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Abstract

Intracranial volume (ICV) is frequently used in volumetric magnetic resonance imag-

ing (MRI) studies, both as a covariate and as a variable of interest. Findings of associa-

tions between ICV and age have varied, potentially due to differences in ICV

estimation methods. Here, we compared five commonly used ICV estimation

methods and their associations with age. T1-weighted cross-sectional MRI data was

included for 651 healthy individuals recruited through the NORMENT Centre (mean

age = 46.1 years, range = 12.0–85.8 years) and 2410 healthy individuals recruited

through the UK Biobank study (UKB, mean age = 63.2 years, range = 47.0–

80.3 years), where longitudinal data was also available. ICV was estimated with

FreeSurfer (eTIV and sbTIV), SPM12, CAT12, and FSL. We found overall high correla-

tions across ICV estimation method, with the lowest observed correlations between

FSL and eTIV (r = .87) and between FSL and CAT12 (r = .89). Widespread propor-

tional bias was found, indicating that the agreement between methods varied as a

function of head size. Body weight, age, sex, and mean ICV across methods explained

the most variance in the differences between ICV estimation methods, indicating

possible confounding for some estimation methods. We found both positive and neg-

ative cross-sectional associations with age, depending on dataset and ICV estimation

method. Longitudinal ICV reductions were found for all ICV estimation methods, with

annual percentage change ranging from �0.293% to �0.416%. This convergence of

longitudinal results across ICV estimation methods offers strong evidence for age-

related ICV reductions in mid- to late adulthood.
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1 | INTRODUCTION

Intracranial volume (ICV), defined as the volume within the cranium

including the brain, meninges, and cerebrospinal fluid (CSF), is an

important measure in brain magnetic resonance imaging (MRI) studies.

It is frequently used to adjust for individual variation in head size

(O'Brien et al., 2011; Voevodskaya et al., 2014) and as a proxy for

premorbid brain volume in the study of neurodegenerative diseases

(Davis & Wright, 1977). Manual delineation of structural brain MRI

scans is considered the most accurate in vivo method for determining

ICV (Huo et al., 2016; Klasson et al., 2015; Whitwell et al., 2001).

However, this approach is labor intensive and requires training, mak-

ing it impractical for large datasets. To overcome these limitations, a

variety of automated methods for computing ICV using T1-weighted

structural MRI have been developed. Previous studies have reported

varying consistency and agreement between ICV estimation methods

(Malone et al., 2015; Sargolzaei et al., 2015). In one study, associations

between hippocampal volume, education and a cognitive measure dif-

fered between ICV estimation methods (Nordenskjöld et al., 2013).

Some studies have also indicated that the accuracy of automated ICV

estimation varies as a function of head size (Klasson et al., 2018). Such

findings highlight the importance of assessing ICV estimation methods

for potential sources of bias, which may otherwise introduce spurious

effects in studies relying on ICV estimates. In the present study, we

pursued two related aims: First, we compared ICV estimation methods

and assessed potential sources of bias influencing ICV estimation.

Secondly, we assessed both cross-sectional and longitudinal associa-

tions between age and ICV.

Automated ICV estimation methods typically use T1-weighted

MRI images and can be broadly classified as either registration- or

segmentation-based. Registration-based methods estimate ICV via an

atlas scaling factor given by the determinant of an affine transforma-

tion of individual MRI images to a template. The two most common

registration-based ICV estimation methods are estimated Total Intra-

cranial Volume (eTIV; Buckner et al., 2004) in FreeSurfer and SIENAX

from FSL (FMRIB Software Library; Smith et al., 2002, 2004). With

segmentation-based methods, MRI images are first segmented into

tissue compartments which are then used to calculate volumetric esti-

mates of the intracranial cavity. One popular segmentation-based

method is the Tissue Volumes utility in Statistical Parametric Mapping

(SPM; https://www.fil.ion.ucl.ac.uk/spm/). CAT12 is an extension of

SPM12 that aims to provide a more robust segmentation algorithm

(http://www.neuro.uni-jena.de/cat/). Both SPM12 and CAT12 com-

pute ICV as a probability-weighted sum of grey matter (GM), white

matter (WM) and CSF. Sequence Adaptive Multimodal Segmentation

(SAMSEG; Puonti et al., 2016) was recently introduced in FreeSurfer

version 7 and computes the segmentation-based Total Intracranial

Volume (sbTIV).

Throughout the lifespan, ICV increases rapidly from early child-

hood until early adolescence and is thought to remain relatively stable

throughout adulthood (Mills et al., 2016; Pfefferbaum et al., 1994).

These findings are consistent with studies on head circumference and

computed tomography (Bergerat et al., 2021; Huda et al., 2004;

Neubauer et al., 2009). In adulthood, the presence of ICV change is

less well-established, and it remains uncertain if continued changes

occur and to what extent. However, past non-MRI studies on ICV and

head size have often been limited to childhood and adolescence. A

notable exception is the cross-sectional study by Weaver and Chris-

tian (1980), reporting no significant association between age and

occipitofrontal head circumference in 567 participants (50% female)

aged 18 to approximately 67 years.

A number of cross-sectional MRI studies have assessed the asso-

ciation between age and ICV in adulthood, some of which report sig-

nificant negative associations with age while others find no significant

associations. For instance, DeCarli et al. (2005) estimated ICV using

in-house software in 2081 participants from 34 to 96 years of age

and found subtle negative associations with age (�0.1% ICV change

per year), independent of sex. Similarly, in a study of 147 participants

between the ages of 15 and 96, Buckner et al. (2004) reported a slight

negative association between manually determined ICV and age

(�1.05 cm3/year). A notable recent example is the study by Ma et al.

(2018), where cross-sectional associations with age were analyzed in

a large dataset consisting of 7656 scans for 1727 elderly subjects

(55–95 years of age) from the Alzheimer's Disease Neuroimaging Ini-

tiative (ADNI) database. Three diagnostic groups were included; cog-

nitive normal, mild cognitive impairment, and an Alzheimer's disease

group. They observed no significant cross-sectional associations

between age and ICV as estimated with three methods: eTIV, SPM12,

and multiatlas label fusion (MALF; Huo et al., 2016).

Most studies on putative associations between ICV and age are

cross-sectional rather than longitudinal (Good et al., 2001; Kim

et al., 2018; Kruggel, 2006). Such study designs are limited in their

ability to resolve age trajectories across the lifespan and can be

influenced by generational effects such as secular growth rates

(Miller & Corsellis, 1977). In Caspi et al. (2020), both longitudinal and

cross-sectional age effects on ICV were assessed in participants

between the ages of 16 and 55 years. They included 528 participants

at baseline, 378 at follow-up, and 309 at the second follow-up, where

the mean period between time points was 3.3 years. In the longitudi-

nal analysis, they reported nonlinear associations where the annual

percentage change (APC) of ICV was initially positive (0.03% APC at

age 20) and then negative in later adulthood (�0.09% APC at age 55).

In the cross-sectional analysis, the data indicated a predicted ICV

change of 0.21% for males and 0.22% for females at 20 years of age.

They attributed the different magnitudes of effects in the longitudinal

and cross-sectional analyses to different secular growth rates. We

found only one other study on longitudinal ICV changes in the litera-

ture, which showed a statistically significant increase in ICV in the

youngest group (≤34 years) but no significant longitudinal age

changes in mid- (35–54 years) to late (≥54 years) adulthood (Liu

et al., 2003) where ICV was estimated with Exbrain (Lemieux

et al., 2003). However, this study was limited by a small sample size

with only 44 participants in the first group, 37 in the second, and 9 in

the third.

In the present study, we compared five of the most frequently

used automated ICV estimation methods to test their relative
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consistency and absolute agreement, as well as their cross-sectional

and longitudinal associations with age. Given the robustness of the

ICV measure, we expected that correlation coefficients between esti-

mation methods would exceed 0.9. We further hypothesized that the

agreement between ICV estimates would be higher between the two

registration-based methods and between the three segmentation-

based methods, than across the two groups of ICV estimation

methods. To test potential confounding by age, sex, height, body

weight, and mean ICV across methods, we computed their explained

variance of the pairwise differences between ICV estimation methods.

To examine cross-sectional associations with age, we performed

exploratory regression analyses for each dataset and ICV estimation

method assessing both linear and nonlinear effects of age. The influ-

ence of sex, height, and body weight on cross-sectional age trajecto-

ries was investigated in separate interaction models. Finally, based on

the study by Caspi et al., 2020, we expected lower ICV at follow-up

compared with baseline with an APC of �0.09%.

2 | MATERIALS AND METHODS

2.1 | Participants and MRI

Participants from two MRI datasets were included in this study:

(1) Norwegian Centre for Mental Disorders Research (NORMENT), a

cross-sectional dataset recruited in the greater Oslo region of

Norway, and (2) UK Biobank (UKB), a longitudinal dataset recruited in

the United Kingdom. See Table 1 for demographics for each dataset

and Figure 1 for the age distribution for each dataset.

2.1.1 | NORMENT dataset

Healthy participants were pooled from three clinical studies at the

NORMENT Centre: the Youth-Thematically Organized Psychosis (Y-

TOP) study (n = 61), the Thematically Organized Psychosis (TOP)

study (n = 275), and the StrokeMRI study (n = 315). Participants with

complete data, that is, age, sex, body weight, height, and T1-weighted

MRI data, were included. For Y-TOP and TOP, invitations to healthy

participants were sent out to a random sample, stratified by age and

region, from the Norwegian National Population Register in the

greater Oslo region. For the StrokeMRI study, healthy participants

were recruited via advertisement in local newspapers, social media,

and word-of-mouth.

Exclusion criteria for Y-TOP and TOP included a history of neuro-

logical disorders or moderate to severe head injury, current or previ-

ous diagnosis of a psychiatric disorder, a family history of severe

mental disorders, IQ below 70 points, and meeting the criteria for

alcohol or substance dependency at the time of MR. For TOP, canna-

bis use within the last 3 months prior to assessment was an additional

exclusion criterion. For StrokeMRI, exclusion criteria included serious

head trauma, a history of stroke, dementia, or other severe neurologi-

cal and psychiatric diseases, alcohol- and substance abuse, and medi-

cation use thought to affect the nervous system.

Adult participants gave written informed consent to participate.

For adolescent participants below 16 years of age, written assent and

parental consent was given. Participants were remunerated with a gift

card worth 500 NOK. The studies were approved by the Regional

Committee for Research Ethics (REK) and the Norwegian Data Protec-

tion Authority, and were carried out in accordance with the Helsinki

Declaration.

T1-weighted images were acquired at the Oslo University Hospi-

tal, Ullevål, on a 3 T General Electric Discovery MR750 scanner, with

a 32-channel head coil, between June 2015 and May 2019. An inver-

sion recovery-prepared 3D gradient recalled echo (BRAVO) sequence

was employed with the following parameters: repetition

time = 8.16 ms, echo time = 3.18 ms, inversion time = 400 ms, field

of view = 256 mm, flip angle = 12�, matrix = 188 � 256, voxel

size = 1 mm isotropic, 188 sagittal slices.

2.1.2 | UKB dataset

Participants with complete longitudinal MRI data and data on age, sex,

weight, and height for both baseline and follow-up imaging sessions

were selected from the UKB cohort (www.ukbiobank.ac.uk). Time

from baseline to follow-up was 2.3 years on average with a standard

deviation of 0.1 years. MRI data was acquired at two different sites

and participants were scanned at the same site for baseline and

follow-up.

TABLE 1 Sample demographics. Continuous variables reported as mean ± SD. For the UKB dataset, we report age, height, and body weight
at baseline imaging session.

Sample demographics

n Sex ratio (F/M) (% female) Age ± SD (years) Age range (years) Height ± SD (cm) Weight ± SD (kg)

UKB 2410 1203/1207 (49.9%) 63.2 ± 7.1 47.0–80.3 170.9 ± 9.6 75.8 ± 14.7

NORMENT 651 366/285 (56.2%) 46.1 ± 18.7 12.0–85.8 173.5 ± 9.3 74.5 ± 14.8

Y-TOP 61 38/23 (62.3%) 17.0 ± 1.9 12.0–20.6 170.8 ± 7.9 62.2 ± 11.3

TOP 275 131/144 (47.6%) 36.9 ± 9.8 17.7–56.7 175.2 ± 9.4 77.7 ± 14.8

StrokeMRI 315 197/118 (62.5%) 59.8 ± 14.5 20.0–85.8 172.5 ± 9.2 74.1 ± 14.1

Combined dataset 3061 1569/1492 (51.3%) 59.6 ± 12.8 12.0–85.8 171.4 ± 9.6 75.5 ± 14.7
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We excluded participants with a height difference greater than

5 cm between baseline and follow-up, as we considered this to be

indicative of measurement error. Participants were also excluded if

they had been diagnosed with disorders known to influence brain

structure based on diagnoses from the International Statistical Classi-

fication of Diseases and Related Health Problems (ICD-10; World

Health Organization, 2004). Diagnostic exclusion criteria included dis-

orders in chapter V and VI, field F; mental and behavioral disorders,

including F00–F03 (Alzheimer's disease and dementia), F06.7 (mild

cognitive disorder), and field G (diseases of the nervous system),

including inflammatory and neurodegenerative diseases (except

G55-59; “Nerve, nerve root, and plexus disorders”).
An overview of the UK Biobank acquisition protocols is available

in Alfaro-Almagro et al. (2018) and Miller et al. (2016). For MRI, a

magnetization prepared rapid acquisition gradient echo (MPRAGE)

sequence was employed on a Siemens Skyra 3 T scanner with a stan-

dard Siemens 32-channel RF receive head coil. The following parame-

ters were used: repetition time = 2000 ms, echo time = 2.01 ms,

inversion time = 880 ms, field of view = 256 mm, flip angle = 8�,

matrix = 208 � 256, voxel size = 1 mm isotropic.

2.2 | MRI image processing

T1-weighted MRI images were processed to yield two registration-

based ICV measures (eTIV, FSL) and three segmentation-based ICV

measures (sbTIV, SPM12 and CAT12). For SPM12 and CAT12, we

used MATLAB (The MathWorks, Inc., Massachusetts) version

R2018b.

2.2.1 | eTIV

We calculated eTIV using the standard processing pipeline, recon-all,

in FreeSurfer (v5.3.0 for the UKB dataset and v6.0.0 for the

NORMENT dataset; https://surfer.nmr.mgh.harvard.edu/). This pipe-

line performs intensity nonuniformity correction and normalization,

skull stripping, and registration to the fsaverage template which is

based on the MNI305 template (Evans et al., 1993). The linear scaling

factor of this transformation is converted to an ICV estimate by multi-

plication with the ICV of fsaverage.

2.2.2 | FSL

FSL (v6.0.1; https://fsl.fmrib.ox.ac.uk/fsl/) computes ICV with the

SIENAX package by first extracting brain and skull images from a sin-

gle T1-weighted MRI image which is then affinely registered to the

MNI152 template (Grabner et al., 2006). Points along the skull are

used when determining the registration scaling factor. The final ICV

estimate is calculated by multiplying the scaling factor with the mea-

sured ICV of the MNI152 template. We ran the bet command with a

F IGURE 1 Raincloud plot of the age distributions for each subsample. It is composed of flat violin plots, points representing the age of each
participant, and horizontal box plots. The lower and upper hinges correspond to the first and third quartiles. The upper and lower whiskers extend
to within 1.5 times interquartile range of the hinges. For UKB we report age at baseline imaging session.
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fractional intensity threshold of 0.35 and enabled the bias field and

neck cleanup flags. The threshold of 0.35 was chosen as it gave the

best results in a previous study (Berg et al., 2018), where a systematic

test of fractional intensity thresholds was performed. The use of a

lower fractional intensity threshold than the default of 0.5 is in line

with previous studies (Popescu et al., 2012; Vichianin et al., 2018).

2.2.3 | SPM12

SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) uses a unified segmenta-

tion algorithm to perform tissue classification, bias correction and

image registration within the same generative model. Based on prior

tissue probability maps, it segments the image into tissue classes

weighted by the probability of the tissue membership of each tissue

type. We used the “Tissue Volumes” utility in SPM12 with the default

parameters to calculate ICV as the sum of WM, GM, and CSF.

2.2.4 | CAT12

As with SPM12, CAT12 (v12.7; http://www.neuro.uni-jena.de/cat/)

uses tissue probability maps to spatially normalize, skull-strip, and ini-

tialize the segmentation. In contrast to SPM12, CAT12 uses an adap-

tive maximum a posteriori segmentation approach for determining the

final segmentation which accounts for local intensity variations in the

original image (Tavares et al., 2020). The goal of this procedure is to

provide a segmentation algorithm that is less sensitive to differences

in image intensity. As with SPM12, ICV is calculated as the partial

volume-adjusted sum of WM, GM and CSF. CAT12 processing was

performed with the default parameters.

2.2.5 | sbTIV

To compute sbTIV, we used SAMSEG (https://surfer.nmr.mgh.

harvard.edu/fswiki/Samseg; Puonti et al., 2016), which creates

probability-weighted segmentations of the input image, including

skull, non-brain tissue and CSF. sbTIV (https://surfer.nmr.mgh.

harvard.edu/fswiki/sbTIV) is computed as a sum of the WM, GM, and

CSF volumes. SAMSEG was run with the default parameters using a

single T1-weighted image as input.

2.3 | Statistical analyses

In the combined NORMENT and UKB dataset, we computed Pearson

correlations between each ICV estimate and performed Bland–Altman

and relative importance analysis. To accommodate for the presence of

any sample-specific associations, for example, due to generational or

scanner differences, cross-sectional associations with age were

assessed in the two datasets separately. Longitudinal analyses were

limited to the UKB dataset. To ensure the soundness of the fitted

regression models, we visually assessed residuals versus fitted values,

scale-location, quantile-quantile, and residuals versus leverage plots.

All statistical tests were performed using R Statistical Software

(v3.6.3; R Core Team, 2020).

2.3.1 | Outlier correction

To avoid the excess influence of outliers due to measurement errors,

we assessed each ICV estimation method for outliers and excluded

the corresponding participants in all subsequent analyses. To identify

outliers, we used the median absolute deviation method (Leys

et al., 2013) implemented in the R package Routliers (https://CRAN.R-

project.org/package=Routliers). Briefly, this method finds the median

of the absolute deviations from the median, which yields the median

absolute deviation (MAD). Upper and lower thresholds are determined

by taking the median of the original dataset ± b�MAD where b is the

specified threshold (unitless). This approach has the advantage of

being robust with respect to sample size and the presence of extreme

values.

For the cross-sectional datasets, we used a deviation threshold of

3 on the ICV estimates to identify cross-sectional outliers. For the

UKB dataset, we also excluded longitudinal outliers based on the

pairwise differences between ICV at baseline and follow-up, where

we used a less strict deviation threshold of 4. Since outlier removal

can affect results, analyses without outlier correction were also

performed.

2.3.2 | Pearson correlation analyses

To assess pairwise linear relationships between ICV estimation

methods in the combined dataset, we calculated Pearson correlation

coefficients (r) with 95% confidence intervals (CI) for each pair of esti-

mation methods using the function cor.test from the stats R package.

To compare the correlations between registration- and segmentation-

based methods, we calculated pooled correlations by first applying

the Fisher transformation to the correlation coefficients before aver-

aging and back-transforming using the inverse Fisher transformation.

We calculated the pooled correlations for each registration-based

method with respect to all the segmentation-based methods and com-

pared these pooled correlations to the correlation between the

registration-based methods.

2.3.3 | Bland–Altman analysis

For each pair of ICV estimation methods in the combined dataset, we

created Bland–Altman plots by plotting differences (ΔICV) between

ICV method pairs against their means, which can be seen as a proxy

for head size. In the Bland–Altman plots, we used 95% agreement

intervals with upper and lower limits of agreement calculated as ΔICV

±1.96 standard deviation (SD) (Altman & Bland, 1983;
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Giavarina, 2015). A deviation of ΔICV from zero shows the presence,

magnitude, and direction of the difference, or bias, between methods.

The bias can be constant or proportional in relation to mean ICV. In

the latter case, the difference between methods varies as a function

of mean ICV. We quantified these associations by calculating Pearson

correlation coefficients between ΔICV and mean ICV and testing their

statistical significance.

2.3.4 | Relative importance analysis

To assess the influence of age, sex, height, body weight, and mean

ICV across the compared estimation methods on the differences

between ICV estimates (i.e., ΔICV) in the combined dataset, we per-

formed relative importance analyses with the relaimpo package in R

(https://CRAN.R-project.org/package=relaimpo) using the Lindeman,

Merenda, and Gold (LMG) metric. This method performs an averaging

over the orderings of the explanatory variables to decompose the

explained variance of the full model, ΔICV � Age + Sex + Weight +

Height + Mean, into the non-negative contributions of each of the

variables. The decomposition is constrained so that its sum equals the

R2 of the full model. The advantage of this method over sequential or

nested approaches is that the internal correlational structure of the

regressors is taken into account, and the resulting variance decompo-

sition is unbiased (Lindeman et al., 1980).

If neither measure is confounded by age, sex, height, body weight,

or mean ICV across methods, we would expect them to explain a neg-

ligible proportion of the nonshared variation between them, that is,

the variation of the difference. Thus, we interpreted the degree to

which ICV estimate differences were explained by these variables as

an indication of possible bias. Note that wherever these variables

explain a large proportion of the variance in the difference between

two methods, it is not possible to say which of the methods are

confounded.

2.3.5 | Cross-sectional associations between age
and ICV

To test for cross-sectional associations between age and ICV, we first

fitted linear regression models for each method with ICV as the out-

come variable and age and sex as independent variables. These ana-

lyses were conducted separately for the NORMENT and UKB

datasets. In additional models, we also included age2 to account for

possible quadratic associations with age. To visualize the relationship

between age and ICV, we created partial regression plots (Velleman &

Welsch, 1981) where both age and ICV were residualized with respect

to sex and plotted against each other. Cross-sectional Annual Percent-

age Change (CS-APC) was calculated by expressing the estimated

coefficient of the age term in the fitted model as a percentage relative

to the mean ICV for each dataset.

In addition to the linear models, we tested for nonlinear relation-

ships between ICV and age using a generalized additive model (GAM).

This method models possible nonlinear relationships using smooth

functions (Hastie & Tibshirani, 1986) which can account for higher

order nonlinearities. We used cubic regression splines to model age

while adjusting for sex. The restricted maximum likelihood method

was used as in Sørensen et al. (2021) with the R package mgcv

(https://CRAN.R-project.org/package=mgcv).

To test the influence of height and body weight on cross-

sectional age associations, we fitted additional models including age,

sex, height, and body weight as independent variables, as well as sep-

arate models with age-by-height and age-by-body weight interactions.

To test the influence of sex on age associations, we included models

with age, sex, and an age-by-sex interaction term.

To compare the relative qualities of the linear, quadratic and

regression spline models, we used the Akaike Information Criterion

(AIC; Akaike, 1974). We calculated and compared AIC scores within

each ICV estimation method. A low score indicates less information

loss in the model, which is a trade-off between goodness of fit and

the simplicity of the model. A difference in AIC scores greater than

2 is considered to indicate a significantly better relative quality for the

model with the lower score.

Since the age range differed between the NORMENT and the

UKB datasets, we performed additional age-matched analyses where

we only included a subset of 289 participants in the NORMENT

dataset with an age above 47 years.

In post-hoc analyses, we ran additional linear regression models

where we examined if the age effect differed in the two datasets.

Here, ICV was used as the outcome variable and age, sex, and the

age-by-cohort interaction as independent variables. The analyses

were run both with the complete NORMENT dataset, as well as with

the age-matched subset of the NORMENT dataset as described

above.

2.3.6 | Longitudinal associations between age
and ICV

To test for longitudinal associations between age and ICV, we fitted

linear mixed-effects (LME) models for each ICV estimation method.

We entered baseline age, baseline age2, scanner, and sex as fixed

effects. The primary variable of interest was time, which was defined

as 0 for measurements at baseline and as time in years since baseline

for follow-up measurements. We used individual intercepts as a ran-

dom effect, in order to allow for between-participant variation in ICV

estimates.

To fit the models we used the lmer function from the lmerTest

package (https://CRAN.R-project.org/package=lmerTest) using the

restricted maximum likelihood criterion (REML). The P-values were

estimated using Satterthwaite's approximation. This approach to eval-

uating significance in LME models compared favorably to other

approximations in Luke (2017). Annual Percentage Change (APC) was

estimated by taking the estimated coefficient of the time term in the

fitted model and expressing it as a percentage relative to mean ICV at

baseline.
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We fitted additional models to examine the influence of sex,

height, and body weight on longitudinal age associations, including a

sex-by-time, height-by-time, or weight-by-time interaction term in

addition to the terms above. To test the influence of baseline age on

longitudinal age associations, we included models with an age-by-time

interaction term.

3 | RESULTS

3.1 | Outlier analysis

We identified and excluded 7 outliers in the NORMENT dataset (1.1%

of sample) and 12 outliers in the cross-sectional UKB dataset (0.5% of

sample). We also identified and excluded 63 longitudinal outliers for

the UKB dataset (2.6% of sample). Two participants were marked both

as cross-sectional and longitudinal outliers in the UKB dataset.

We found that eTIV was the largest single contributor of both

cross-sectional outliers in the NORMENT dataset and longitudinal

outliers in the UKB dataset. See Table S1 for demographic information

on participants identified as outliers and Figure S1 for an UpSet plot

depicting the ICV estimation methods for which outliers were

identified.

The results of analyses without outlier correction were similar to

those of the outlier-corrected analyses, with a slight decrease in the

correlations between ICV estimation methods, especially between

eTIV and SPM12. Specifically, the estimated cross-sectional and longi-

tudinal associations with age were similar for with and without outlier

correction.

3.2 | Pearson correlation analyses

Pearson correlations between ICV estimation methods were overall

high. The lowest correlation coefficient was observed between eTIV

and FSL (r = .873, CI = [0.865, 0.882]), followed by FSL and CAT12

(r = .895, CI = [0.887, 0.902]). The highest correlation coefficients

were observed between sbTIV and SPM12 (r = .969, CI = [0.967,

0.971]) and sbTIV and CAT12 (r = .961, CI = [0.958, 0.963]). See

Figure 2 for a correlogram showing Pearson correlations with 95%

confidence intervals.

The Pearson correlation between the registration-based methods

(eTIV and FSL) was lower (r = .873) than the pooled correlation

between eTIV and the segmentation-based methods (pooled r = .936)

and the pooled correlation between FSL and the segmentation-based

methods (pooled r = .925). The pooled correlation between the

segmentation-based methods (SPM12, CAT12, and sbTIV) was .959.

3.3 | Bland–Altman analysis

See Figure 3 for Bland–Altman plots. We found that, on average, FSL

systematically estimated lower ICV (63–143 ml negative bias) and

sbTIV higher ICV (56–143 ml positive bias) compared with the other

methods. We also observed statistically significant proportional bias,

that is, correlations between ΔICV and mean ICV for most pairwise

comparisons, as indicated by the regression lines in Figure 3. The

presence of proportional bias indicates that the agreement between

methods differs as a function of the mean ICV across estimation

methods. The strongest proportional bias was seen in comparisons of

sbTIV with the other ICV estimation methods, where the magnitude

of correlations ranged from 0.07 to 0.30 (P < 10�4). Weaker propor-

tional bias was seen for SPM12 compared with the other methods

(excluding sbTIV), here the correlations between ΔICV and mean ICV

ranged from 0.10 to 0.05 (P < 10�4). We also found weak propor-

tional bias for CAT12 compared with eTIV (r = �.05, P < .01). Inspec-

tion of diagnostic plots revealed no unexplained nonlinearity in the

residuals, indications of heteroscedasticity, or influential cases

exceeding a Cook's distance of 1. See Figures S2 and S3 for diagnostic

plots.

3.4 | Relative importance analysis

When including age, sex, height, body weight, and mean ICV across

the ICV estimation methods in the comparison as explanatory vari-

ables, the explained variance of the total model ranged from 4.35%

for the FSL–sbTIV difference to 30.05% for the SPM12–sbTIV differ-

ence. For the SPM12–sbTIV difference, a large proportion of

explained variance was due to sex (9.81%) and body weight (10.05%).

For the SPM12–CAT12 difference, a large proportion of explained

variance was due to body weight (12.37%) and age (9.11%). Notably,

mean ICV across methods explained 10.48% of the variance of the

eTIV–sbTIV difference and 7.38% of the eTIV–SPM12 difference.

Across pairwise differences, body weight, age, sex, and mean ICV

across methods were the best explanatory variables for the differ-

ences in ICV estimates. Height explained a small proportion of the

variance in most ICV differences, except for the SPM12-sbTIV differ-

ence (4.42%). See Figure 4 for bar plots showing the variance decom-

position for each explanatory variable.

3.5 | Cross-sectional associations between age
and ICV

Linear models provided the best fit for both datasets and all ICV esti-

mates, except for sbTIV in the UKB dataset where the age2 term was

significant (P < .05) and the difference in AIC of the two models

exceeded �2, that is, markedly lower for the quadratic model. Diag-

nostic plots revealed no violations of the standard assumptions of lin-

ear regression. See Figures S4 and S5 for diagnostic plots for each of

the main linear regression models and Table S2 for the AIC scores for

each model and ICV estimation method for both the NORMENT and

the UKB datasets.

For the NORMENT dataset, we found significant positive cross-

sectional associations with age (ranging from 12.0 to 85.8 years) for
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FSL (b = 1.22 ml/year, P < 10�6) and SPM12 (b = 1.01 ml/year,

P < 10�5). These changes corresponded to a CS-APC of 0.086% for

FSL and 0.069% for SPM12. Age was not significantly associated

with any other ICV measure in the NORMENT dataset. For the

UKB dataset, we found significant negative cross-sectional associa-

tions with age (ranging from 47.0 to 80.3 years) for all ICV estima-

tion methods. The greatest CS-APC were seen for CAT12

(�0.107% CS-APC) and eTIV (�0.107% CS-APC). The smallest

effect size was seen for FSL with an estimated �0.049% CS-APC.

Where the CS-APC estimates are percentages relative to the mean

ICV of each dataset.

In the full model, including body weight and height as indepen-

dent variables in addition to sex and age, we found significant contri-

butions of height for all methods. In the NORMENT dataset, body

weight was also significantly associated with ICV for FSL

(b = 1.27 ml/kg, P < .001), SPM12 (b = 1.38 ml/kg, P < 10�4), and

sbTIV (b = 0.87 ml/kg, P < .05). In the UKB dataset, body weight was

associated with ICV for FSL (b = 0.51 ml/kg, P < .01) and SPM12

F IGURE 2 Correlations between each pair of ICV estimation methods in the combined dataset (n = 2981). The main diagonal shows the
distribution of each ICV estimate, the lower diagonal shows scatter plots for each pair of ICV estimates, and the top diagonal shows Pearson
correlations with 95% confidence intervals in brackets.
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F IGURE 3 Bland–Altman plots for each pair of ICV estimates in the combined dataset (n = 2981). The means of each pair of estimates (x-
axis) are plotted against the percentage differences of the estimates, ΔICV (y-axis). The Pearson correlation coefficient between mean ICV and
ΔICV is shown on the top of each plot along with its P-value.
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F IGURE 4 Relative importance of sex, height, body weight, and age, and mean ICV across methods on the differences between each ICV
measure in the combined dataset (n = 2981).

NERLAND ET AL. 4629



(b = 1.04 ml/kg, P < 10�9), but not for eTIV, CAT12, or sbTIV. In the

NORMENT dataset, the significant associations between age and ICV

remained after additionally adjusting for body weight and height for

FSL (b = 1.06 ml/years, P < 10�5) and SPM12 (b = 0.84 ml/years,

P < 10�3). However, in the UKB dataset the cross-sectional associa-

tions with age were no longer significant for FSL, SPM12, and sbTIV

when adjusting for body weight and height.

In the NORMENT dataset, we observed positive interactions

between age and sex for SPM12 (b = 0.98 ml/years for males,

P ≤ .05) and CAT12 (b = 1.07 ml/years for males, P < .05), indicating

a more positive slope in males. In the UKB dataset, age-by-sex inter-

actions were found only for FSL (b = �1.52 ml/years for males,

P < .05), and in contrast to the findings in the NORMENT dataset, this

showed a negative interaction between age and sex, indicating a more

negative slope in males. We found no significant age-by-height inter-

actions for any ICV estimation method. A significant age-by-weight

association was observed for eTIV in the UKB dataset (b = 0.05 ml/

years-by-kg, P < .05), but not for any of the other ICV estimation

methods or in the NORMENT dataset.

In the analyses including a subset of 289 participants from the

NORMENT dataset that were age-matched with the UKB dataset, we

observed no significant effects of age for any of the ICV estimation

methods in the linear model covarying for sex only. When we also

adjusted for height and weight, we saw a significant effect of age only

for SPM12 (b = 1.26 ml/years, P < .05).

For the direct comparisons of the age effects between the two

datasets, we found significant age-by-cohort interactions for each ICV

estimation method when using the complete NORMENT dataset.

These interactions indicated a more positive effect of age in the

NORMENT dataset compared with the UKB dataset. We also saw a

main effect of cohort, indicating higher ICV estimates in the

NORMENT dataset compared with the UKB dataset for all ICV esti-

mation methods except sbTIV. When we used the age-matched

NORMENT dataset, we found similar significant age-by-cohort inter-

actions for SPM12 (b = 1.71 ml/years for NORMENT, P < .05),

CAT12 (b = 2.21 ml/years for NORMENT, P < .01), and sbTIV

(b = 1.63 ml/years for NORMENT, P < .05).

See Figures 5 and 6 for partial regression plots for each dataset

where age and ICV are residualized with respect to sex and plotted

against each other. See Tables S3 and S4 for further details con-

cerning the main linear regression models used to test cross-sectional

associations between ICV and age, and Tables S5 and S6 for the full

models including body weight and height. See Tables S7 and S8 for

the results of the age-matched analyses and Tables S9 and S10 for

the results of the direct comparisons of age effects across datasets.

3.6 | Longitudinal associations between age
and ICV

In the main longitudinal analyses, with fixed factors sex, baseline age,

baseline age2, scanner, and time (years since baseline), in the UKB

dataset (age range = 47.0–80.3 years), we found significant

associations with time since baseline for all ICV estimates. Effect sizes

ranged from an APC of �0.293% for sbTIV to �0.416% for CAT12. The

longitudinal effects of time on ICV remained for all ICV estimation

methods when we included height and weight as fixed factors. Where

the APC estimates are percentages relative to the mean ICV at baseline.

We found significant interactions with time for sex and height for

eTIV, but not for any of the other ICV estimation methods. For sex,

the interaction indicated lower longitudinal reduction for male partici-

pants (b = 2.53 ml/years for males, P < 10�4). For height, the interac-

tion showed a lower longitudinal reduction for taller participants

(b = 0.11 ml/years-by-cm, P < .001). There were no statistically sig-

nificant interactions between longitudinal ICV change and

baseline age.

See Table S11 for details on the main LME model used to investi-

gate longitudinal associations with age. See Figure 7 for spaghetti

plots depicting longitudinal ICV change in the UKB dataset stratified

by sex. See Figure S6 for histograms depicting the raw annual per-

centage change between baseline and follow-up for each ICV estima-

tion method. Diagnostic plots are included as Figure S7.

4 | DISCUSSION

We compared five commonly used ICV estimation methods, eTIV,

FSL, SPM12, CAT12, and sbTIV, and tested their cross-sectional and

longitudinal associations with age. Correlations were overall high, but

we found notable differences between the estimation methods. In

particular, age, body weight, sex, and mean ICV across methods

explained a large proportion for the nonshared variation between sev-

eral ICV estimation methods. Different cross-sectional effects of age

were observed in the two datasets. In the UKB dataset (age

range = 47.0–80.3 years), all ICV estimation methods indicated nega-

tive cross-sectional associations with age, whereas for the NORMENT

dataset (age range = 12.0–85.8 years), we observed significant

effects only for two of the ICV estimation methods indicating positive

cross-sectional associations with age. Finally, we observed a striking

convergence of results across ICV estimation methods in the longitu-

dinal analyses in the UKB dataset, with an average of 2.3 years from

baseline to follow-up, supporting past reports of longitudinal ICV

reduction in mid- to late adulthood.

4.1 | Outlier analysis

In the outlier analyses, we found that eTIV was the largest single contrib-

utor (i.e., outliers detected for eTIV, but no other ICV estimates) both for

cross-sectional outliers in the NORMENT dataset (86% of outliers) and

for longitudinal outliers in the UKB dataset (25% of outliers). In compari-

son, no participants were marked as outliers for sbTIV alone. This could

indicate that eTIV is especially prone to measurement errors and

requires a more comprehensive quality control procedure than the other

methods, including assessment of the Talairach registration that is per-

formed in the recon-all processing stream in FreeSurfer.
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4.2 | Correlations between ICV estimation
methods

Contrary to our hypothesis, we found higher correlations for each

of the registration-based methods, eTIV and FSL, with the

segmentation-based methods (eTIV pooled r = .936; FSL pooled

r = .925) than between eTIV and FSL (r = .873). The pooled correla-

tion between the segmentation-based methods (SPM12, CAT12,

and sbTIV) was .959. This points to greater internal consistency

within the segmentation-based compared with the registration-

F IGURE 5 Partial regression plots in the NORMENT dataset (n = 644) for the associations between age and ICV for each estimation method.
The effect of sex has been regressed out for both age and ICV and the regression lines show the residual effect of age on ICV. As age has been
residualized with respect to sex, the x-axis is centered at the sex-adjusted mean.

NERLAND ET AL. 4631



based methods. While both eTIV and FSL estimate ICV via an atlas

scaling factor, the target template for eTIV is the MNI305-derived

fsaverage template (Evans et al., 1993; Fischl et al., 1999), whereas

FSL uses the MNI152 template as its target (Mazziotta et al., 1995).

Furthermore, FSL uses skull points to constrain the transformation

to the template (Smith, 2002; Smith et al., 2001), which may give

F IGURE 6 Partial regression plots in the cross-sectional UKB dataset (n = 2337) for the associations between age and ICV for each
estimation method. The effect of sex has been regressed out from both age and ICV and the regression lines show the residual effect of age on
ICV. As age has been residualized with respect to sex, the x-axis is centered at the sex-adjusted mean.
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better registration results compared with eTIV (Buckner

et al., 2004). Together, these differences could explain the rela-

tively low correlation between eTIV and FSL, and the differences in

their pairwise correlations with the segmentation-based estimation

methods.

4.3 | Quantitative differences between
estimated ICV

Consistent with the previous literature, we found systematic quantita-

tive differences between ICV estimates. In particular, FSL estimated

F IGURE 7 Normalized spaghetti plots depicting longitudinal change for each ICV estimate stratified by sex. The x-axis depicts the interscan
interval normalized by time of first imaging session, the y-axis represents ICV change from baseline to follow-up as a percentage of the total ICV
across both time points, and the color indicates positive ICV change in red and negative ICV change in blue. The black line depicts the linear trend
of longitudinal ICV change.
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lower ICV, while sbTIV estimated higher ICV than the other methods.

Since registration-based methods calculate ICV as the product of an

atlas scaling factor and the predetermined ICV of the template, under-

or over-estimation of ICV can occur due to the estimated ICV of the

template. This could explain the tendency of FSL to underestimate

ICV, and a similar overestimation for eTIV relative to manually deter-

mined ICV has been reported previously (Klasson et al., 2018). As

such, one should be cautious to interpret registration-based methods

as absolute measures of ICV.

It is unclear why the segmentation-based method sbTIV

appeared to overestimate ICV, but it is worth noting that the ana-

tomical extent of the cranial cavity inferiorly along the spinal cord

is not clearly defined, and systematic differences in the cut-off in

the different ICV estimation methods may contribute to systematic

volumetric differences. Therefore, while segmentation-based

methods estimate ICV using a more direct approach, that is,

probability-weighted voxel counts, these methods can also be sub-

ject to systematic biases and it remains important to assess their

agreement with manually determined ICV if the goal is quantitative

ICV estimation.

4.4 | Associations between mean ICV and ICV
differences

Bland–Altman analyses revealed widespread associations between

mean ICV across methods and the differences between them. In

other words, the agreement between ICV estimates differed as a

function of the mean ICV across methods. This finding was

supported by the relative importance analyses where mean ICV

across methods explained a substantial proportion of the variance

in the eTIV-sbTIV, eTIV-SPM12, SPM12-CAT12, and CAT12-sbTIV

differences. Klasson et al. (2018) reported findings consistent with

a bias due to head size on eTIV. If mean ICV is considered a proxy

for head size, our results lend support to these findings and indicate

that similar bias is also present for other ICV estimation methods. It

should be noted that while our methods revealed systematic associ-

ations in the differences between ICV estimation methods and

mean ICV, they cannot say which of the ICV estimation methods

have a higher accuracy. We encourage future methodological stud-

ies on the validity of automated ICV estimation methods to also

include manually determined ICV.

4.5 | Relative importance of explanatory variables
on ICV differences

In the relative importance analyses, we explored the explained vari-

ance of age, sex, body weight, height, and mean ICV across methods

on the pairwise differences between ICV estimates. If ICV estimation

is unbiased by these variables, we would expect to see low explained

variance of the estimated ICV differences. Contrary to this expecta-

tion, we found a high proportion of explained variance for the total

model in the comparison of SPM12 with sbTIV (30.05%), CAT12

(28.38%), and eTIV (29.61%), and in the comparison of sbTIV with

eTIV (18.73%) and CAT12 (15.36%).

Body weight explained 10.05% of the variance in the SPM12–

sbTIV difference and 12.37% in SPM12–CAT12 difference. This sug-

gests a systematic impact of body weight on ICV differences between

these estimation methods. Such bias can be grounds for concern in

studies where the variable of interest is associated with weight differ-

ences. For example, weight gain is a known side effect of antipsy-

chotic medication (Dayabandara et al., 2017).

We found that sex explained 9.81% of the SPM12–sbTIV differ-

ence. There are contradictory results in the literature on the presence

and strength of sexual dimorphism in brain volumes and age-related

associations with brain volumes (Fjell et al., 2009; Inano et al., 2013;

Ritchie et al., 2018). It remains an open question whether sex-

dependent volumetric differences remain after correction for ICV.

Past studies have also shown that the statistical correction method

can affect sex differences in brain volumes (Pintzka et al., 2015;

Sanchis-Segura et al., 2020). The choice of ICV estimation method

may explain some of the discrepancy in the past findings. We encour-

age future studies on sex dimorphism of brain volumes to carefully

assess the accuracy of the chosen ICV estimation method, given that

confounding by sex can affect results.

4.6 | Cross-sectional associations with age

We found negative cross-sectional associations between ICV and age

across all ICV estimation methods in the UKB dataset. Notably, asso-

ciations with age did not reproduce across all ICV estimation methods

in the NORMENT dataset. For this dataset, we only observed statisti-

cally significant associations between ICV and age for two (FSL and

SPM12) out of five ICV estimation methods. This supports our

hypothesis that the choice of ICV estimation method can, at least in

some cases, cause discrepancies in reported associations between ICV

and age. In post hoc analyses, we found statistically significant differ-

ences in the age effects in the two datasets for all ICV estimation

methods indicating more negative age trajectories in the UKB dataset.

Unlike the study by Ma et al. (2018), we found statistically signifi-

cant negative associations with age for all ICV estimation methods in

the UKB dataset, which had a similar age range. While this study

included a large number of MRI scans (7656 scans), the number of

participants was less than that of the UKB dataset (1727 participants).

The data was also acquired on both 1.5 T and 3 T scanners which

could reduce the sensitivity of the analyses. Furthermore, their statis-

tical models may not have been optimal for distinguishing between

within-subject longitudinal associations and between-subject effects.

It should also be noted that differences in the secular growth rates in

the ADNI dataset compared with the UKB dataset may have contrib-

uted to the discrepancy with our results.

Since the mean age and the age range differed between the UKB

and the NORMENT datasets, we performed additional analyses on a

subset of 289 participants from the NORMENT dataset that were
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age-matched to the UKB dataset. In these analyses, none of the main

models showed significant associations between age and ICV. How-

ever, in the full models, corrected for age, sex, height, and body

weight, we saw a significant positive association between age and ICV

for SPM12—in line with our findings in the complete dataset. Given

the loss of statistical power in these analyses it is difficult to draw firm

conclusions. However, the replication of the positive association with

age for SPM12 in the full model, and the positive signs of the coeffi-

cients for the age term in the main models for FSL and SPM12, sug-

gest that the age associations we observed were not entirely

explained by differences in the age ranges. Furthermore, we observed

significant age-by-cohort differences in the direct comparisons

between the UKB dataset and the age-matched NORMENT dataset

for SPM12, CAT12, and sbTIV, but not for eTIV and FSL.

We did not see evidence for nonlinear effects of age on ICV in

the NORMENT dataset, and the quadratic age term was statistically

significant only for sbTIV in the UKB dataset. Past studies on ICV and

head size, including computed tomography and head circumference

studies (Bergerat et al., 2021; Huda et al., 2004; Neubauer

et al., 2009; Weaver & Christian, 1980), lend some support to our

findings of linear age trajectories across most ICV estimation

methods.

In the NORMENT dataset, we observed sex-by-age interactions

for SPM12 and CAT12, indicating a greater cross-sectional ICV

increase in males for SPM12 and CAT12. In the UKB dataset, on the

other hand, we found a negative sex-by-age interaction for FSL, indi-

cating that male sex is associated with greater cross-sectional ICV

decrease for ICV estimated with FSL. Since the sex-by-age interac-

tions did not replicate with the other ICV estimation methods, they

may point toward sex-dependent bias to ICV estimation with these

methods. These findings show that sex can, for some ICV estimation

methods, affect the cross-sectional associations between age and

ICV. This can be a particular concern in clinical group comparisons

where sex distributions may vary between groups.

4.7 | Longitudinal associations with age

In the longitudinal analyses, we observed statistically significant ICV

reduction at follow-up compared with baseline across all estimation

methods. The consistency of the longitudinal findings stands in con-

trast to the cross-sectional analyses in the NORMENT dataset where

statistically significant associations with age were found for two ICV

estimation methods, but not for the other three methods. This may be

due to the superior ability of longitudinal data to resolve age trajecto-

ries (Sørensen et al., 2021). In particular, the estimation of longitudinal

change has the advantage of being based on within-subject variation

where potential biases from variables such as sex, height, and birth

year may have a lesser influence on the results.

Our results indicated an APC ranging from �0.29% to �0.42%,

which was considerably higher than the APC estimated by Caspi et al.

(2020) where they reported an APC of �0.09% at age 55. However,

their age range was from 16 to 55 years of age, and thus only partially

overlapped with ours. Notably, they also included people with a diag-

nosis of schizophrenia and relatives of these participants in the analy-

sis. It is known that ICV has a significant genetic component (Adams

et al., 2016), and is affected by genes that confer risk for developing a

psychotic disorder (Smeland et al., 2018). Furthermore, cross-sectional

studies have found associations between a diagnosis of schizophrenia

and ICV (Gurholt et al., 2020; van Erp et al., 2016). Thus, the sample

used in Caspi et al. (2020) may be confounded by genetic risk of psy-

chotic disorder, both directly in patients, and indirectly in relatives.

We observed significant sex-by-time interactions for eTIV, indi-

cating less ICV decrease between baseline and follow-up in males, but

no such interactions for the other ICV estimation methods. While this

relationship was not replicated with the other ICV estimation

methods, it is in line with a semi-longitudinal study of elderly partici-

pants (age range = 71.1–74.3 years) by Royle et al. (2013) where two

sets of manual ICV segmentations were compared in a dataset of

elderly participants. The first segmentation measured current ICV,

whereas the other was derived from expert manual segmentation

where inner table skull thickening (i.e., thickening of the inner bony

structure of the skull) was taken into account. The segmentations

were used to estimate the longitudinal effect of inner skull thickening

on ICV change, yielding an estimated median ICV decrease of 6.2% in

males and 8.3% in females across the lifespan, in line with the litera-

ture on physiological skull changes with age (Harding, 1949). How-

ever, given that eTIV was the only ICV estimation method that

showed this sex-by-time interaction it may be due to biases inherent

to eTIV. It is also unclear whether skull thickening occurs at a constant

rate across the lifespan and consequently how much of this effect

would be detectable in the age range of the UKB dataset. Further-

more, for eTIV alone we also found a significant height-by-time inter-

action indicating less longitudinal change in taller participants. It is

possible that the sex-by-time interaction is driven by height rather

than other physiological differences between males and females in

this dataset.

We did not find statistically significant baseline age-by-time inter-

actions for any ICV estimation methods, suggesting that the rate of

longitudinal ICV change does not differ with age in mid- to late-adult-

hood. This finding should, however, be interpreted with caution, given

the narrow age range of this sample. In line with the past literature on

age-related ICV change, particularly in adolescence, it would be

expected that the rate of change differs if longitudinal change is esti-

mated for a greater age range.

4.8 | Strengths and limitations

Strengths of our study include the use of large, well-characterized

datasets composed of participants with no known neurological or

psychiatric disorders thought to affect head size. In particular, the

UKB dataset is the largest dataset used for assessing longitudinal

ICV change to date. In the cross-sectional analyses, we had a

broad age range suitable to assess the presence of nonlinear asso-

ciations between age and ICV. The data was processed in a
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harmonized framework, facilitating the direct comparison

between ICV estimation methods. For the NORMENT dataset,

MRI acquisition was conducted on the same scanner system with

no major upgrades.

Some limitations also apply. We processed a total of 5471

T1-weighted images (651 NORMENT scans + 4820 UKB baseline

and follow-up scans) with five different ICV estimation methods. The

resulting dataset of 27,355 ICV estimates precluded detailed quality

control of each output. It also prevented us from performing manual

segmentation of images, given its time-consuming nature

(e.g., �30 min per subject in Ambarki et al., 2012). Without manually

determined ICV estimates, we cannot draw firm conclusions about

which estimation methods are more accurate with respect to manual

delineation. As with all longitudinal studies, systematic time-

dependent bias (e.g., due to scanner drift) can affect the longitudinal

results. Finally, our longitudinal dataset only covered a narrow age

range, and we did not investigate longitudinal ICV change in adoles-

cence and early adulthood.

5 | CONCLUSIONS

Correlations between ICV estimation methods were lower between

the registration-based methods than between segmentation-based

methods, suggesting greater internal consistency for the

segmentation-based methods. We found that sex, body weight, age,

and mean ICV across methods explained a large proportion of the

nonshared variation for some pairs of ICV estimation methods. This

may represent bias that can be grounds for concern in clinical studies.

We observed significant proportional bias for most pairwise compari-

sons, that is, varying agreement as a function of mean ICV across

methods.

In the NORMENT dataset, spanning adolescence to old age, two

ICV estimation methods were positively associated with age. In the

UKB dataset, spanning mid- to late adulthood, all ICV estimates were

negatively associated with age. The discovery of age-related effects

only for two ICV estimation methods in the NORMENT dataset illus-

trate how the choice of ICV estimation method can affect findings of

age-related associations with ICV. Relationships between ICV and age

were significantly different between the two datasets for all estima-

tion methods in the complete dataset, and for three methods in age-

matched analyses. This may be due to different secular growth rates

in the two cohorts. The convergence of longitudinal results across ICV

estimation methods, in the largest dataset to date, offers strong evi-

dence for longitudinal age-related ICV reductions in mid- to late

adulthood.

In conclusion, the choice of ICV estimation method is a possible

source of bias, not only in studies investigating ICV as a variable of

interest, but also in studies that use ICV as an adjustment factor. We

encourage future studies to investigate the validity of automated ICV

estimation methods and implement quality control procedures to

assess the accuracy of the ICV estimation method as with other mor-

phometric brain measures.
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