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Abstract

Network analysis is a novel method to understand the complex pathogenesis of inflammation-driven atherosclerosis. Using
this approach, we attempted to identify key inflammatory genes and their core transcriptional regulators in coronary artery
disease (CAD). Initially, we obtained 124 candidate genes associated with inflammation and CAD using Polysearch and
CADgene database for which protein-protein interaction network was generated using STRING 9.0 (Search Tool for the
Retrieval of Interacting Genes) and visualized using Cytoscape v 2.8.3. Based on betweenness centrality (BC) and node
degree as key topological parameters, we identified interleukin-6 (IL-6), vascular endothelial growth factor A (VEGFA),
interleukin-1 beta (IL-1B), tumor necrosis factor (TNF) and prostaglandin-endoperoxide synthase 2 (PTGS2) as hub nodes.
The backbone network constructed with these five hub genes showed 111 nodes connected via 348 edges, with IL-6 having
the largest degree and highest BC. Nuclear factor kappa B1 (NFKB1), signal transducer and activator of transcription 3
(STAT3) and JUN were identified as the three core transcription factors from the regulatory network derived using
MatInspector. For the purpose of validation of the hub genes, 97 test networks were constructed, which revealed the
accuracy of the backbone network to be 0.7763 while the frequency of the hub nodes remained largely unaltered. Pathway
enrichment analysis with ClueGO, KEGG and REACTOME showed significant enrichment of six validated CAD pathways -
smooth muscle cell proliferation, acute-phase response, calcidiol 1-monooxygenase activity, toll-like receptor signaling,
NOD-like receptor signaling and adipocytokine signaling pathways. Experimental verification of the above findings in 64
cases and 64 controls showed increased expression of the five candidate genes and the three transcription factors in the
cases relative to the controls (p,0.05). Thus, analysis of complex networks aid in the prioritization of genes and their
transcriptional regulators in complex diseases.
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Introduction

Coronary Artery Disease (CAD) is a chronic inflammatory

disease. There is ample evidence on the role of inflammation in all

stages of the atherosclerotic disease process [1,2]. Genetic studies

have revealed many causal or susceptible inflammatory loci

associated with CAD, the manifest form of atherosclerosis [3,4].

Circulating inflammatory biomarkers such as C-reactive proteins

(CRP) and certain cytokines are also elevated in acute coronary

syndrome, which reflect the extent of myocardial necrosis and

ischemia/reperfusion damage [5]. All these studies singularly

demonstrate that inflammatory genes act in an interactive manner

to orchestrate the disease associated risk. In most conditions,

inflammation signaling show a cascade effect with some molecules

acting as primary triggers that stimulate a secondary line of

molecules and so on, eventually generating a strong inflammatory

milieu. Identification of such key inflammatory targets is critical

from a translational aspect in order to treat the ‘inflammation’

component of the disease that can lead to slowing down or even

arrest in its pathological and clinical progression.

In this regard, systems biology focuses on understanding the

complex nature of CAD by integrating the information across

various systems such as the genome, transcriptome, proteome and

the metabolome, which is in direct contrast to traditional

approaches that focus on individual genes, proteins or metabolites

[6,7]. Despite decades of genetic research on CAD, it is striking to

note that the identified genetic loci explain only a small proportion

of the disease heritability [8], suggesting that there may still be

many other genes involved in CAD that remain unknown to date.

Network based approach is being extensively used for the

prediction of putative candidate genes, prioritizing drug targets

[9] and in the construction of gene regulatory networks [10] thus

utilizing the data from gene expression or genome wide linkage

and association studies. This approach primarily focuses on the

inter-relationship between the various components using protein-

protein interaction (PPI) network and assist in the identification of

the best discerning molecules associated with the disease. Studies

have employed a PPI network-based approach to identify

important novel cardiovascular disease genes [11,12]. There is

growing interest in combining genome wide association studies
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with network analysis to improve our understanding of the

molecular basis of complex diseases [13,14]. Feldmann et al. and

more recently Björkegren et al utilized this combined approach to

delineate the transcription factor- regulatory molecules that

potentiate the key target genes in atherosclerosis [15,16].

Motivated by these studies and to overcome the inherent

limitations in the selection of genes for network construction, we

have taken into consideration all the inflammatory genes

implicated in various inflammatory diseases and systematically

analyzed the putative causal genes and deregulated pathways.

Thus, the present study enumerates the following work: i) identify

key inflammatory genes in CAD derived from an inflammatory

bionetwork, generated with the help of bioinformatics tools; ii)

perform functional enrichment analysis to ascribe biological

functions to the key genes; iii) identify key transcriptional

regulators; and iv) study the whole blood gene expression levels

of these regulators in a matched cohort of CAD patients (cases)

and controls. The study findings provide interesting evidence of

increased expression of key candidate genes and their transcrip-

tional regulators among the cases, thus enabling us to prioritize the

significant contributors of inflammation among a myriad of

inflammatory biomarkers through the application of computa-

tional biology. Given the simplicity of the methodology involved,

this framework can be easily extended to other complex diseases.

Materials and Methods

The general schematic approach of the study is summarized in

Figure 1.

Gene retrieval and prioritization
Genes associated with inflammation in general and CAD in

particular was used for the construction of the inflammatory

bionetwork. These genes were retrieved from two independent

sources, namely PolySearch and CADgene database. PolySearch is a

comprehensive text mining system that extracts the relationships

between diseases, genes, mutations, drugs and metabolites in

humans from different types of biomedical text databases such as

PubMed, OMIM, DrugBank, SwissProt, Human Metabolome Database

(HMDB), Human Protein Reference Database (HPRD) and Genetic

Association Database (GAD) [17]. The search was performed using

‘Disease-Gene/Protein Association’ for query type and ‘Inflam-

mation’ as the query keyword, which resulted in a list of 589 genes.

This initial gene list was prioritized based on a relevancy score,

expressed as Z score, and refers to the number of standard

deviations of the relevancy score above the mean value. A higher

Z score denotes a lesser likelihood that the outcome is due to

chance. We selected genes having a Z score .1 and arrived at a

final list of 78 genes.

Next, we selected the inflammatory genes from CADgene

database [18], which includes ,300 genes curated from literature

and categorized according to their functionality. This search

yielded 68 genes. The lists of genes obtained from the two

databases were then combined and the redundant gene symbols

were removed, to finally obtain 124 genes (Table S1). We then

searched for disease terms associated with the 124 putative genes

using FunDO [19], which suggested that 70% (87 genes out of 124)

of the genes were associated with CAD and belonged to the

following disease ontology (DO) terms: atherosclerosis, multiple

sclerosis, intermediate coronary syndrome, heart failure, ischemia,

cardiovascular disease, heart disease and vascular disease.

Protein-Protein interaction (PPI) network
The 124 genes listed in Table S1 were considered as the seed

molecules from which we obtained direct and indirect protein-

protein interactions using STRING 9.0 database (Search Tool for

the Retrieval of Interacting Genes) [20]. This database provides

information on both experimental and predicted interactions from

varied sources based on their neighborhood, gene fusions, co-

occurrence, co-expression, experiments and literature mining. We

constructed an extended network based on a high confidence score

of 0.7, which implies that only interactions with high level of

confidence were extracted from the database and considered as

valid links for the PPI network.

Construction and analysis of the network
The protein-protein interaction (PPI) network was visualized

using Cytoscape v 2.8.3 software. The network was analyzed based

on topological parameters like betweenness centrality (BC) and

node degree using a Cytoscape plug-in called ‘Network Analyzer’

[21]. In a given network, each gene is represented as a node and

the interactions between the nodes are defined as edges. Degree

indicates the number of edges linked to a given node and nodes

having high degree may represent the hub genes possessing

important biological functions. Betweenness centrality reflects the

importance of the node based on the number of shortest paths that

pass through each node. The final network was visualized based

on these parameters wherein we mapped the node degree to the

node size and betweenness to the node color in the network view.

Nodes having high degree were displayed as a big circle while

shades of red to green color represented high to low BC values for

the node [21]. In short, we considered nodes carrying high degree

and betweenness centrality to be the hub genes.

Construction of the regulatory network
We carried out promoter analysis using MatInspector program

from Genomatix software suite (Genomatix, Munich, Germany) [22]

to identify transcription factors (TFs) that regulate the hub genes.

Transcription factors which showed evidence of more than one

binding site was selected for further analysis. Functionally related

or similar TFs were grouped into the same family. Following the

selection of regulators for the seed genes, we constructed the

regulatory network using Cytoscape. Transcription factors that

showed high connectivity with the target genes were then selected

for assessing their expression levels in the matched cases and

controls.

Validation of hub genes
In order to evaluate the accuracy of our backbone network and

determine the frequency of hub genes, we constructed test

networks using a part of the 124 seed genes. The test networks

were constructed by leaving out 1 to 4 genes by repeated removal

of the top 22 nodes that had the highest BC and node degree.

Deletion of one node each time would result in the construction of

22 networks. However, if the number of omitted genes was more

than 2, we would have had a large number of combinations.

Therefore, deletion of more than one node was carried out five

times by omitting one hub gene each time and randomly selecting

the remaining genes from the top 22 nodes. This step was carried

out for all the hub genes, namely IL-6, TNF, IL1B, VEGFA and

PTGS2. Deletion of 2, 3 or 4 nodes resulted in the construction of

25 networks. Finally 97 (22+3*25) test networks were constructed

and analyzed using Cytoscape v 2.8.3. The detailed list of nodes

omitted for each test network is provided in Table S3. Eventually,

the top 5 nodes were determined in these 97 test networks. The

Inflammatory Bionetwork in Coronary Artery Disease
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accuracy of the network, which is the proportion of the hubs

retained in the test network to the number of hubs (n = 5) in the

main network, was finally measured.

Functional enrichment analysis
To further understand the biological relevance of the hub genes

and their regulators in CAD, we performed functional enrichment

analysis using ClueGO [23]. ClueGO facilitates the visualization of

functionally related genes displayed as a clustered network and

Figure 1. An overview of the work flow. An overview of the work flow has been summarized and consists of the following steps- Step 1:
Retrieval of inflammatory genes from literature using PolySearch text mining tool and from CADgene database; Step 2: Analysis of protein interactions
using STRING database; Step 3: Topological analysis of network using Cytoscape v2.8, based on betweenness centrality and node degree, leading to
the identification of hub genes and construction of the backbone network; Step 4: Construction of a regulatory network for the hub genes and
identification of common transcription factors (TFs) regulating them; Step 5: Validation of the hub genes based on cross-validation (1 to 4 node
deletion), functional enrichment analysis (ClueGo) and quantitative evaluation of key genes and their common transcription factors by real-time PCR.
doi:10.1371/journal.pone.0094328.g001
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chart. The statistical test used for the enrichment was based on

right-sided hypergeometric option with a Benjamini-Hochberg

correction and kappa score of 0.3.

Testing the mRNA expression of genes constituting the
backbone network and core regulatory molecules by
real-time qPCR

Potential candidate genes and their common regulators

obtained from the network analyses were selected for mRNA

expression assay by quantitative RT-PCR (real time-PCR or

qPCR) in 64 CAD individuals and 64 matched controls.

Study population. Two groups consisting of CAD patients

(n = 64) and age and gender-matched controls (n = 64) were

selected from the Indian Atherosclerosis Research Study (IARS).

Detailed design of the IARS has been published [24]. Briefly, the

IARS is an ongoing epidemiological study with an objective to

investigate the genetic factors and biomarkers against a backdrop

of the conventional cardiovascular risk factors in Asian Indians

living in India. Recruitment of cases and controls was based on

predefined inclusion/exclusion criteria. CAD patients were

included if they belonged to any of the following criteria: i)

angiographically confirmed presence of CAD with .70% stenosis

in any one major epicardial artery or .50% stenosis in two or

more arteries, ii) having past history of myocardial infarction, and

iii) undergone/undergoing percutaneous transluminal coronary

angioplasty or bypass graft surgery.

Healthy volunteers who were clinically asymptomatic for CAD

and other inflammatory disorders, enrolled from the same

geographical area as that of the proband, having no family history

of cardiovascular disease and showing normal ECG readings were

treated as controls. Informed consent was obtained from all the

study participants. The study has been approved by the

Institutional Ethics Committee and follows the bioethical guide-

lines of the Indian Council of Medical Research (ICMR) [25].

Clinical and Biochemical assessment. Detailed demo-

graphics and anthropometric measures were recorded for each

participant based on a personal interview. Presence of hyperten-

sion and diabetes was ascertained based on self-report of

physician’s diagnosis and/or use of prescription medications along

with perusal of their medical records. Body mass index (BMI) was

calculated as body weight (kg) divided by the square of height (m2).

Prevalence of metabolic syndrome (MS) in the cohort was assessed

based on the modified Adult Treatment Panel III(ATP-III) criteria

which includes lower cut-offs for waist circumference(WC)

($90 cm for men and $80 cm for women) and appears to be a

better criteria for classification of MS in Asian Indians [26].

Venous blood collected after overnight fasting of 12 to 14 hrs

was centrifuged to separate the serum, EDTA and plasma

samples. Plasma levels of total cholesterol (TC), triglyceride (TG)

and High-density lipoprotein-cholesterol (HDL-c) were measured

using Siemens Dimension Flex reagent cartridge (Siemens

Healthcare Diagnostics Ltd, UK) and standards from Randox

laboratories (Crumlin, UK) and assayed on Siemens dimension

Xpand plus instrument (Siemens Dade Behring, Liederbach,

Germany).

Real-Time QPCR Assay setup and analysis. Total RNA

was isolated from whole blood cells using QIAamp RNA Blood

mini kit (Qiagen Inc, Hilden, Germany) and reverse transcribed to

cDNA using cDNA archive kit (Applied Biosystems Inc., Foster

Coty, CA, USA), following manufacturer’s instructions. Quanti-

tative RT-PCR was performed in duplicate using SYBR green

chemistry on 7900 HT Fast RT-PCR system (Applied Biosystems,

Foster City, CA). Relevant primer pairs were selected from the

PrimerBank [27] and verified using BLAST search. The primer

sequences are listed in Table S2. The efficiency of RT-PCR

experiment for each primer pair was determined by constructing a

standard curve with serial sample dilutions. Relative gene

expression was calculated with comparative Ct method [28] after

normalization to beta-glucuronidase (GUSB), an endogenous

control, by determining mRNA abundance in each sample

relative to the reference sample (calibrator). Outliers were repeated

in duplicates and persistent outliers were removed from the final

analysis.

Statistical Analysis
Student’s t- test and univariate analysis were used to determine

the differences in normalized mRNA expression levels and other

quantitative traits between the cases and controls. Normality

distribution of mRNA expression levels was assessed using Q-Q

plot. Statistical differences for the experiments involving three or

more groups were determined using analysis of variance

(ANOVA) test. Pearson correlation was performed to evaluate

correlations between the biomarkers. Age and gender were

considered as potential confounders and appropriately adjusted

for during analysis. All the analysis was carried out using SPSS v

17.0 statistical software package. Data was expressed as mean 6

standard error of mean (SEM). All the statistical tests were two-

sided, with 95% confidence interval (CIs). A nominal p value of

0.05 or less was considered as statistically significant.

Results

Network analysis and characterization of the hub nodes
The extended PPI network generated using the 124 seed genes

in STRING resulted in 1234 interactions between 145 nodes, of

which 21 new nodes were pulled out based on their protein-

protein interactions. The network obtained from STRING was

subsequently analyzed as described in the methodology section.

Nodes with large degree and high BC represent the key genes. In

the present study, 5% of the nodes had a degree value greater than

50 and 4% of the nodes had BC above 0.05. In total, 3% of the

nodes (5 genes) were finally selected having high degree and high

BC values as shown in table 1. The network so constructed

revealed a scale free architecture with a power-law degree

distribution r-squared value of 0.626. Interleukin-6 (IL-6), vascular

endothelial growth factor A (VEGFA), interleukin-1 beta (IL1B),

tumor necrosis factor (TNF) and prostaglandin-endoperoxide

synthase 2 (PTGS2) were the key nodes (hub), displaying the

highest connectivity within the network. The backbone network

was subsequently constructed using these 5 key genes, which

consisted of 111 nodes connected via 348 edges (Figure 2). Here,

IL-6 occupied the centre of the backbone network, having the

largest degree and highest BC, which suggests that IL-6 could be

considered as a super-hub gene.

Identification of regulators for the hub nodes
To investigate if there was a common transcriptional regulatory

mechanism for these hub genes, we performed transcription

promoter analysis and obtained a list of transcription factors using

MatInspector. Further refinement of TFs based on evidence .1

resulted in 69 TFs belonging to 19 families for IL6, 75 TFs

belonging to 18 families for VEGFA, 74 TFs belonging to 21

families for IL1B, 70 TFs belonging to 21 families for TNF and 37

TFs belonging to 10 families for PTGS2. All the TFs were

subsequently combined and redundancy was removed to obtain a

final list of 184 unique TFs. A regulatory network was constructed

by integrating these TFs and their target genes (Figure 3). Nuclear

factor kappa B1 (NFKB1), signal transducer and activator of

Inflammatory Bionetwork in Coronary Artery Disease
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transcription 3 (STAT3) and JUN showed the highest connections

suggesting that these regulators could play a critical role in

activating these putative inflammatory genes.

Validation of the hub genes
We performed cross-validation to confirm if the selected hub

genes are being retained even after random gene removal. We ran

97 test networks by randomly removing the top 22 nodes having

the highest BC and node degree. By doing so, the overall accuracy

of the backbone network was estimated to be 0.7763. The

frequency of the hub nodes, IL-6, IL1B, TNF, and PTGS2, was

good for 1 to 4 gene deletions. However, the frequency of VEGFA

was good for 1-2 gene removals, but decreased with three or more

gene removals. The frequency of hub genes and accuracy of the 97

test networks are provided in Table 2 and Figure 4.

Molecular function and Pathway analysis
To get an insight on the pathways that the 5 hub genes and their

3 common transcriptional regulators might be involved in, we

performed enrichment analysis using ClueGO software. Overall, 36

GO terms and 20 pathways were significantly enriched, which

could be categorized into six GO groups as represented in Figure 5.

The main GO categories were as follows: positive regulation of

smooth muscle cell proliferation, acute-phase response and

regulation of calcidiol 1-monooxygenase activity. The main

pathways from KEGG and REACTOME belonged to the following

categories: toll-like receptor signaling, NOD-like receptor signaling

and adipocytokine signaling pathways (Figure 5).

Clinical characteristics of study subjects
The characteristics of study subjects in the gene expression

study are described in Table 3. The average age of cases and

controls was around 50 years, with higher frequency of males

(89%) than female (11%). Hypertension and diabetes were higher

in the cases than in the controls. There were 51 (79.7%) and 45

(70.3%) individuals having MS in cases and controls, respectively.

There were 35 cases (62.5%) with chronic stable angina and

21cases (37.5%) with myocardial infarction.

Frequency distribution of subjects based on the number of

disease vessels were as follows: 0 or 1 vessel: 7 (12.3%), 2 vessels: 18

(31.6%), 3 or more vessels: 32 (56.1%). TC and LDL-c levels were

lower in cases than in the controls, which might be attributed to

the higher usage of lipid lowering drugs in the former group.

Expression analysis of key genes and their regulators
In order to discern the association of key genes and transcription

factors identified through network analysis, we measured the

relative expression of all the 5 candidate genes and the 3 regulators

in 64 cases and 64 controls. Significant differences were observed

in the mean expression levels between cases versus controls for IL6

(2.0860.23 vs 1.4860.17; p = 0.02), VEGFA (1.9160.11 vs 1.15;

p,0.001), IL-1B (1.1960.11 vs 0.9360.07; p = 0.002), TNF

(1.9360.12 vs 1.2660.08; p = 0.03), PTGS2 (6.1260.68 vs

1.6360.16; p,0.001), NFKB1 (0.3160.03 vs 0.2160.02;

p,0.001), STAT3 (0.6160.06 vs 0.4160.04; p = 0.02) and JUN

Figure 2. The inflammatory backbone network. The backbone network is derived from a master network consisting of 145 nodes connected
via 1234 edges, constructed from 124 combined gene sets obtained from Polysearch and CADgene database. This backbone network consists of 111
nodes connected via 348 edges. Node color code: shades of red to green color depicts node with highest to lowest value of betweenness centrality
(BC); Node size: from biggest to smallest circle map the node degree. Bigger and bright colored nodes represent genes with more links. IL-6 appears
to be the super hub gene in the network with largest degree and highest BC.
doi:10.1371/journal.pone.0094328.g002

Table 1. Key genes selected based on topological parameters
like BC and degree.

Gene Degree Betweenness centrality (BC)

IL6 77 0.10995103

VEGFA 61 0.09511043

IL1B 61 0.05885691

TNF 62 0.05394098

PTGS2 49 0.05242533

Node degree and Betweenness Centrality (BC) are topological parameters used
for gene prioritization in the network; A cut-off of BC .0.05 and/or node degree
.50 were considered for gene prioritization. IL-6 constituted the super hub
node having the largest degree and the highest BC.
doi:10.1371/journal.pone.0094328.t001
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(2.9560.32 vs 1.4360.15; p,0.001) (Figure 6). Statistical signif-

icance was retained even after adjusting for age and gender.

Subset analysis of gene expression in individuals with (N = 26)

and without (N = 66) diabetes and with (N = 24) and without

(N = 66) hypertension showed significant differences for PTGS2 in

individuals with diabetes (6.2360.94 vs 2.9360.40; p = 0.009) and

hypertension (5.8361.01 vs 3.0460.39; p = 0.001), respectively.

Analysis of these markers in individuals with MS (N = 70) and

without MS (N = 24) showed significant expression differences for

PTGS2 (4.1360.51 vs 2.7360.54; p = 0.008) and VEGFA

(1.5960.09 vs 1.3860.10; p = 0.006). Furthermore, there was

strong correlation in the mean expression levels of these hub genes

with each other as well as with the transcriptional regulators

(r = 0.24–0.78; p,0.05) (Table S4).

Discussion

Inflammation plays a pivotal role in atherosclerosis which can

be attributed to the release of various enzymes, cytokines and

chemokines during the different stages of disease development and

progression [29,30]. In line with this, several inflammatory genes

are known to be associated with CAD [4]. Experimental validation

of all the potential candidate genes is impractical due to the

prohibitive cost and the time involved. In such a scenario, network

analysis can serve as a powerful tool for gene prioritization. We

have used a network based approach to identify key connecting

molecules from a given panel of inflammatory genes. As our

understanding of the molecular basis of CAD may suffer from

incompleteness of available data, we considered inflammatory

genes implicated with different disease types. Studies on human

disease network in fact indicate a common genetic origin for many

diseases, thus suggesting interconnectedness among the genes [31].

Hence, for this study, 68 inflammatory genes associated with CAD

were selected using the CADgene database, which was further

extended by selecting additional inflammatory genes associated

with other diseases. In this manner, the number of genes increased

from 68 to 124, which was subsequently used for the construction

of the network.

The main network was characterized by a few large nodes

which constituted the hub, having many connections and other

smaller nodes with fewer connections [32]. This primary network

consisted of 1234 interactions between 145 nodes and the relative

importance of the genes in the network was determined based on

the centrality measures of node degree .50 and BC value .0.05.

In this manner, we identified five key genes, IL6, VEGFA, IL-1B,

TNF and PTGS2 that were used to construct the backbone

network with an aim to analyze the interconnectivity of the hub

genes with the other genes. The backbone interaction network

included 111 nodes connected via 348 edges and implied that 76%

of the connections were formed due to the five hub nodes, which

may play a critical role in the inflammatory-driven disease process.

In fact, IL-6 formed the central molecule, showing the highest

connectivity and constituting a super-hub in relation to the

network. According to the centrality-lethality rule, hubs are more

likely to be functionally relevant than the other genes [33]. In fact,

it has been demonstrated that deletion of the hub genes produce a

higher frequency of sick phenotypes than the deletion of genes

showing low connectivity [34]. These topological properties of the

network have been employed to improve our understanding of key

genes associated with the diseases. For instance, Sarajlic et al

employed network topological features to predict novel cardiovas-

cular genes that are enriched in drug targets and driver genes [11].

As explained in the introduction section, inflammation plays a

pivotal role in CAD and network biology approaches also

postulate that inflammation and immune response related genes

have yielded the most consistent signals across different diseases

Figure 3. Interactive regulatory network constituted with five hub genes and three common transcription factors. 184 unique
transcription factors (TFs) obtained with MatInspector were used for the construction of this network with Cytoscape v 2.8.3. The TFs showing top
connectivity are represented as red circle while the putative target genes are shown in turquoise color. The text has been enlarged for easy
identification.
doi:10.1371/journal.pone.0094328.g003
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[35]. Zhang et al. applied network topological features to construct

a unified classifier and then used it to predict the candidate genes

for CAD and their results showed an overrepresentation of the

genes belonging to the inflammatory pathway [12]. Through an

effective analysis of the genome wide action of liver X receptor a
(LXRa) in foam cells and macrophages using chromatin

immunoprecipitation sequencing, gene expression and in vitro

experimentation, complimented by transcriptional network anal-

ysis, Feldmann et al, identified highly integrated LXRa ligand-

dependent transcriptional networks that contributed to the

reversal of cholesterol efflux and reduced inflammation, thus

resulting in effective prevention of atherogenesis [15]. In yet

another recent report on the molecular processes occurring on the

atherosclerotic arterial wall in response to plasma cholesterol

lowering therapies, distinct differences were observed in the type of

transcription factors and associated regulatory networks of plasma

cholesterol lowering-responsive gene sets in early, mature, and

advanced lesions [16]. These studies highlight the effectiveness of

combing experimentation with network analysis to delineate the

complexity of the atherosclerotic disease process.

We performed quantitative validation of the causal genes

followed by functional enrichment analysis. Literature validations

of hub genes have also confirmed their role in the pathogenesis of

CAD and the details are discussed in the ensuing paragraphs.

Next, in order, to evaluate the robustness of our network and

eliminate false positives and false negatives, we constructed 97 test

networks wherein we found that the frequency of the hub genes

was not grossly altered. Concurrent with our findings, other studies

have also demonstrated that the scale free network exhibit certain

level of tolerance against errors, implying that the PPI network

topologies are robust with respect to perturbations [36].

Inflammatory response results from a complex interplay

between the different inflammatory molecules which act either

in an autocrine or paracrine manner to induce acute phase

response. The inflammatory cascade is initiated by the pro-

inflammatory cytokines, IL1B and TNF, which induce IL-6

synthesis, mediated by Phosphatidylinositol 3-Kinase-dependent

AKT/IkB Kinase a Pathway targeting AP-1 (Activator Protein-1)

[37]. Cholesterol crystals in the plaque activate IL-1B secretion in

the macrophages and thus link cholesterol metabolism to

inflammation [38]. Increased circulatory levels of IL-1b in patients

with unstable angina indicates its contribution to the acute disease

process [39]. Clinical studies have also shown increased expression

of IL-1B and TNF in the atherosclerotic plaques [40,41].

Consistent with these reports, we also observed increased levels

of IL-1B and TNF in the affected cases than in the asymptomatic

controls. Studies in mouse models however, suggest a dual role for

IL1B, wherein absence of IL-1B decreases the severity of

atherosclerosis [42]. On the other hand, Alexander et al have

shown that the inactivation of IL-1B enhance atherosclerotic

plaque stability [43]. In the present study, IL-6 was represented at

the centre of the backbone network, which highlights their

significance as a pivotal player in the CAD inflammatory network.

In fact, in a study on the IARS cohort, we have previously shown

significant association between IL-6 gene polymorphisms and

premature CAD and that IL6 acts as a key regulator of acute

phase reactants, namely hsCRP and fibrinogen in the IARS

cohort [44].

Vascular endothelial growth factor A is a key member of the

family of growth factors. It is involved in the angiogenesis and is

essential for tissue growth as well as organ repair process [45].

Higher circulating levels of VEGFA have been previously detected

in serum of patients with cardiovascular disease [46,47]. The

enzyme PTGS2 [more commonly known as cyclooxygenase-2

(COX-2)] mediates the production of prostaglandins, which can

induce an inflammatory response [48]. PTGS2 has been shown to

promote plaque rupture through the metalloproteases in symp-

tomatic plaques showing recent evidence of ischemic attack [49].

Other studies have also reported a strong correlation between

COX-2 and VEGFA, which together play an important role in

angiogenesis [50]. We noted increased expression and positive

correlation of PTGS2 and VEGFA in the present study.

Controlled regulation of the gene transcripts is essential for

maintaining homeostasis and a disease free state. Since specific

TFs bind to the promoter region of their gene targets to regulate

Table 2. Frequency of the hub genes and the accuracy of the backbone in 97 test network.

Number of removed
gene Frequency of the hub nodes in test network

Accuracy of the
backbone

Number of test
networks

IL6 IL1B TNF PTGS2 VEGFA

1 21 21 21 21 20 0.945 22

2 20 20 20 19 20 0.792 25

3 20 23 18 17 9 0.696 25

4 20 23 18 19 4 0.672 25

Overall 81 87 77 76 53 0.776 97

doi:10.1371/journal.pone.0094328.t002

Figure 4. Accuracy of hub genes in the test network. Horizontal
axis represents the number of genes removed in the test network. The
vertical axis represents accuracy of the respective test network.
doi:10.1371/journal.pone.0094328.g004
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expression, we analyzed the regulatory network to understand the

pattern of relationship between the five hub genes and their

specific TFs. From among the 184 unique TFs, we identified

NFKB1, JUN and STAT3 as the three most common factors,

whose role in CAD is well documented [51–53]. Recently, the

CARDIoGRAMplusC4D consortium carried out a large scale

association study followed by network analysis and identified NF-

kB, MAPK and JAK-STAT as the key signaling pathways

involved in the pathogenesis of CAD [8]. Inhibition of NFKB

has been shown to retard atherosclerotic disease progression in

apoE/LDLR double knockout mice models [54]. In fact, the

NFKB family as a whole plays a crucial role in regulating a

number of processes in the cardiovascular system such as

inflammation, cell survival, cell proliferation, cellular response to

stress, hypoxia and ischemia [55]. Among the many transcrip-

tional targets for NFKB, IL6, VEGFA, IL-1B, TNF and PTGS2

Figure 5. Grouping of network based on functionally enriched GO terms and pathways. A. Functionally grouped network of enriched
categories was generated for the hub genes and their regulators using ClueGO. GO terms are represented as nodes based on their kappa score level
($0.3). Functionally grouped networks are linked to their biological function, where only the most significant term in the group is labeled.
Functionally related groups partially overlap. Visualization has been carried out using Cytoscape 2.8.3. B. Table provides the results of ClueGO analysis.
Nr: Number of genes from our list (8-genes) associated with the GO term. %: percentage of genes found from the total number of associated genes. p
value: p value of the GO term after Benjamini-Hochberg correction. Associated genes are represented from among those associated with either GO
term or specific pathway.
doi:10.1371/journal.pone.0094328.g005
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are considered to be important and regulate the cytokines,

chemokines and the adhesion molecules [53]. JUN is an important

protein constituent of AP-1 (activator protein-1) transcription

factors wherein, the c-Jun protein forms a homo or heterodimer

with c-Fos, resulting in the AP-1 transcription factor complex [56].

The role of c-Jun in cellular proliferation, differentiation and

apoptosis is well established [57,58]. Studies also suggest that c-Jun

can regulate neo intima formation and promote the proliferation

and differentiation of vascular smooth muscle cells [59] and

human endometrial cells [60]. AP-1 has been shown to be

involved in the activation of matrix metalloproteinase (MMP) in

progressive and unstable atherosclerotic plaques [61] as well as

during the early disease process [52]. JUN appeared to be one of

the most significant transcription factors in our regulatory

network.

STAT3 has been implicated in the cardiovascular inflammatory

process [51]. STAT3 is activated by phosphorylation of tyrosine

705 and serine 727 in response to the various cytokines and growth

factors, including IL-6, IL-10, epidermal growth factor (EGF),

interferon-alpha (IFN-alpha) and interferon-gamma (IFN-gamma)

in distinct patterns [62,63]. In addition, STAT3 is activated under

a variety of stress conditions [64], translocate to the nucleus, where

they bind to specific DNA sequences and regulate the expression

of target genes. Initially, STAT3 was thought to be an acute phase

reactant [65]. However, recent studies have shown that it exerts a

cardio protective effect [66]. Experimental studies in rats have

shown elevated IL6 expression in acute MI, accompanied by a

marked increase in STAT3 through the activation of the JAK/

STAT pathway [67,68]. Our results are in line with the earlier

reports, wherein both IL6 and STAT3 showed higher expression

in CAD patients relative to the controls. We observed strong

positive correlation between STAT3 and VEGFA (r = 0.565;

p,0.001) which is comparable to the study by Osugi et al where

they have shown that activation of STAT3 in the cardiac myocytes

increased VEGF expression [69]. In fact, STAT3 activation could

be ascribed to a protective systemic response to reduce cardiac

damage and promote active remodeling. The above studies

demonstrate the critical role of STAT3 as a negative regulator

of inflammation and its potential as a therapeutic target for

atherosclerosis.

Through functional enrichment, we identified the following

pathways associated with the hub genes and their regulators:

smooth muscle cell proliferation, acute-phase response, calcidiol 1-

monooxygenase activity, toll-like receptor (TLR), NOD-like

receptor (NLR) and adipocytokine signaling pathways. Numerous

studies have demonstrated the involvement of these biological

processes in atherosclerosis. Abnormal vascular smooth muscle cell

proliferation has been shown to increase the production of acute-

phase reactant proteins like CRP, while Vitamin D deficiency has

been implicated in cardiovascular disease [70–72]. Both TLR and

NLR signaling pathways belong to a specific family of pattern

recognition receptors that trigger the expression of several genes

involved in innate immune response [73]. TLR signaling is

associated with chronic inflammatory response [74] while NLR

signaling results in the formation of inflammasomes, which along

with TLR, orchestrate the induction of IL-1B and IL-18 secretion

[75]. TLR-1, TLR-2 and TLR-4 have been shown to be elevated

in human atherosclerotic lesions [76]. In a pilot study, we have

previously shown the increased expression of TLR2 in the

peripheral whole blood of CAD subjects [77]. Among NLRs,

NLR-related protein 3 is one of the better characterized receptors

in atherosclerosis. Interestingly, there have been studies to show

that cholesterol crystals which are characteristic of atherosclerotic

lesions, activate NLR3 and promote the secretion of pro-

inflammatory cytokines [38,78]. Adipocytokines are biologically

active molecules secreted by the adipose tissue and promote the

development of obesity-mediated atherosclerotic disease. Adipose

tissue from obese individuals synthesizes and releases leptin,

adiponectin and pro-inflammatory molecules such as TNF, IL1B

and IL-6 that increase the cardiovascular risk [79].

We recognize certain limitations in our study. The network

generated was based on information obtained from literature

mining and hence could carry an inherent bias. The generated

network might also suffer from incompleteness or missing

interactions since they have been derived from published reports

and our understanding of cardiovascular genetics is far from

complete. However, we have addressed these issues to some extent

by using two different data sources to arrive at a comprehensive

panel of inflammatory genes.

In conclusion, we have identified IL-6, VEGFA, IL1B, TNF

and PTGS2 genes to play a pivotal role in the inflammation-

driven atherosclerotic disease process from among a vast array of

putative inflammatory genes using network-based analysis. Of the

Table 3. Clinical characteristics of study participants included
in the gene expression study.

Clinical Factors Cases Controls p value

(N = 64) (N = 64)

Age (years) 50.0260.817 50.2260.788 0.858

Males N (%) 57(89.1) 57(89.1) -

Females N (%) 7(10.9) 7(10.9) -

BMI(kg/m2) 25.2460.416 25.1160.55 0.847

Waist Circumference (cm) 89.7161.10 93.5461.09 0.015

Hip Circumference (cm) 93.9561.01 94.6261.25 0.68

Waist/Hip Ratio (cm) 0.9560.009 0.9860.010 0.015

SBP (mmHg) 120.7561.41 124.0962.49 0.246

DBP (mmHg) 77.8460.90 79.2561.97 0.518

Age at onset (years) 49.3360.934 -

Stable Angina N (%) 35(62.5)

Myocardial infarction N (%) 21(37.5)

Number of Diseased Vessel 1 = 7(12.3)

2 = 18(31.6)

3 = 32(56.1)

Laboratory studies

TC (mg/dl) 147.3865.92 143.95611.52 2.29*1026

TG (mg/dl) 161.7968.19 194.7169.06 0.218

HDL-c (mg/dl) 31.4861.01 39.8961.445 7.70*1026

LDL-c (mg/dl) 83.5465.22 117.9964.17 8.59*1027

Medical history

Smoking N (%) 26(40.6) 26(40.6) -

Hypertension N (%) 30(47.6) 7 (10.9) 5.06*1026

Diabetes mellitus N (%) 27(42.2) 8 (12.5) 0.00028

Metabolic Syndrome N (%) 51 (79.7) 45 (70.3) 0.154

Medications

Statin N (%) 41 (64%) - -

Continuous variables are expressed as mean6standard deviation. BMI, body
mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC-Total
cholesterol; TG- Triglyceride; HDL-c, High Density Lipoprotein cholesterol; LDL-
c, Low Density Lipoprotein cholesterol.
doi:10.1371/journal.pone.0094328.t003
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associated transcriptional regulatory factors, NFKB1, STAT3 and

JUN was shown to highly network with the above gene targets and

provide a glimpse of the inherent complexity of the inflammatory

bionetwork. The frequency of the hub genes was also found to be

unaffected against the changes in the initial seed genes. We were

finally able to confirm our hypothesis with a pilot case-control

gene expression association study. While there is convincing

evidence to show an active role for these candidate genes and their

transcription factors based on in vitro and in vivo experimental

studies in animal models and humans, we have shown comparable

outcomes using a network based approach. The advantage lies in

our ability to visualize not only complex interactions among the

individual components but also comprehend their relative

importance in the network based on well defined topological

parameters. Such visualization and identification can promote a

better understanding of the underlying disease process and also

identify specific gene targets for therapy. Nonetheless, additional

studies are required to confirm these initial findings and to

eventually realize their true potential in a clinical setting.
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