40x 95 56 256 2132.81 336.46 3.58 0.71 1521.16 134.77 5.53 7.63 10.24
deletion 25367 805.08 12.74 4.30 0.63 508.56 70.65 2.65 3.46 7.26
duplication 32356 1327.73 323.73 3.14 0.76 112.60 76.28 2.31 4.17 6.70
GoNL 13x 500 27945 549.52 81.97 8.71 0.46 250.24 226.50 3.05 4.79 8.16
deletion 13 818 262.41 1.45 8.50 0.42 110.16 106.83 1.30 2.23 3.96
duplication 15291 287.10 80.52 8.91 0.49 140.08 139.21 1.45 2.56 5.72

unit and we found that not all satellite repeats were equally
likely to overlap a CNV (Supplementary Figure S§B). In
particular, Alpha satellites have the highest and most sig-
nificant enrichment (P-value < 107>), with more than three
times more CNVs than in the control regions (Figure 4B).
We noted that satellites tend to span completely CNVs
(Supplementary Figure S9), suggesting that satellites are
likely directly involved in the CNV formation. Short and
long tandem repeats can be highly polymorphic (43,44).
Constrained by read length, recent studies (64,65) focused
on variation of STRs smaller than 100 bp. In our analy-
sis we found that CNVs were significantly enriched in the
largest annotated STRs (>100 bp or >400 bp, Figure 4B).
STR can be grouped by motif and we further tested the
largest and most frequent families (Supplementary Figure
S8C). Except for the weak enrichment in AT (TA) repeats,
the STR enrichment appeared mostly independent of the
repeat motif. Here the repeats tend to overlap just a frac-
tion of the variant, but a clear subset of the variants are
fully covered by these tandem repeats (Supplementary Fig-
ure S9). Finally, although transposable elements (TEs) as
a whole did not show enrichment (Figure 4A), the ’Other’
repeat class, which contains SVA repeats, was found to be
significantly enriched in the two higher depth datasets (Fig-
ure 4B). Moreover, looking at TEs at the level of individual
repeat families, we found a number of them to be signifi-
cantly enriched including SVA F or L1Hs. Notably, HERV-
H, an older ERV sub-family, was also in the list of enriched
TEs. This sub-family has been shown to be expressed and
important in human embryonic stem cells (66,67). Alu el-
ements contributed to the formation of human segmental
duplications (68) and are often found around SV break-
points (69) but this TE family was not enriched in CNVs
in our data. On the other hand, several families of L1 re-
peats older than the still active LIHS family were also en-
riched (e.g. L1PA2 to L1PA4) and often implicated in what
appears to be non-allelic homologous recombination (see
examples in Supplementary Figure S10). Reassuringly, the
somatic CNVs once again did not show any of these enrich-
ments (Figure 4B).

Impact of CNVs in regions of low-mappability

Compared to the latest 1000GP catalog (34), we identi-
fied 3455 novel regions with CNVs in more than 1% of
the population. 81.3% of these regions were located in low-
mappability regions while 18.4% were located in extremely
low-mappability regions. These novel CNV regions were
missing from the 1000GP catalog and also mostly absent
in other recent CNV surveys; only 7.9-15.1% of the novel
regions overlapped with a CNV in three recent CNV cata-
logs (33,35,58) (Supplementary Figure S11). Among the re-
gions with a CNV in the CEPH12878 sample, we identified
a deletion in the second intron of the TRIM 16 gene that was
found by both Pendleton e al. (54) and PopSV. Across the
640 individuals analyzed by PopSV, 12% carried the vari-
ant. Thanks to the long-read data, the exact breakpoints
had been pinpointed in Pendleton et al. (54) and it was in
fact a SVA-F transposable element located within the 6 kb
intron in the reference genome but absent from the assem-
bled sequence. SVA-F is one of the youngest repeat fam-
ily in the human genome and their high similarity remains
a challenge for CNV analysis. Furthermore, the variant is
located within a segmental duplication with 98.5% similar-
ity and absent from public catalogs such as the 1000GP or
GoNL. Another deletion supported by both public assem-
blies and local reassembly of the PacBio read was located
12 kb downstream of TMPRSSIIE. 6.6% of the individ-
uals carried the variant in the PopSV catalog. The assem-
bled sequence helped pinpoint the breakpoints to an anno-
tated LIPA2 in the reference genome. The variant was also
located in a segmental duplication and absent from public
catalogs such as the 1000GP or GoNL. Finally, a deletion
affecting 8 different exons from the CR/ gene was found
by both Pendleton et al. (54) and PopsSVv in CEPH12878.
CRI has been associated with Alzheimer disease (70) and is
located within embedded segmental duplications with high
similarity. The deletion was present in 3% of the population
analyzed with PopSV but is absent from public CNV cata-
logs.

Overall, 7206 protein-coding genes were found to have
an exon overlapping a variant in at least one of the 640
normal genomes studied (Table 2). If we included the pro-
moter regions (10 Kbp upstream of the transcription start
site), at least 11 341 protein-coding genes were potentially
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Table 2. Impact of CNVs on protein-coding genes. The CN Vs number represents the number of different CNVs, after collapsing CNVs with more than
50% reciprocal overlap. Repeat CNV: more than 90% of the CNV is annotated as repeat. Genes are protein-coding genes and the promoter region is defined
as the 10 kb region upstream of the transcription start site. Novel CN Vs are located within regions annotated as novel compared to the 1000 Genome Project

catalog

Genes with CNVs OMIM genes with CNVs
Set CNVs Exon + Promoter + Intron Exon + Promoter + Intron
All CNVs
All 91735 7206 11341 13259 1241 1857 2196
Low coverage 32707 848 1491 2 648 95 160 371
Extremely low coverage 9348 304 401 442 11 14 25
TE 20491 164 1747 3998 29 233 664
STR 4285 45 286 748 5 39 129
Satellite 1822 2 21 33 0 0 0
Novel CNVs
All 17 046 418 680 1102 38 59 135
Low coverage 15263 347 560 894 29 47 111
Extremely low coverage 6591 189 263 285 5 6 8
TE 3896 17 192 504 1 12 66
STR 1806 14 81 230 0 9 41
Satellite 890 1 4 5 0 0 0

affected by at least one CNV in the population. Focus-
ing on regions of low-mappability, we found 4285 different
CNVs that were completely included in regions annotated
as STR. These STR-CNVs overlapped the coding sequence
of 45 protein-coding genes, and 286 genes when including
the promoter region (Table 2). In contrast, for CNVs in-
cluded in satellite regions, only 21 genes had an exon or
the promoter region overlapping one of the 1822 Satellite-
CNVs. Finally, we focused on CNVs that were novel com-
pared to the 1000GP (34) and in low-mappability regions.
Even there, 347 genes were found to have an exon overlap-
ping such CNVs and this number increased to 560 when
including the promoter regions. Out of these 347 genes, 29
were previously associated to a mendelian disorder or phe-
notype in the OMIM database (Online Mendelian Inheri-
tance in Man; http://omim.org/, Supplementary Table S5).

DISCUSSION

Despite the strong interest in CNVs because of their role
in diseases, detecting them accurately has remained a chal-
lenge, especially in regions of low-mappability. This is
mostly due to technical variation in RD that cannot be fully
modeled by mappability estimates. Using a recently devel-
oped CNV-calling approach that relies on a set of reference
samples to estimate the expected RD (29), we show that it is
possible to accurately detect CN'Vs across the genome, even
in repeat-rich regions. Indeed, using monozygotic twins
and normal/tumor pairs, we were able to demonstrate that
the performance of PopSV was stable and in most cases
superior to other methods across different types of low-
mappability regions. Although experimental validation can
be challenging in these regions, we were able to confirm a
number of deletions using PCR validation as well as vari-
ants in some of the most difficult regions by taking advan-
tage of public datasets from long-read sequencing studies.
Notably, using PopSV on 140 normal genomes with high
sequencing depth (~40x) and 500 additional samples with
medium coverage (~13x), we found that regions of low

mappability, which only represent ~10% of the genome,
were around 5 times more likely to harbor CNVs. The fact
that this enrichment was observed for germline events and
not somatic events was both reassuring and interesting be-
cause of the implications on the selection forces at play.
In particular, we were able for the first time to quantify
the extent to which some regions in the genome are more
prone to harbor such structural rearrangements. For in-
stance, beyond the known enrichment in segmental duplica-
tions, we found genome-wide enrichments for different fam-
ilies of DNA satellites, simple repeats and TE, such as SVA,
LI1Hs and HERV-H. Moreover, although PopSv doesn’t
fully characterize STR variation, it was able to detect CN'Vs
in large annotated STRs. These CNVs could complement
the output of STR detection methods that look for STR
variation within sequencing reads and for this reason can-
not test STRs longer than ~100 bp. Here, we found a strong
CNV enrichment in STRs larger than 400 bp suggesting
that large STRs should be included in genome-wide STR
variation screens. Overall, having a more complete CNV
catalog enabled an unbiased characterization of the CNV
patterns across the genome and could potentially increase
the power for trait-association studies.

Fine-tuning the location of breakpoints is often possible
by reanalyzing the local read coverage or using orthogonal
methods such as split-read or local assembly. In repeat-rich
regions however, these methods generally do not perform
well. Long read sequencing is currently the only experimen-
tal method that actually results in unambiguous SV calls
with nearly quasi-base-pair resolution in low-mappability
regions. Indeed, recent studies using long-read sequencing
(54,59) found many novel SVs and highlighted variation
involving complex repetitive DNA. The increased resolu-
tion and ability to span repeated regions expanded existing
SV catalogs but only a handful of genomes have been se-
quenced in this way so far due to the higher cost of this tech-
nology. Although breakpoint and allele characterization is
limited with short reads, we were able to detect the presence
of such CNVs across a large population of normal genomes.
Compared to previous studies, our CNV catalog strongly
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overlaps with the variants found by long-read sequenc-
ing studies in low-mappability regions. With hundreds of
genomes at our disposal we identified frequent CNVs in
repeat-rich regions that had escaped previous population-
scale surveys. In the CEPH12878 sample, we independently
identified low-mappability variants and showed that some
novel deletions were recurrent in our cohort. For exam-
ple, an exonic deletion in the CRI gene absent from public
CNV catalogs was identified by the long-read sequencing
and found in ~3% of the samples tested by PopSv. CR/
has been associated with Alzheimer Disease (70) thus this
exonic deletion in a low-mappability region might be rele-
vant for association studies. Using our full CNV catalog,
we identified 3455 novel regions that were not present in
1000G public SV database (34) but found in more than 1%
of our 640 genomes. These regions overlapped exons of 418
protein-coding genes, 38 of which were associated with a
disease phenotype in the OMIM database. The amount of
genes hit by CNVs in novel or low-mappability regions and
the enrichment of CNVs in repeat-rich regions suggest that
they be included in genome-wide surveys. As other types of
variant are likely enriched in repeat-rich regions, we antici-
pate that population-based methods, such as PopSv, will
facilitate the identification not only of CNVs but also of
other types of SVs in both normal and cancer genomes.
One of the most promising future development of PopSV
to further characterize low-mappability regions is its exten-
sion to detect balanced SV such as inversions or transloca-
tions. Indeed, instead of modeling the coverage of properly
mapped reads, the same population-based strategy could
test for an excess of discordant reads. By counting the num-
ber of reads in incorrect orientation or joining distant re-
gions, one could recognize an excess of SV-supporting reads
from discordant mapping caused by repeats. Such an ap-
proach could detect inversions and translocations that con-
tains repeats around their breakpoints or complement SV
calls from orthogonal approaches by providing a robust
confidence score based on abnormal read coverage.

DATA AVAILABILITY

The PopsSV R package and documentation are available
at http://jmonlong.github.io/PopSV/. The scripts and in-
structions to reproduce the graphs and numbers in this
study have been deposited at http://github.com/jmonlong/
reppopsv/ and archived in https://doi.org/10.5281/zenodo.
1241137.

The CNV catalog and annotations were deposited at
https://figshare.com/s/8fd3007ebb0fbad09b6d. The raw se-
quences of the different datasets had already been deposited
by their respective consortium (see Supplementary Infor-
mation).

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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