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Introduction
The incidence of cutaneous melanoma has stead-
ily risen over the last 30 years, with more than 
80,000 new cases were reported in 2017.1 Recent 
advances in the treatment of melanoma have 
improved the outlook for many patients in terms 
of both progression-free survival (PFS) and over-
all survival (OS). The prognostic benefit has 
largely been due to the development of tailored 
therapies targeting BRAF mutations and immune 
checkpoint inhibitors (ICIs). Immune-modulating 
agents, including interferons and interleukin 
(IL)-2, have been used in the treatment of meta-
static melanoma but the results in term of clinical 
benefit and OS have been limited.2 Based on 
knowledge of the melanoma biology, new thera-
peutic strategies including the cytotoxic T lym-
phocyte-associated protein-4 (CTLA-4), the 
programmed death 1 receptor (PD-1) and 

PD-ligand 1/2 (PD-L1/2) blockers have been 
engineered for restraining the molecular signals 
between melanoma cells and effector immune 
cells thus achieving great improvement in terms 
of prognosis and survival.3–5 The CTLA-4 and 
PD-1 or PD-L1/2 axis are involved in the priming 
and effector phases of an antitumor immune 
response. In particular, CTLA-4 is constitutively 
expressed by T cells and attenuates the immune 
response competing with CD28 for the binding of 
costimulatory molecules namely CD80 or CD86 
expressed by dendritic cells (DCs), leading to 
great impact on the stage of T cell activation in 
the draining lymph nodes and reducing their abil-
ity to stimulate tumor-specific T cells. In addi-
tion, the interplay between PD-1 and PD-L1/2 
ligands that are commonly expressed by DCs, 
macrophages as well as melanoma cells, inhibits 
T cell activity to maintain the immune 
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homeostasis and prevent autoimmunity. 
Therefore, blocking the PD-1/PD-L1/2 axis 
activates T cells in the tumor microenviron-
ment, releasing inflammatory cytokines and 
cytotoxic granules to eliminate melanoma cells.

Despite the efficacy of ICIs, their peculiar mecha-
nisms of action are correlated with a new class of 
side effects called immune-related adverse events 
(irAEs) that are common, often serious, and char-
acterized by unpredictable development. Their 
clinical presentation depends on the organ system 
affected and includes rash, vitiligo, colitis, hypo-
thyroidism, pneumonitis, hypophysitis, and renal 
failure. Similar occurrences of renal failure were 
reported in patients with metastatic bladder can-
cer and Merkel cell carcinoma treated with a 
monoclonal antibody (MoAb) against PD-L1.6,7 
While the majority of irAEs are mild and manage-
able with moderate doses of steroids, in a limited 
number of cases, they are severe, although rarely 
fatal. Many patients recover while continuing 
therapy whereas in others therapy discontinua-
tion is required, either without subsequent clini-
cal evidence of disease progression or, in a 
minority of cases, with a rapid progressive disease 
whose features indicate hyper-progression.8

In previous conventional chemotherapy, nephro-
toxicity was a complication frequently limiting 
life-saving cancer treatment. However, chemo-
therapy-induced renal damage did not occur in 
all patients, which suggested the presence of spe-
cific factors that enhance individual risk. Thus, 
apart from the baseline drug toxicity associated 
with many anti-cancer agents, certain host char-
acteristics, including single-nucleotide polymor-
phisms in putative genes, microRNAs, chronic 
inflammatory disorders, and concurrent medica-
tions may increase the risk of developing renal 
failure during treatment.9–12

A relevant issue, therefore, concerns the treat-
ment of renal failure in ICI-treated cancer patients 
and the strategy to be adopted after discontinua-
tion includes permanent drug cessation and the 
delay of therapy.13 However, on the basis of the 
limited amount of available data, renal complica-
tion requires further investigations.

Mechanisms of drug-induced interstitial 
nephritis
Drug-induced acute interstitial nephritis (AIN) is 
an early but also delayed adverse event that occurs 

after exposure to the problem drug, and it is the 
third most common cause of acute kidney injury 
(AKI).14–16 AIN is mostly due to a drug hyper-
sensitivity reaction (HR), which can be explained 
by the high rate of renal blood flow, such that 
antigens are filtered, secreted, and concentrated 
in large amounts, as well as the continuous con-
tact between tubular cells and the drug or its 
metabolites.17

The clinical presentation of a drug-induced AIN 
is similar to that of acute tubular necrosis (ATN). 
However, AIN is more insidious in onset and is 
frequently associated with interstitial edema, as 
well as cellular infiltration, whereas ATN arises 
from direct tubular epithelial injury and the rapid 
deterioration of renal function.17 An adverse drug 
reaction caused by an HR is diagnosed based on 
the following criteria: the presence of a known 
immunological manifestation, no other explana-
tion involving the definite pharmacological or idi-
osyncratic effects of the drug, and a timeline of 
occurrence within 7–10 days of initial exposure. 
The mechanisms by which a drug may elicit an 
HR or an autoimmune response include: the 
peculiar susceptibility of the host tissue such that 
it becomes immunogenic after drug exposure, the 
development of drug-specific antibodies that 
engage an immune reaction, the intrinsic immu-
nogenicity of the drug in patients with a particular 
T cell receptor (TCR) or major histocompatibil-
ity complex (MHC) profile, metabolism of the 
drug into a reactive antigen or immunogen that 
stimulates the innate immune response, for exam-
ple, cells of the proximal tubule may hydrolyze 
and metabolize exogenous antigens and then pre-
sent them through MHC expressed by dendritic 
cells resident in or recruited to the kidney, and an 
additional mechanism is haptenization, by which 
low-molecular-weight compounds irreversibly 
bind to self-protein, thus creating a hapten that 
can be trapped in the parenchyma, leading to the 
impairment of filtration and, eventually, irrevers-
ible tubular damage.18

Finally, it has been suggested that a further sys-
temic HR namely type IV, also known as delayed-
type or cell-mediated, in which lymphocytes play 
a major role in the pathogenesis of the drug-
induced AIN.17 Although the mechanisms 
involved in the type IV HR are partially unknown, 
a critical role appears to be played by direct bind-
ing of the drug to the tubular basement mem-
branes, thus the drug may act as a hapten eliciting 
an immune response.
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In contrast, the pathogenesis of immune-related 
AIN is considered similar to that of autoimmune 
diseases, where activated lymphocytes target self-
antigens. Therefore, dual PD-1/CTLA-4 block-
ade synergistically breaks the tolerance by 
unleashing quiescent tissue-specific self-reactive 
T cells, which express high levels of PD-1 recep-
tor. Of interest, the AIN pattern injury demon-
strates pathological findings indistinguishable 
from other drug-induced AIN, which are com-
monly characterized by T cell-predominant infil-
tration of the renal interstitium associated with 
eosinophils and plasma cells.

A drug-induced AIN, therefore, mostly depends 
on a delayed T cell-mediated HR whose patho-
genesis is based on three sequential steps: the 
antigen recognition and presentation phase fol-
lowed by the regulatory and effector phases.19,20 
During the antigen recognition and presentation 
phase, haptens are endocytosed by resident inter-
stitial cells or tubular epithelial cells and are thus 
able to present antigen to the dendritic cells 
located near the basolateral aspect of tubular epi-
thelial cells. Activated by antigenic signals, these 
dendritic cells migrate throughout the kidney 
lymphatics to regional nodes, where the antigens 
are presented to naïve T cells. In addition, the 
renal interstitium is infiltrated by dormant mac-
rophages and fibroblasts that become activated 
and subsequently participate in enhancing inflam-
mation, by recruiting cytokines, soluble factors, 
and neutrophils. During the regulatory and effec-
tor phases, both the local production of ILs and 
cell-to-cell contact mediate bidirectional crosstalk 
between recruited inflammatory cells and the kid-
ney tissue.21 The release of collagenases, elastases, 
and reactive oxygen species produced by resident 
macrophages provoke renal damage but this may 
be limited by protective events that include the 
down-regulation of MHC-II and the activation of 
suppressor T cells. Other determinants of the 
severity of renal damage, fibrosis, and irreversible 
impairment are the nature of the antigenic expo-
sure, as well as the degree of inflammatory and 
immune cell activation. According to the clinical 
presentation of patients with drug-induced renal 
damage,22 the Common Terminology Criteria for 
Adverse Events (CTCAEv40) recognizes five dif-
ferent grades of renal injury, based on creatinine 
levels (grades 1 to 3), dialysis requirement (grade 
4) and fatal complications (grade 5) (Table 1). 
The Kidney Disease Improving Global Outcomes 
(KDIGO) criteria are used to classify the severity 
of tubular damage based on an increased 

creatinine level and glomerular filtration rate, 
although a definite diagnosis of AIN requires 
renal biopsy. With the rapid expansion of the 
indications for the use of ICIs in the treatment of 
cancer, new adverse effects, including AIN, are 
emerging and must be considered in the adminis-
tration of these drugs.

Incidence, clinical and pathological features 
of ICI-induced nephrotoxicity
Reviews of clinical trials of immunotherapy have 
reported an overall incidence of renal failure 
>3%.10 Grade III–IV AKI, or the need for dialy-
sis, occurred in only 1–2% of patients treated 
with a single agent, although the rate increased up 
to 5% in those receiving a combination of ipili-
mumab and nivolumab,23 while the time for the 
development of this complication results are vari-
able. According to the KDIGO guidelines,24,25 
AKI stage I–II is more common than stage III 
(Table 1). While fatigue, hematuria, eosinophilia, 
and worsening hypertension were noted, in the 
majority of patients an increased serum creatinine 
level and pyuria were the only clinical indications. 
The majority of patients show a typical tubule-
interstitial presentation, that is, normal urinary 
output, glomerular casts, aseptic leukocyturia, 
and low-grade or the absence of proteinuria while 
nephrotic syndrome has been occasionally 
reported in those receiving ipilimumab.10,26–28 
Thus, despite the durable clinical benefits of ICI 
therapy with ipilimumab, nivolumab, and pem-
brolizumab in terms of a progressive improve-
ment in the objective response rate (50–60%), the 
permanent discontinuation of immunotherapy is 
mandatory in patients who develop an irAE, 
including AIN.23

Renal biopsy reveals that in the majority of patients 
tubular rather than glomerular injury and the most 
frequent pathological manifestations induced by 
ICIs consist of edema, interstitial inflammation, 
and tubulitis. These pathological features are seen 
in Figure 1, which shows the renal biopsy results 
from a patient treated with anti-PD-1. The inter-
stitial infiltrates consist of inflammatory and 
immune cells, including CD4+ and CD8+ lym-
phocytes as well as eosinophils, whose presence in 
the vicinity of the tubular basement membrane is 
a hallmark of AIN. Table 2 shows the most rele-
vant features of inflammatory infiltrate revealed by 
biopsy in reported cases in the literature. Tubulitis 
is characterized by tubular dilation, cytoplasmic 
vacuolization, prominent nucleoli, an altered 
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brush border, and interstitial edema. In the 
absence of adequate treatment, AIN may evolve 
into a chronic phase characterized by interstitial 
fibrosis associated with tubular atrophy, the glo-
meruli, and blood vessels that are usually not 
involved. Neither immunofluorescence nor elec-
tron microscopy allows a conclusive diagnosis of 
AIN because the findings are often negative for 
the deposition of immunoglobulin or complement 
fractions,29–32 while electron microscopy is useful 
to reveal AIN associated with minimal change 
disease.33 Moreover, granulomatosis interstitial 

nephritis is a rare histologic variant characterized by 
the infiltration of histiocytes and macrophages, 
monocytes, plasma cells, and lymphocytes that sur-
round tubular and glomerular structures, and an 
accumulation of eosinophils is highly atypical.34,35

Nephrotoxicity induced by ICIs
The efficiency of immune editing and thus of 
tumor cell escape is controlled by the enhance-
ment or suppression of effector CD8+ T cells by 
stimulatory or inhibitory molecules that modulate 

Table 1.  KDIGO clinical practice guidelines for the management of AKI and common terminology criteria for 
adverse events v4.0 (CTCAE).

RIFLE AKI criteria

  Serum creatinine* Glomerular filtration Urine output

Risk ×1.5 Reduced (>25%) <0.5 ml/kg/h for 6 h

Injury ×2.0 Reduced (>50%) <0.5 ml/kg/h for 12 h

Failure ×3.0 or higher Reduced (>75%) <0.3 ml/kg/h for 24 h 
or anuria for 12 h

Loss of kidney function Complete loss of function >4 weeks

End-stage Kidney 
Disease

Complete loss of function >3 months

Related AKI criteria

  Serum Creatinine Urine Output

Stage I ×1.5–1.9 <0.5 ml/kg/h for 6 h

Stage II ×2.0–2.9 <0.5 ml/kg/h for 12 h

Sage III ×3.0 or higher <0.3 ml/kg/h for 24 h or anuria for 12 h

CTCAE v4.0

  Serum Creatinine Recommendations

Grade 1 ×1.5–2.0 Intervention not indicated

Grade 2 ×2.0–3.0 Minimal, local noninvasive intervention indicated

Grade 3 ×3.0 or 4.0 mg/dl Hospitalization indicated

Grade 4 Life threatening 
consequences: dialysis 
indicated

Life threatening consequences: urgent 
intervention indicated

Grade 5 Death Death related to adverse event

*Increase of creatinine values with respect to baseline.
AKI, acute kidney injury; CTCAE, Common Terminology Criteria for Adverse Events; KDIGO, Kidney Disease Improving 
Global Outcomes.
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their signals, thus providing ‘checkpoints’ for 
immune system regulation. The efficiency of T 
cell responses mostly depends on activation of the 
CD28 receptor, which interacts with the B7 
ligand expressed by dendritic cells after the 
engagement of the TCR by MHC-II.36–38 The 
intracellular signals driving the differentiation of 
resting lymphocytes into effector T cells can be 
efficiently restrained by specific immune check-
points, including those targeting both CTLA-4 
and PD-1 receptors.39 The CTLA-4 receptor is 
expressed abundantly by T cells and regulates the 
amplitude of the early stages of T cell activation 
while competing with CD28 to bind B7, thereby 
reducing the efficacy of co-stimulation.36 CTLA-4 
arrests cell cycle progression, promotes apoptosis 
and renders newly antigen-specific T cells anergic. 
The inhibitory signals driven by the CTLA-4 path-
way are mostly activated in effector T cells and T 
regulatory cells, thus leading to a suppressive 

milieu that restrains immune surveillance. The 
trans-membrane PD-1 receptor, which binds both 
PD-L1 and PD-L2, is expressed by the majority 
of immune cells.40 Following the binding of these 
ligands to the receptor, its cytoplasmic domain 
containing an immunoreceptor tyrosine-based 
inhibitory motif (ITIM) and the immunoreceptor 
tyrosine-based switch motif that is mainly impli-
cated in driving the receptor-mediated immune 
suppressive signals. The blockade of the CTLA-4 
and PD-1 receptors by their ligands partly restores 
the T cell activity, restrains the production of 
suppressive cytokines and limits the major mech-
anisms that negatively influence the melanoma 
microenvironment.41,42

However, the mechanisms activated by the block-
ade of immune checkpoint driving the acute renal 
damage are largely unknown although but gener-
ally attributable to: direct immunogenicity of the 

Figure 1.  The hallmark of acute interstitial nephritis induced by an anti-PD-1 monoclonal antibody. (a) A 
representative renal biopsy from a patient treated with anti-PD-1 who developed severe tubulitis (*). The 
diffuse infiltrate mostly consists of lymphocytes and plasma cells. The glomerular morphology (**) is almost 
normal but a mild to moderate intimal fibrosis is seen in an interlobular artery. (b) and (c) Diffuse severe 
tubular inflammation (*) without findings associated with atrophy, including lymphocyte infiltration and 
interstitial edema (**). (d) Mild-moderate capillary congestion in a glomerulus surrounded by an interstitial 
infiltrate but without any other significant abnormalities. Silver methenamine staining of renal tissues 
visualized by optical microscopy (50× and 400× magnification).
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drug that consists of the direct binding of ICIs to 
target molecules expressed on nonimmune sys-
tem cells (off-target effect), for example, intra-
parenchymal renal cells express high levels of 
PD-L1 and PD-L2, which may be the targets of 
anti-PD-1 agents that directly promote renal 
injury,18,42 and the effect of ICIs on the immune 
system mediated by an autoimmune phenomena 
induced by loss of peripheral tolerance to self-
reactive T cells, the re-activation of drug-specific 
T cells through ICI-induced loss of toler-
ance;26,43–46 the migration and activation of effec-
tor T cells associated with pro-inflammatory 
cytokines release, and the generation of autoanti-
bodies that directly drive renal damage.

In addition to melanoma, recent clinical trials 
have identified over 30 cancer histotypes with 
sensitivity to anti-PD(L)-1. These ‘PD-Lomas’47 
include microsatellite instability (MSI)-high solid 
tumors, Hodgkin and non-Hodgkin lymphoma, 
Merkel cell carcinoma, non-small cell lung 
cancer (NSCLC), renal, urothelial, triple-
negative breast, and head and neck cancers.48,49 
Encouraging results have been obtained by tar-
geting PDL-1 in other cancer types.6 However, 
despite anti-PDL-1-related improvements in PFS 
and OS, a variety of irAEs have been reported in 
treated patients, including cutaneous manifesta-
tions, colitis, pneumonitis, endocrinopathies, and 
AIN whose incidence ranges from 3%–20% 
depending on the clinical setting and inhibitor 
type.50

The mechanisms inducing CTLA-4 and PD-1 
nephrotoxicity are different, as are the patterns of 
renal damage induced by the anti-CTLA-4 
MoAbs Ipilimumab® and Tremelimumab®.51 
These patterns consist of: a lupus-like glomeru-
lonephritis with anti-double-stranded DNA 
antibody production and either class-G immuno-
globulin or C3 deposits within the glomeruli, 26 
and a tubular-interstitial nephritis that usually 
resembles the hypersensitivity seen in AIN.52 
Previous reports demonstrated the up-regulation 
of PD-1 in renal allograft kidneys as well as dur-
ing acute vascular rejection, which suggests a 
negative role for PD-1 in alloreactive T cell 
responses but also the protection of tubular cells 
from T cell-mediated injury during acute allograft 
rejection. In a study based on a model of ischemia-
reperfusion-induced inflammation, T regulatory 
cells were shown to express large amounts of 
PD-1, which limited their interaction with both 
tubular cells and other T cells, thus favoring renal 

cell cytotoxicity.53 In addition, the development 
of spontaneous lupus-like glomerulonephritis and 
arthritis in PD-1 deficient mice has been 
reported.54 Furthermore, the ICI-induced loss of 
tolerance has been demonstrated in murine mod-
els showing that PD-1 signaling is critical for sup-
porting the peripheral tolerance of self-antigens 
by restraining self-reactive T cells and stimulating 
tolerogenic DCs. In this context, PD-1 signals 
limit CD8+ T cell-induced inflammation and 
PD-1 knockout mice spontaneously developing 
glomerular damage.54,55

The effect of the PD-1 receptor in cancer reflects 
its interaction with its two major ligands: PDL-1, 
expressed by immune and nonimmune cells, and 
PDL-2, expressed on the surface of dendritic cells 
and macrophages.56 Murine models have shown 
that PD-1 signaling is essential to the peripheral 
tolerance of self-antigens as it restrains the expan-
sion of self-reactive T cells and stimulates tolero-
genic DCs.46 Both the PD-1/PDL-1 and the 
PD-1/PDL-2 axes are critical mediators of 
immune control in the kidney, because they limit 
CD8+ T cell-mediated inflammatory injury, as 
evidenced by the observation that PD-1 knockout 
mice spontaneously develop glomerulonephri-
tis.54,57 As shown in Figure 2, PD-1 inhibitors 
reactivate exhausted T cells primed by the expo-
sure to pathogenetic stimuli but subsequently 
inhibited by PD-1 signaling.26,46,55 However, both 
scenarios may enhance T cell migration to the 
kidney and the cytotoxic activity of these cells. In 
conclusion, the restrained engagement of PDL-1 
expressed by renal cells with PD-1 on T cells fol-
lowing PD-1 inhibitor treatment may allow the 
stimulation proliferation of T cell, leading to 
cytotoxicity, cytokine over production, and the 
infiltration of circulating immune cells, including 
immature and functionally defective subsets of 
plasmacytoid DCs.58 This large-scale recruitment 
of inflammatory and immune cells is a prerequi-
site for the development of AIN in patients receiv-
ing immunotherapy for advanced cancer.

Prognostic biomarkers and treatment
The improved survival of patients with melanoma 
and NSCLC treated with ICIs has encouraged 
studies aimed at the identification of either poten-
tial predictive or prognostic markers of respon-
siveness to immunotherapy.59,60 In contrast, 
biomarkers of toxicity or irAEs have been less 
thoroughly investigated. Sarcopenia and low 
muscle mass were shown to be associated with 
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the occurrence of irAEs but other potential base-
line risk factors include previous autoimmune 
disorders, tumor infiltration, and viral infec-
tions.61 While the risk of an irAE in patients 
receiving anti-CTLA-4 inhibitors is dose-depend-
ent, cumulative toxicity induced by anti-PD-1 
MoAbs has not been demonstrated.52,62 However, 
the prognostic applicability of these observations 
in the clinical setting is limited, such that the 
research focus has shifted to the T cell repertoire, 
IL-17 levels and, recently, to circulating B cells. 
The latter was shown to be numerically impaired 
in patients receiving ICIs. Parallel findings 
include enrichment of peripheral plasmablasts 
and the CD21low PD-1+ memory B cell subset. 
Measurements of transcriptional activity in this 
cell population prior to and after ICIs revealed 
the increased transcription of genes associated 

with cell activation and cytokine production. 
Additional features of the CD21low population are 
the ability to traffic toward nonlymphoid tissues 
and actively participate in inflammatory events 
involved in autoimmunity. Thus, changes in the 
frequency of CD21low cells may be predictive of 
irAEs.39 While a putative biomarker of respon-
siveness to ipilimumab with clinical applicability 
has yet to be identified,60 adequate PD-L1 expres-
sion by tumor cells is a prerequisite in the selec-
tion of patients with metastatic NSCLC or 
advanced urothelial carcinoma who are candi-
dates for anti-PD-1 MoAb (pembrolizumab) 
therapy.63,64 However, the relevance of clinical 
data validating the use of immunotherapy in 
patients with melanoma and NSCLC, and the 
early identification of irAEs remains challenging. 
An intriguing paradox, however, is the 

Figure 2.  Mechanisms of renal damage induced by PD-1 inhibitors. (a) shows the mechanisms regulating the 
immune surveillance in melanoma and the basic events activated during the T cell interplay with DCs. This 
crosstalk is the consequence of antigen/drug processing and mostly occurs via TCR-MHC engagement. (b) The 
resulting T cell activation is followed by migration toward lymphoid and nonlymphoid tissues, including the 
kidney. T cells expressing PD-1 may bind PD-L1 expressed on renal cells, which generates inhibitory signals 
driving T cell exhaustion (left). In contrast, T cells in which PD-1 is blocked by ICIs (right) migrate toward the 
kidney, where they may cause cytotoxicity by the local over production of nephritogenic cytokines. This event 
may result in irreversible damage to the tubules and the progressive deterioration of kidney function.
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unexpected positive association between irAEs 
and survival and specifically between melanoma 
and the development of rash and vitiligo observed 
in dedicated clinical trials65 and explained as a 
consequence of immune activation.

The impact of steroids on the outcome of treat-
ment in cancer patients who develop an irAE in 
response to ICI therapy is thus far unclear. 
Contradictory results were obtained in two retro-
spective studies that examined the utility of ster-
oids in the management of adverse events, 
including renal failure.66,67 A phase II trial of ipili-
mumab demonstrated that the benefit of steroids 
in terms of irAEs does not extend to either PFS or 
OS. Although data from patients receiving anti-
PD-1 MoAbs is limited, a clinical deterioration of 
efficacy was not experienced by the majority of 
patients who, additionally, received steroids. 
Given the conflicting data, the modest informa-
tion obtained by trials investigating ICIs, and the 
lack of randomized prospective trials in this field, 
the benefit of steroids in the treatment of irAEs 
still needs to be demonstrated. However, accord-
ing to results from single institutions, steroids are 
effective in limiting renal toxicity in the majority 
of patients. In addition, it is unclear whether ster-
oids specifically dampen the efficacy of anti-PD-1 
treatment, since the rates of disease progression 
and stable disease were similar in patients forced 
to stop treatment and in patients who resumed 
treatment after a period of discontinuation.14 
However, patients refractory to steroids may be 
treated with other immunomodulatory medica-
tions that include infliximab, an anti-tumor necro-
sis factor (TNF)-α MoAb, the anti-metabolite 
mycophenolate mofetil, the calcineurin inhibitors 
tacrolimus, and cyclosporine. Other strategies 
proposed for patients not eligible to receive inf-
liximab and mostly affected by gastrointestinal 
complications include vedolizumab, an anti-α4β7 
MoAb.13

Conclusions
Despite the encouraging results obtained in trials 
of immunotherapeutic agents, these drugs may 
induce nonspecific immunological activation 
leading to adverse effects that may necessitate the 
discontinuation of therapy. Therefore, identifica-
tion of the molecular mechanisms underlying 
irAEs is required to optimize therapeutic strategy 
planning. For example, drawing on systematic 
reviews, meta-analyses, randomized controlled 
trials, and case series, a multidisciplinary panel of 

experts has developed clinical practice guidelines 
for the management of adverse events associated 
with ICI immunotherapy.22,68

While the clinical management of an irAE 
depends on the organ injured, ICI treatment 
should be continued in patients who develop 
grade 1 toxicities, with the exception of neuro-
logic, hematologic, and cardiac complications. 
ICI treatment may need to be discontinued in 
most patients with grade 2 adverse events, with 
the resumption of treatment when the symptoms 
revert to grade 1 or less. Corticosteroids may be 
administered without contraindications.69 Grade 
3 toxicities generally warrant the suspension of 
ICI therapy and these patients should receive 
high-dose corticosteroids (prednisone 1–2 mg/kg/
day or methylprednisolone 1–2 mg/kg/day), which 
can be tapered within 4–6 weeks. Patients with 
steroid-refractory irAEs may require additional 
immunosuppressive agents, including mycophe-
nolate.70 In general, the definite discontinuation 
of ICIs is recommended in patients with refrac-
tory grade 3 and 4 toxicities, with the exception of 
those with endocrine disorders that have been 
controlled by hormone replacement. In conclu-
sion, while the potential influence of other medi-
cations on renal function in patients receiving 
ICIs is still unclear, drugs exerting a direct 
nephrotoxic effect should probably be avoided 
during immunotherapy. At present, to the best of 
the authors’ knowledge, no data is available in the 
medical literature on the relationship between the 
incidence of renal irAEs and the efficacy of immu-
notherapy in terms of response rates in different 
cancer types.

Previous studies based on experimental models 
of both cancer and autoimmune disorders dem-
onstrated the immunomodulatory effect of vita-
min D, which was attributed to its direct role on 
Th17 cells.71,72 Therefore, the administration of 
vitamin D during ICI therapy could theoretically 
prevent or ameliorate irAEs.73,74 Finally, other 
reports have demonstrated that the gut microbi-
ota modulates the clinical response to cancer 
therapy, including the onset of irAEs, and that 
variations in the gut flora influence the efficacy of 
ICIs. In a murine model, mice receiving CTLA4 
antagonists developed T cell-mediated damage 
of the duodenal mucosa and a parallel dysregula-
tion of the gut microbiota.75 The inflammatory 
microenvironment in the intestine may induce 
the expansion of Th17 cells and increases the risk 
of irAEs. In addition, retrospective clinical data 
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in melanoma differentiated a favorable from 
unfavorable gut microbiota in relation to a poten-
tial predictive role in patients receiving anti-PD-1 
MoAbs. Other reports proved that the abun-
dance of Akkermansia muciniphila predicts the 
resistance to PD-1 blockers.76–78 Moreover, geni-
tourinary cancer harbors high neoantigen load as 
well as high tumor mutational burden. Therefore, 
urothelial cancer responds to ICIs while resident 
urinary microbiota should be explored as a hid-
den factor implicated in cancer progression.79,80 
Further studies of the molecular mechanisms 
that are activated in the development of AIN are 
required. Their results will facilitate the planning 
of adequate preventive strategies that will avoid 
the need for treatment discontinuation.
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