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Abstract

Human brain organoids, generated from pluripotent stem cells, have
emerged as a promising technique for modeling early stages of human
neurodevelopment in controlled laboratory conditions. Although the
applications for disease modeling in a dish have become routine, the use of
these brain organoids as evolutionary tools is only now getting momentum.
Here, we will review the current state of the art on the use of brain
organoids from different species and the molecular and cellular insights
generated from these studies. Besides, we will discuss how this model
might be beneficial for human health and the limitations and future
perspectives of this technology.
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Introduction

What is it that makes us uniquely human? Among several fea-
tures of our species, perhaps the most impactful characteris-
tic consists of our sophisticated brains and all the abilities and
advanced lifestyles we all enjoy. However, a complex brain came
with a cost. The vulnerability for human-specific neurological
disorders might well be an undesired evolutionary trade-off.
Although many genetic mutations might also cause diseases
in other animals, the genomic landscape of humans makes our
species more susceptible to certain neurological disorders'~.
Gaining a clearer understanding of human brain evolution is
crucial to interpreting how human genetic variants lead to disease.
Therefore, understanding the evolutionary path of the modern
human brain will likely illuminate the origins of conditions such
as autism, dementia, or schizophrenia, which are considerable
burdens to all present and future human societies.

Our knowledge of human brain development is deficient and
there are gaps in the critical steps leading to the cellular organi-
zation and the formation of functional networks that are the basis
of cognition. The limited accessibility of the human (and also
non-human primate, or NHP) brain has blocked our understand-
ing of neurodevelopment, especially at very early stages. During
embryogenesis, a limited number of pluripotent embryonic
stem cells will give rise to a multi-cellular and complex nervous
system in the brain, which orchestrates many of the autono-
mous and non-autonomous functions of the body. In utero
experimental access to ape brains is not always possible. Instead,
scientists have relied on less invasive passive alternatives,
such as ultrasound and functional imaging. Most of our under-
standing of normal and pathological brain conditions comes
from postmortem tissues that represent only a blurry snapshot
of a highly dynamic tissue. Also, the neuroanatomical and func-
tional heterogeneity that individuals have because of their
genetic and environmental backgrounds adds another obstacle
to fully understanding the typical and unhealthy progression
of neurodevelopment’.

Brain organoids, generated from pluripotent stem cells, are
multi-cellular, three-dimensional self-assemble miniaturized
structures that mimic the dynamic organization™ and molecu-
lar profile of the developing human embryonic and fetal brain®”.
These structures can grow free floating in media or embedded
in matrigel and develop different brain regions using endog-
enous patterning cues'’''. Alternatively, cells could be patterned
early on by exposure to specific cocktails of factors, coaxing
the identity of the cells toward a specific brain region™'>"*. Dif-
ferently patterned organoids independently created could be
fused, exchanging signals among the different brain regions,
stimulating cell exchange'*"'® or reciprocal projections'*'". The
“lego-organoid” approach can recreate specific circuit formations
in a more controlled and reproducible fashion than non-patterned
cerebral organoids.

Human brain organoid has recently contributed to the under-
standing of several neurological conditions (reviewed
extensively in 18-20), including typically human conditions
such as schizophrenia’ and autism”. Interestingly, the fact that
brain organoids can be generated from induced pluripotent stem
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cells (iPSCs)***, reprogrammed from somatic cells of any spe-
cies, offered an unprecedented opportunity to compare early
stages of human neurodevelopment with those of other primates,
including our closest NHP relatives: the chimpanzees (Pan
troglodytes) and bonobos (Pan paniscus)”~'. These three
species have very similar genomes, including nearly 98% of
alignable genomic sequence’. However, cellular and molecu-
lar phenotypes, especially at similar stages of development,
are difficult to establish, mainly owing to limited access to live
embryonic material from humans and NHPs. Thus, the study and
manipulation of brain organoids in a dish are novel and promising
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evolutionary tools™.

LINEs might be responsible for human-specific
diseases

The first comparative study between human and NHP iPSCs
revealed unexpected differential regulation of long inter-
spersed element-1 (L1, also known as LINE-1) endogenous
retrotransposons™. L1 elements are autonomous mobile elements
present in around 20% of the mammalian genomes and have
remained active during evolution*. Mobilization of Lls can
impact the human genome and is associated with several human
disorders™*. Among the top 50 genes that were differentially
expressed between human and NHP iPSCs, two L1-restricting
factors—APOBEC3B (also known as A3B) and PIWIL2—were
found upregulated in human cells. The experimental manipulation
of A3B and PIWIL2 levels in the pluripotent stem cells
supported a causal inverse relationship with L1 retrotransposi-
tion. Increased levels of L1 retrotransposition suggested that
NHP-derived iPSCs would be more susceptible or permis-
sive to new insertions. An increased copy number of species-
specific L1 elements in the genome of chimpanzees was
observed when compared with humans. The data support the
idea that increased L1 mobility in NHPs might not be limited
to the pluripotent stage and may also occur in the germline dur-
ing primate evolution. Thus, it is possible to speculate that the
activity of L1 elements has differentially shaped the human
genome and still has adaptive significance.

The RNA from L1 elements might also have an impact on human
health. Aicardi—Goutieres syndrome (AGS) type I is character-
ized by a dramatic neuronal loss, leading to lifelong disability™.
AGS can be caused by mutations in the three-prime repair exo-
nuclease I (TREXI) gene’’. Curiously, rodent models of AGS
do not mimic the severe neurological aspect of the human con-
dition**. However, AGS-derived brain organoids do mimic
the neurodegeneration and striking microcephaly seen during
patient neurodevelopment in utero”. Neuronal death in the
brain organoids was caused, at least partially, by a substantial
exposure of type I interferon, a pro-inflammatory cytokine
secreted by astrocytes. The innate immune reaction in the astro-
cytes was triggered by the accumulation of L1 retrotransposons
in the cell because of TREXI1 absence. L1 elements are
different between humans and other animals*. Evidence that L1
activity could contribute to other neurological disorders, such
as Huntington’s disease’’, Down syndrome, and Alzheimer’s
disease®, and aging* has recently been provided. It is an attrac-
tive hypothesis that the sequence-specific L1 differences might
contribute to several human conditions, creating the potential
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for unconventional treatments using reverse transcriptase inhibi-
tors, such as anti-HIV drugs.

Emergent viruses and brain defects

Endogenous viruses are not the only ones affecting human evo-
lution. Human brain organoids played an essential role in the
causal link demonstration between the Brazilian Zika virus and
the microcephaly outbreak in Brazil. The relatively slow human
neurodevelopment, compared with that of other experimen-
tal animal models mimicked by the human brain organoids in a
dish, allowed investigators to dissect how the virus could infect
neural progenitor cells leading to defects in the cortical plate™ .
Moreover, brain organoids from NHPs revealed differences
in viral replication rates of the Brazilian strain compared with
the African Zika virus at the same developmental stage. This
observation might suggest that the Zika virus can adapt to
different primates. Evidence for specific mutations in the
circulating Brazilian Zika virus has emerged’’ but it is unclear
whether these variants were responsible for the dramatic
phenotypes seen in the affected human babies. The abundance
of human brain organoids was also a positive feature to rapidly
screen for drugs that could prevent infection*** or block viral
replication and eventual vertical transmission’’.

Exploring cortical development

In the past, testing hypotheses about human brain evolution
was restricted to manipulations in animals or non-relevant cell
types. Owing to cellular reprogramming, it is now possible to
compare differences and similarities between human neurode-
velopment and that of other primates without the use of embry-
onic materials that are ethically and technically difficult to
access”™!. The ability to create cortical brain organoids from
human and other NHP iPSCs provides a unique opportunity to
study the expansion of the neocortex in a dish’*”. By contrasting
brain organoids of humans with those of chimpanzees, it was
possible to determine a subtle differentiation between timing and
lengthening of prometaphase-metaphase in human apical mito-
sis that is specific to proliferating neural progenitor cells”>**.
It is possible that subtle differences at very early stages have a
more dramatic impact later in development and thus set humans
apart from other primates.

Cortical tissues generated from human, chimpanzee, orangu-
tan, and rhesus iPSC-derived brain organoids were also used
for a dynamic transcriptional analysis™. Several long non-
coding RNAs (IncRNAs) were detected in specific cell types
and stages of differentiation in all of the species. LncRNAs
are implicated in several molecular mechanisms, including the
regulation of neurodevelopment™’. The conservation of pattern
expression on these tissue-specific IncRNAs in all of these
primates indicates a possible role in transition stages during
neurodevelopment. Another recent work that contrasted brain
organoids from human and NHP iPSCs also described gene
network conservation among primates while identifying a set
of 261 genes that are human-specific’®. Some of these genes
overlap with recent chromosomal segmental duplications™.
Interestingly, increased activation of the PI3K/AKT/mTOR
pathway was validated in the radial glia cells of the outer
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subventricular zone of human fetal brain tissues, possibly
contributing to the neocortex expansion during evolution. The
creation of a “brain organoid zoo”, which has representatives of
different primates and other species, might help us to resolve
critical molecular and cellular steps to comprehend brain
evolution better.

Discussion and future perspectives

Our natural interest in understanding the processes that make
us human goes beyond mere anthropocentrism and philosophi-
cal debates about the human condition. Novel knowledge gained
from interspecies comparisons can potentially contribute to bio-
medical advances. For example, humans and other primates
can be distinguished by AIDS progression®’, malaria vulner-
ability (immunity against Plasmodium falciparum)®', Alzheimer’s
disease (absence of neurofibrillary tangles)®’, and susceptibil-
ity to certain cancers® as well as other differences®*. The iden-
tification and characterization of the cellular and molecular
mechanism that distinguishes humans from our closest relatives
at early stages of embryogenesis and in specific types of cells
are likely to become a new resource for evolutionary studies®.
In this context, recent advances in iPSC-derived neural pro-
genitor cells and brain organoids are an attractive tool to dissect
cellular and molecular events that contribute to the uniqueness
of the human brain. However, this artificial in vitro approach
is not without serious inherent limitations. Most comparative
studies are standardizing the growth of the brain organoids
using human culture conditions. This “humanized” situation
is likely masking important differences among species. The
use of “neutral backgrounds”, such as transplanting different
primate cells in the mouse brain’, could mitigate this concern.
Other limitations are intrinsic to the brain organoid model: lack
of specific cell types, cellular stress, organized brain regions, and
endogenous vascularization. The use of patterned brain organoids
might help to reduce experimental variability and increase
confidence in the data, especially when differences are subtle.
Thus, owing to these limitations, validation or confirmation of
findings in primary tissues’*®’ or even intact functional brain®
is the gold standard in this field.

Nonetheless, it is expected that some of these technical shortcom-
ings might be resolved in the next few years (reviewed in 18,69).
In the future, evolutionary studies using brain organoids would
benefit from genome editing for candidate approaches. More
sophisticated comparisons will also incorporate functional
readouts, such as the emergence of network activity and
oscillatory waves in long-term, mature brain organoids®. Finally,
the perspective to extrapolate the comparative approach of mod-
ern humans to other extinct hominins, such as Neanderthals
and Denisovans, by using human brain organoids carrying
ancestral genetic variants will lead to an entire new field”’.

Abbreviations

AGS, Aicardi-Goutieres syndrome; iPSC, induced pluripotent
stem cell; L1 or LINE-1, long interspersed element-1; IncRNA,
long non-coding RNA; NHP, non-human primate; TREXI,
three-prime repair exonuclease I
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