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Abstract We consider a very general stochastic model for an SIR epidemic on a net-
work which allows an individual’s infectious period, and the time it takes to contact
each of its neighbours after becoming infected, to be correlated. We write down the
message passing system of equations for this model and prove, for the first time, that it
has a unique feasible solution. We also generalise an earlier result by proving that this
solution provides a rigorous upper bound for the expected epidemic size (cumulative
number of infection events) at any fixed time t > 0. We specialise these results to
a homogeneous special case where the graph (network) is symmetric. The message
passing system here reduces to just four equations.We prove that cycles in the network
inhibit the spread of infection, and derive important epidemiological results concern-
ing the final epidemic size and threshold behaviour for a major outbreak. For Poisson
contact processes, this message passing system is equivalent to a non-Markovian
pair approximation model, which we show has well-known pairwise models as spe-
cial cases. We show further that a sequence of message passing systems, starting
with the homogeneous one just described, converges to the deterministic Kermack–
McKendrick equations for this stochastic model. For Poisson contact and recovery, we
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show that this convergence is monotone, from which it follows that the message pass-
ing system (and hence also the pairwise model) here provides a better approximation
to the expected epidemic size at time t > 0 than the Kermack–McKendrick model.

Keywords Stochastic SIR epidemic · Kermack–McKendrick model ·
Non-Markovian · Message passing · Pairwise · Network

Mathematics Subject Classification 92D30 · 91D30

1 Introduction

One of the earliest and most comprehensively analysed epidemic models is the
susceptible-infected-recovered (SIR) model of Kermack and McKendrick (1927). In
addition to providing insights into threshold behaviour and vaccination, it has also
underpinned much subsequent work in applied mathematical epidemiology (Ander-
son and May 1992). A stochastic version, constructed from similar assumptions, was
defined and analysed later (for example, Bailey 1975, Chapter 6) and it became of
interest to understand the relationship between the two (Kurtz 1970, 1971; Barbour
1972, 1974).

More recently, various heterogeneities have been added to both deterministic and
stochastic epidemic models. A particularly important one is the contact network
which allows for specific relationships between pairs of individuals; see Danon et al.
(2011) and Pastor-Satorras et al. (2015) for reviews. While it is straightforward to
simulate stochastic epidemics on networks, deterministic approximations have also
been developed to assist our understanding. Important examples of these include pair
approximation (Keeling 1999; Sharkey 2008), message passing (Karrer and Newman
2010) and edge-based models (Miller et al. 2011).

The message passing approximation for stochastic epidemics was developed by
Karrer and Newman (2010) and is central to the work that we present here. This
approach allows one to exactly capture the marginal distributions for the health sta-
tuses of individuals (i.e whether they are susceptible, infected or recovered) when the
contact network is a tree and provides useful rigorous bounds for these distributions
otherwise. Notably, the message passing approach is also applicable to extremely gen-
eral non-Markovian stochastic epidemics and the number of equations it requires scales
linearly with the number of connected pairs of individuals; far fewer than the number
of Kolmogorov forward equations for the Markovian case which scales exponen-
tially with population size. Wilkinson and Sharkey (2014) showed that, when contact
processes are assumed to be Poisson, a generalised version of the message passing
equations is equivalent to a pairwise model that is defined at the level of individuals,
thus unifying two major representations of epidemic dynamics. Their argument relies
on the application of Leibniz’s integral rule, so here we take the opportunity to provide
sufficient conditions for the applicability of that rule in this context (“Appendix 4”).

In Sect. 2 we define a more general stochastic model which allows for realistic
correlations between contact times and infectious periods. Specifically, it allows all of
an individual’s post-infection contact times (to each of its neighbours), and the negative
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of its infectious period, to be positively correlated. This could capture, for example,
a scenario where infected individuals adopt some disease-combating behaviour such
as taking antiviral medication, increasing the infectious contact times to all of their
neighbours and decreasing their infectious period.Wewrite down themessage passing
system for this stochastic model in Sect. 2.1 and then, for the first time, provide a non-
restrictive sufficient condition for the message passing equations to have a unique
feasible solution (Theorem 1). This is important because so far, the message passing
construction of Karrer and Newman has not been shown to give rise to a unique
epidemic. We then, in Sect. 2.2, extend the results found in Karrer and Newman
(2010) and Wilkinson and Sharkey (2014) to this more general stochastic model; for
example, the message passing system cannot underestimate the expected epidemic
size at any time t > 0, i.e. the expected number of susceptibles infected during (0, t]
(Theorem2;Corollary 1). This iswhat ledKarrer andNewman to describe themessage
passing system as providing a ‘worst case scenario’.

For all of Sect. 3, we focus on a special case of the above stochastic model which
assumes a contact structure with a large amount of symmetry and that all individuals
behave in the same way. We refer to this special case as the ‘homogeneous stochastic
model’. The corresponding message passing system is written down in Sect. 3.1 and,
after exploiting symmetries, this reduces to a system comprising of only four equations
which we refer to as the ‘homogeneous message passing system’. This system is
identical in form to a special case of the equations formulated by Karrer and Newman
(2010, equations 26 and 27), although here it is related to a different stochastic model.
We then obtain several epidemiologically relevant results in Sect. 3.2: the stochastic
epidemic is shown to be inhibited by cycles in the contact network (Theorem 3), a
simple relation for an upper bound on the final epidemic size in the stochastic model
is proved and sufficient conditions for no major outbreak in the stochastic model
are found (Theorem 4). The latter gives an upper bound on the critical vaccination
coverage to prevent a major outbreak, assuming a perfect vaccination.

As a special case of the general correspondence shown in Wilkinson and Sharkey
(2014), the homogeneous message passing system has an equivalent non-Markovian
pairwise model when the contact processes are Poisson. In Sect. 3.3 we write down
these equations explicitly (Theorem 5). This pairwise model provides exactly the
same epidemic time course as the homogeneous message passing system and hence
exactly the same upper bound on the epidemic size at time t (Corollary 2), and gives
the same final epidemic size (Corollary 3). Pairwise models are known to give good
approximations of stochastic epidemic dynamics on networks in a broad range of cases
[see, for example, Keeling (1999) and Sharkey (2008)]. Thus the proof of equivalence
when contact processes are Poisson suggests that message passing provides a good
approximation as well as useful bounds.

In Sect. 3.4, we derive the classic Kermack–McKendrick epidemic model as an
asymptotic special case of the homogeneous message passing system (Theorem 6).
Notably, our derivation of such ‘deterministic’ epidemic models from the homoge-
neous message passing system allows us to relate them explicitly to the stochastic
model [see also, for example, Trapman (2007) and Barbour and Reinert (2013)].
Thus, we are able to show that in the case where contact and recovery processes are
independent and Poisson, the Kermack–McKendrick model bounds the expected epi-
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demic size at time t in the homogeneous stochastic model (Corollary 4). However,
the bound is coarser than that provided by the homogeneous message passing sys-
tem and the pairwise system, which therefore give a better approximation than the
Kermack–McKendrick model. The paper ends with a brief discussion in Sect. 4.

2 The stochastic model (non-Markovin network-based SIR dynamics)

We define a very general class of network-based stochastic epidemics which allow
heterogeneous and non-Poisson individual-level processes, and heterogeneity in the
initial states of individuals (including the case where the initial states of all individuals
are non-random).

Let G = (V, E) be an arbitrary (possibly countably infinite) simple, undirected
graph, where V is the set of vertices (individuals) and E is the set of undirected edges
between vertices (throughout the paper we will use the terms ‘graph’, ‘network’ and
‘contact network’ interchangeably). For i ∈ V , letNi = { j ∈ V : (i, j) ∈ E} be the set
of neighbours of i and let |Ni | < ∞. We assume that two individuals are neighbours if
and only if at least one can make direct contacts to the other. A particular realisation of
the stochastic model is specified as follows. Each individual/vertex i ∈ V is assigned
a set of numbers Xi relevant to the behaviour of i and the spread of the epidemic:

Xi = {Yi , μi , ω j i ( j ∈ Ni )},

where Yi is equal to 1, 2, or 3, according to whether i is instantaneously infected
at t = 0, initially susceptible or initially recovered/vaccinated, these being mutually
exclusive; μi ∈ [0,∞] is i’s infectious period if i is ever infected; ω j i ∈ [0,∞] is the
time elapsing between i first becoming infected and it making a contact to j , if i is
ever infected. Therefore, for t ≥ 0, i makes an infectious contact to j at time t if and
only if (i) i becomes infected at some time s ≤ t , (ii) ω j i = t − s, and (iii) ω j i < μi .
Susceptible individuals become infected as soon as they receive an infectious contact,
and infected individuals immediately become recovered when their infectious period
terminates (initially recovered/vaccinated individuals never become infected). We let
X = ∪i∈VXi . Thus, the state of the population at time t ∈ [0,∞), which takes values
in {S, I, R}V , is a function of X .

The situation which we wish to consider is whereX is a set of random variables, so
from now on we refer to Yi , μi , ω j i , where i ∈ V, j ∈ Ni , as random variables. We
use ri and hi j to denote the (marginal) probability density functions (PDFs) forμi and
ωi j respectively, and zi and yi to denote P(Yi = 2) and P(Yi = 3) respectively. Thus,
P(Yi = 1) = 1− yi −zi . The probability that individual i ∈ V is in state Z ∈ {S, I, R}
at time t ≥ 0 is denoted by PZi (t).

Importantly we assume that for every i ∈ V ,

X ∗
i = {−μi , ω j i ( j ∈ Ni )}

is a set of associated random variables, as defined by Esary et al. (1967) and discussed
in this context by Donnelly (1993) and Ball et al. (2015). Additionally, we assume
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that the set of multivariate random variables {Xi : i ∈ V} is mutually independent,
and that Yi and X ∗

i are independent for all i ∈ V . A finite set of random variables,
T1, T2, . . . , Tn say, is associated (or positively correlated) if

E[ f (T1, T2, . . . , Tn)g(T1, T2, . . . , Tn)] ≥ E[ f (T1, T2, . . . , Tn)]E[g(T1, T2, . . . , Tn)]
(1)

for all non-decreasing real-valued functions f, g for which the expectations in (1)
exist. Note that (1) implies that the correlation of any pair of these random variables
is positive (i.e. ≥ 0). Further, if T1, T2, . . . , Tn are mutually independent, then they
are associated; see Esary et al. (1967, Theorem 2.1).

The above assumptions of association and independence are made so as to obtain
the maximum amount of generality while the message passing and pairwise systems,
whichwe shall define, give rigorous bounds on the expected dynamics in the stochastic
model, and exact correspondence when the graph is a tree or forest.

Our stochastic model represents a generalisation of that considered by Karrer and
Newman (2010), and also generalises themodel considered byWilkinson and Sharkey
(2014), which assumed that all of the elements of X are mutually independent. Here,
we do not make this last assumption and allow all of an individual’s post-infection
contact times (to each of its neighbours), and the negative of its infectious period, to
be positively correlated. This could capture, for example, the scenario where infected
individuals tend to adopt some disease-combating behaviour, increasing the contact
times to all of their neighbours and decreasing their infectious period.

The model considered by Wilkinson and Sharkey (2014), which incorporates a
directed graph, is equivalent to a special case of the above model. Directedness is still
captured by the above model since, for any given i ∈ V and j ∈ Ni , ωi j and ω j i are
assigned independently.

2.1 The message passing system and its unique solution

Following Wilkinson and Sharkey (2014), we apply the message passing approach
of Karrer and Newman (2010) to the stochastic model defined in Sect. 2. Recall
that message passing relies on the concept of the cavity state in order to simplify
calculations. An individual is placed into the cavity state by cancelling its ability to
make contacts. This does not affect its own fate but it does affect the fates of others
because it cannot pass on the infection.

For arbitrary i ∈ V and neighbour j ∈ Ni , let Hi← j (t) denote the probability that
i , when in the cavity state, does not receive an infectious contact from j by time t . We
can now write:

Hi← j (t) = 1 −
∫ t

0
fi j (τ )

(
1 − y j − z jΦ

j
i (t − τ)

)
dτ, (2)

where fi j (τ )Δτ = hi j (τ )P(μ j > τ | ωi j = τ)Δτ is the probability (+o(Δτ)) that
j makes an infectious contact to i during the time interval [τ, τ + Δτ) (for Δτ → 0),
where time τ is measured from the moment j becomes infected, and Φ

j
i (t) is the
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probability that j does not receive any infectious contacts by time t when i and j are
both in the cavity state. Note that although the stochastic model considered here is
more general, Hi← j (t) may still be expressed, as in (2), similarly to equation 1 in
Wilkinson and Sharkey (2014), because {Xi : i ∈ V} is mutually independent and Yi
is independent from X ∗

i for all i ∈ V .
To obtain a solvable system, the probability Hi← j (t) is approximated by Fi← j (t),

where Fi← j (t) (i ∈ V, j ∈ Ni ) satisfies

Fi← j (t) = 1 −
∫ t

0
fi j (τ )

⎛
⎝1 − y j − z j

∏
k∈N j\i

F j←k(t − τ)

⎞
⎠ dτ. (3)

Any solution of (3) which gives Fi← j (t) ∈ [0, 1] for all t ≥ 0, and all i ∈ V, j ∈ Ni ,
is called feasible. It was shownbyWilkinson andSharkey (2014), followingKarrer and
Newman (2010), that a feasible solution exists as the limit of an iterative procedure.

The message passing system can now be defined (for i ∈ V):
S(i)
mes(t) = zi

∏
j∈Ni

Fi← j (t), (4)

I (i)
mes(t) = 1 − S(i)

mes(t) − R(i)
mes(t), (5)

R(i)
mes(t) = yi +

∫ t

0
ri (τ )[1 − yi − S(i)

mes(t − τ)]dτ, (6)

where the variables on the left-hand side approximate PSi (t), PIi (t) and PRi (t)
respectively (recall that PSi (t), PIi (t) and PRi (t) are respectively the probability that
individual i is susceptible, infective and recovered-or-vaccinated at time t). Numerical
evidence for the effectiveness of themessage passing system, in capturing the expected
dynamics of the stochastic model, can be seen in Figures 1 and 2 of Wilkinson and
Sharkey (2014).

Note that the dimensionof themessagepassing system (3)-(6) is appreciably smaller
than that of the Kolomogorov forward equations for the case where the dynamics are
Markovian. Suppose that |V| = N . Then the forward equations have dimension 3N

and themessage passing system has dimension at most N (N−1)+3N . Inmany cases,
symmetries can be exploited to reduce the dimension of both the forward equations,
see e.g. Simon et al. (2011), and the message passing system. However, the message
passing system is still typically much smaller and can be very small, as in the model
studied in Sect. 3.

Theorem 1 (Uniqueness of the feasible solution of the message passing system)
Assume that

sup
i∈V

|Ni | < ∞ and sup
(i, j)∈E

(
sup
τ≥0

fi j (τ )

)
< ∞.

Then there is a unique feasible solution of Eqs. (3)–(6) and the feasible Fi← j (t) are
continuous and non-increasing for all i ∈ V, j ∈ Ni .
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Proof See “Appendix 1”. 
�
It was shown by Wilkinson and Sharkey (2014) that when the graph is finite and

fi j (τ ) = Ti je−Ti j τ
∫ ∞
τ

r j (τ ′)dτ ′ (i ∈ V, j ∈ Ni ), where Ti j ∈ (0,∞), i.e. con-
tact processes are Poisson and independent of recovery processes, then the message
passing system (3)–(6) is equivalent to an individual-level pairwise system of integro-
differential equations. It now follows that this pairwise system of equations also has a
unique feasible solution.

The message passing system (3)–(6), which coincides with that given in Wilkinson
and Sharkey (2014) although the underlying model here is more general, differs from
the message passing system in Karrer and Newman (2010) in that the probability an
individual is initially infected need not be the same for all individuals, and individ-
uals may be initially recovered or vaccinated. The system (3)–(6) also accounts for
heterogeneity in the recovery and contact processes. A key use of message passing
equations is that they yield a rigorous upper bound for the mean spread in the under-
lying stochastic epidemic. In the next subsection, we show that this property extends
to our more general model.

2.2 Bounding the expected epidemic size at time t

For t ≥ 0, let X (t) denote the number of susceptibles at time t . Thus, X (0) − X (t) is
the total number of individuals infected by time t not counting those infected at t = 0.
We refer to this quantity as the epidemic size at time t .

Theorem 2 (Message passing bounds the marginal distribution for the health status
of an individual) For all t ≥ 0 and all i ∈ V ,

PSi (t) ≥ S(i)
mes(t), (7)

PRi (t) ≤ R(i)
mes(t), (8)

with equality if G is a tree or forest.

Proof In the case where X is mutually independent and V is finite, this is proved
by Wilkinson and Sharkey (2014) and Ball et al. (2015) by generalising Karrer and
Newman (2010). The proof for our current more general model is in “Appendix 2”. 
�

For t ≥ 0, let Z(t) denote the number of recovered-or-vaccinated individuals at
time t . The following corollary follows immediately from Theorem 2 on noting that,
for t ≥ 0,

E[X (t)] =
∑
i

PSi (t) and E[Z(t)] =
∑
i

PRi (t).

Corollary 1 For all t ≥ 0, we have E[X (t)] ≥ ∑
i S

(i)
mes(t) and E[Z(t)] ≤∑

i R
(i)
mes(t), with equality occurring when the graph is a tree or forest. The expected

epidemic size at time t is given by E[X (0)− X (t)] = ∑
i∈V zi − E[X (t)]. Thus, since

we have a lower bound on E[X (t)] we also have an upper bound on the expected
epidemic size at time t.
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3 The homogeneous stochastic model

In this section we consider a special case of the stochastic model, and we refer to this
special case as ‘the homogeneous stochastic model’. In the homogeneous stochastic
model, the graph is symmetric and connected. Examples of symmetric connected
graphs include complete graphs, ring lattices, infinite square lattices andBethe lattices.
In a symmetric graph, each individual has the same (finite) number n of neighbours,
and we say that the graph is n-regular. To avoid triviality we assume n ≥ 2.

Definition 1 A graph G = (V, E) is called symmetric if it is arc-transitive; i.e. for
any two ordered pairs of neighbours i, j , and i ′, j ′, there exists a graph-automorphism
which maps i to i ′ and j to j ′ (Godsil and Royle 2001).

Additionally, in the homogeneous stochastic model, the joint distribution of
(Yi , μi , ω j i ( j ∈ Ni )) is symmetric in its last n arguments and is the same for all
i ∈ V . Thus, it is impossible to distinguish between any two individuals by their
behaviour or by their position in the graph. Note that we have not precluded the vari-
ables inX ∗

i from being non-trivially associated (for all i ∈ V), i.e. i’s infectious period
and the time it takes for it to contact each of its neighbours, after infection, may all be
non-trivially correlated.

We use r and h to denote the (marginal) PDFs for μi and ωi j respectively, and z
and y to denote P(Yi = 2) and P(Yi = 3) respectively. Thus, P(Yi = 1) = 1− y − z.
To avoid triviality, we assume that 0 < z < 1 and 0 ≤ y < 1 − z.

Owing to symmetry (in this special case), the probability distribution for the health
status of an individual is the same for all individuals, i.e. for all i, i ′ ∈ V and all t ≥ 0,
we have PSi (t) = PSi ′ (t), PIi (t) = PIi ′ (t) and PRi (t) = PRi ′ (t) (let PS(t), PI (t) and
PR(t) denote these quantities). Similarly, for all i ∈ V, j ∈ Ni and all i ′ ∈ V, j ′ ∈ Ni ′ ,
and all t ≥ 0, we have Hi← j (t) = Hi ′← j ′(t) (let Hsym(t) denote this quantity).

3.1 The homogeneous message passing system

For the homogeneous stochastic model, (3) becomes

Fi← j (t) = 1 −
∫ t

0
f (τ )

⎛
⎝1 − y − z

∏
k∈N j\i

F j←k(t − τ)

⎞
⎠ dτ (i ∈ V, j ∈ Ni ),

(9)
where we have used fi j (τ ) = fi ′ j ′(τ ) for all i ∈ V, j ∈ Ni , and all i ′ ∈ V, j ∈ Ni ′ ,
and all τ ≥ 0, and we let f (τ ) denote this quantity.

The arc-transitivity of symmetric graphs and the symmetry in (9) allow us to sim-
plify (3)–(6), and to write down the full homogeneous message passing system as:

Smes(t) = zFsym(t)n, (10)

Imes(t) = 1 − Smes(t) − Rmes(t), (11)

Rmes(t) = y +
∫ t

0
r(τ )[1 − y − Smes(t − τ)]dτ, (12)
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where

Fsym(t) = 1 −
∫ t

0
f (τ )

[
1 − y − zFsym(t − τ)n−1

]
dτ. (13)

In deriving these equations, we have used Fi← j (t) = Fi ′← j ′(t) for all i ∈ V, j ∈ Ni

and all i ′ ∈ V, j ′ ∈ Ni ′ , and all t ≥ 0, and we let Fsym(t) denote this quantity. Note
that we have also made use of the fact that every individual has n neighbours. This
system is identical in form (when vaccination is disallowed) to the message passing
system for the configuration network model provided by Karrer and Newman (2010,
equations 26 and 27, making use of equations 1, 4 and 5), in the case where every
individual has n neighbours with probability 1. From Theorem 1, we know that if
supτ≥0 f (τ ) < ∞ then (13) has a unique feasible solution.

For clarity we write out these equations for the simplifying cases of Poisson trans-
mission and recovery processes, and Poisson transmission and fixed (non-random)
recovery.

Example 1 (Poisson transmission and recovery) For independent Poisson transmis-
sion and recovery processes (specifically, τi andω j i are independent and exponentially
distributed with rates γ and β respectively), with f (τ ) = βe−(β+γ )τ , the homoge-
neous message passing system can be solved via the following ordinary differential
equations (ODEs):

Ḟsym(t) = γ
(
1 − Fsym(t)

)
− β

(
Fsym(t) − y − zFsym(t)n−1

)
, (14)

Ṙmes(t) = γ Imes(t), (15)

with Smes(t) and Imes(t) given by (10) and (11).

Example 2 (Poisson transmission and fixed recovery) For Poisson transmission pro-
cesses and a fixed recovery period (specifically, τi is non-random with value R ∈
[0,∞] and ω j i is exponentially distributed with rate β), with f (τ ) = βe−βτ (1 −
θ(t − R)) where θ is the Heaviside step function, the homogeneous message passing
system can be solved using the following delay differential equation:

Ḟsym(t) = −β
(
Fsym(t) − y − zFsym(t)n−1

−θ(t − R)e−βR(
1 − y − zFsym(t − R)n−1)), (16)

with

Rmes(t) = y + θ(t − R)
(
1 − y − Smes(t − R)

)
, (17)

and Smes(t) and Imes(t) given by (10) and (11).

Other choices of f (τ ) existwhich allow themessage passing system to be solved via
(non-integro) differential equations, such as the top hat function (Karrer and Newman
2010, equation 33).
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3.2 Epidemiological results

As well as bounding/approximating (or correctly computing in the case of an infinite
regular tree) the expected fractional epidemic size at time t ≥ 0, the homogeneous
message passing system generates other epidemiologically relevant results for the
stochastic model, as demonstrated here.

Theorem 3 (Cycles in the network inhibit the stochastic epidemic) Suppose that
supτ≥0 f (τ ) < ∞. The probability of an arbitrary individual being susceptible at
a given time, for the n-regular Bethe lattice (infinite tree), is less than or equal to this
quantity for all other n-regular symmetric graphs (where the homogeneous stochastic
model is otherwise unchanged). The same holds for the probability of an arbitrary
individual being recovered except with the inequality reversed.

Proof FromTheorem 2, we know that system (10)–(13) cannot overestimate the prob-
ability of an arbitrary individual being susceptible at time t and cannot underestimate
the probability of an arbitrary individual being recovered at time t . However, also from
Theorem 2, the system is exact if the graph is a tree. 
�

Theorem 3 suggests that, all other things being equal, an infection will have the
greatest impact by time t when the contact structure is most tree-like. Indeed, it is
known that clustering and the presence of cycles in the graph may slow down and
limit the spread of an infection (see Miller (2009) and references therein).

Theorem 4 (Final epidemic size relation and sufficient conditions for no major out-
break) For all t ≥ 0,

Smes(∞) ≤ PS(t), Rmes(∞) ≥ PR(t), (18)

where Smes(∞) ≡ limt→∞ Smes(t) may be computed as the unique solution in [0, z]
of (

Smes(∞)

z

) 1
n = 1 − p + py + pz

(
Smes(∞)

z

) n−1
n

, (19)

with p ≡ ∫ ∞
0 f (τ )dτ , and Rmes(∞) = 1 − Smes(∞).

Further, when the fraction initially infected is small, i.e. z → 1 − y from below,
then

PS(∞) = PS(0) if y ≥ 1 − 1

R0
or R0 ≤ 1, (20)

where R0 ≡ (n−1)p. (This means that if each individual is independently vaccinated
with probability greater than or equal to 1−1/R0, or if R0 ≤ 1, then a major outbreak
of the disease is impossible.)

Proof Equation (18) follows fromTheorem2 and the observation that PS(t) and PR(t)
are non-increasing and non-decreasing respectively.

The feasible Fsym(t) is non-increasing (see Theorem 1), so it converges to some
Fsym(∞) ∈ [0, 1] as t → ∞. Note also that, by definition,

∫ t
0 f (τ )dτ converges to
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p ∈ [0, 1] as t → ∞. Now, using (13), we can write Fsym(t) = 1 − ∫ ∞
0 ft (τ )dτ ,

where ft (τ ) = f (τ )(1 − y − zFsym(t − τ)n−1) for τ ∈ [0, t] and is equal to zero
for τ > t . Note that ft (τ ) converges pointwise to f (τ )(1 − y − zFsym(∞)n−1) as
t → ∞. Thus, since 0 ≤ ft (τ ) ≤ f (τ ) for all t, τ ≥ 0, we can use the dominated
convergence theorem to obtain, c.f. Karrer and Newman (2010, equations 23 and 24),

Fsym(∞) = 1 −
∫ ∞

0
lim
t→∞ ft (τ )dτ = 1 − p

(
1 − y − zFsym(∞)n−1

)
. (21)

Taking the limit as t → ∞ in (10), and making use of (21), proves equation (19). It is
straightforward to show by graphical means that (19) has a unique solution in [0, z]. In
the case where z → 1− y from below, it is also straightforward to show by graphical
means that, after setting z = 1− y in (19), then Smes(∞) = z(= Smes(0) = PS(0)) is
the only solution in [0, z] if y ≥ 1 − 1/R0 (R0 ≤ 1 implies this condition). Equation
(20) is then proved by noting that PS(t) ≥ Smes(t), and PS(t) is non-increasing from
PS(0) = Smes(0). 
�

Equation 19 is consistent with the final size relation given byDiekmann et al. (1998)
(equations 5.3 and 5.4) for a regular random graph in the limit of large population size.

Remark 1 Consider an infinite sequence of finite homogeneous stochastic models,
indexed bym, where ym = y ∈ [0, 1) for allm, and where Nm → ∞, pm(nm −1) →
R0 < ∞, zm → 1 − y, as m → ∞ (here, Nm denotes the number of individuals in
the mth model). This does not preclude the expected number of initial infectives from
tending to some positive number, or even diverging, as m → ∞. It is straightforward
that, in the limit of this sequence, the sufficient conditions for no major outbreak in
Theorem 4 still hold. Note that if in addition we have nm → ∞ as m → ∞, then
the final size relation for the homogeneous message passing system (in this limit)
becomes, using (19) with z = 1 − y,

Smes(∞)

1 − y
= e−R0(1−Smes(∞)−y).

This is a well-known final size relation in the mean field literature, although usually
vaccination is not included (see Miller (2012) for a discussion of derivations of this
relation).

3.3 The homogeneous message passing system gives the same epidemic time
course as a pairwise model

Here we show that a generalised pairwise SIR model, with well-known pairwise mod-
els as special cases, gives the same epidemic time course as the homogeneous message
passing system. This allows us to prove epidemiological results for the generalised
pairwise model. Since pairwise models are known to give good approximations of
stochastic epidemic dynamics on networks [see, for example, Keeling (1999) and
Sharkey (2008)], this also strengthens the case for the message passing system being
a good approximation.
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Theorem 5 (Equivalence of the message passing and pairwise models) For the homo-
geneous stochastic model, assume that the contact processes are Poisson with rate
β and that they are independent from the recovery processes, such that f (τ ) =
βe−βτ

∫ ∞
τ

r(τ ′)dτ ′. Assume also that r(τ ) is continuous. Then,

˙[S](t) = −β[SI ](t), (22)

˙[I ](t) = β[SI ](t) −
∫ t

0
r(τ )β[SI ](t − τ)dτ − r(t)N (1 − y − z), (23)

˙[SS](t) = −2β
n − 1

n

[SS](t)[SI ](t)
[S](t) , (24)

˙[SI ](t) = −β

(
n − 1

n

) [SI ](t)[SI ](t)
[S](t)

−β[SI ](t)
+β

(
n − 1

n

) [SS](t)[SI ](t)
[S](t)

−
∫ t

0
e−βτ r(τ )β

(
n − 1

n

) [SS](t − τ)[SI ](t − τ)

[S](t − τ)

× exp

(
−

∫ t

t−τ

β

(
n − 1

n

) [SI ](τ ′)
[S](τ ′)

dτ ′
)
dτ

−nNze−βt r(t)(1 − y − z) exp

(
−

∫ t

0
β

(
n − 1

n

) [SI ](τ )

[S](τ )
dτ

)
, (25)

where

[S] (t) ≡ NSmes(t), (26)

[I ] (t) ≡ N Imes(t), (27)

[SS] (t) ≡ nN SSmes(t) ≡ nNz2Fsym(t)2(n−1), (28)

[SI ] (t) ≡ nN SImes(t) ≡ nNzFsym(t)n−1
(−Ḟsym(t)

β

)
, (29)

and N is a positive number.

Proof See “Appendix 3”. 
�
Corollary 2 (At all time points the pairwisemodel cannot underestimate the expected
epidemic size) If, in the homogeneous stochastic model, contact processes are Poisson
with rate β, i.e. the marginal distribution for ω j i is exponential with parameter β for
all i ∈ V, j ∈ Ni , and these are independent from the infectious periods, then

[S](t)/N≤PS(t), [R](t)/N≥PR(t) (t ≥ 0),

where [R](t)=N − [S](t) − [I ](t).
Proof This follows immediately from Theorems 2 and 5. 
�
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Corollary 3 (Final epidemic size equation for the pairwise model)

( [S](∞)

Nz

) 1
n = 1 − p + py + pz

( [S](∞)

Nz

) n−1
n

,

where [S](∞) ≡ limt→∞[S](t) and p ≡ ∫ ∞
0 βe−βτ ′ ∫ ∞

τ ′ r(τ )dτdτ ′.

Proof This follows immediately from Theorems 4 and 5. 
�
Note that (22)–(25) constitute a closed system for thevariables [S](t), [I ](t), [SS](t)

and [SI ](t) (if [S](t) = 0 then the right-hand sides of (24) and (25) are undefined,
but in this case the left-hand sides are equal to zero). With reference to (28) and (29),
the quantities SSmes(t) and SImes(t) are constructed to capture/approximate, for any
given pair of neighbours at time t , the probability that they are both susceptible and the
probability that the first is susceptible while the second is infected respectively (see
“Appendix 3”). The system (22)–(25) also follows directly from application of the
individual-level pairwise equations in Wilkinson and Sharkey (2014, equations 8 and
9). In the case where the infectious period is exponentially distributed and letting N be
the population size, (23) and (25) simplify to ODEs, and the pairwise (without cluster-
ing)model of Keeling (1999) is obtained. Similarly, after substituting r(τ ) = δ(t−R),
where δ is the Dirac delta function, into (23) and (25), the pairwise model of Kiss et al.
(2015) for a non-random infectious period of duration R is obtained (except that the
last term in (23) and the last term in (25), which relate to the behaviour of the initial
infectives, need to be neglected). However, it may be more efficient to solve the sim-
pler message passing systems [via (14)–(15) and (16)–(17) respectively] and then, if
pairwise quantities are required, these can be computed using (28) and (29).

As part of the proof of equivalence between message passing and pairwise models
that we present here, we also close a gap in the arguments of Wilkinson and Sharkey
(2014) by demonstrating sufficient conditions for the valid application of Leibniz’s
integral rule (“Appendix 4”) in the derivation of the pairwise equations from the
message passing equations (“Appendix 3”).

3.4 The homogeneous message passing system gives the same epidemic time
course as the Kermack–McKendrick model (asymptotically)

Here, we consider a sequence of homogeneous stochastic models where the regular
degree n tends to infinity. As n → ∞, an individual is able to make contacts to a
number of neighbours which tends to infinity, so to obtain a finite limit we assume
that the infection function f (τ ) depends on n (which we write fn(τ )) such that:

lim
n→∞ n fn(τ ) = f ∗(τ ) < ∞ (τ ≥ 0).

Note that, in the limit of large n, transmission is frequency dependent and the expected
number of infectious contacts made by a given infected individual during the time
interval (t1, t2) is

∫ t2
t1

f ∗(τ )dτ , where time ismeasured from themoment the individual
first became infected.
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The deterministic model proposed by Kermack and McKendrick (1927) is as fol-
lows:

Ṡ(t) = S(t)

[∫ t

0
f ∗(τ )Ṡ(t − τ)dτ − I (0) f ∗(t)

]
, (30)

I (t) = 1 − S(t) − R(t), (31)

R(t) = R(0) +
∫ t

0
r(τ )[1 − R(0) − S(t − τ)]dτ. (32)

Equations 12–15 of Kermack and McKendrick (1927) may be obtained from (30) to
(32) after multiplying through by the total population size N in their paper.

The following theorem shows that, under this limiting regime and mild further
conditions, the homogeneous message passing system gives the same epidemic time
course as the model of Kermack and McKendrick (1927). For n = 1, 2, . . . , let
Smes(n)(t), Imes(n)(t) and Rmes(n)(t) denote the message passing system given by (10)-
(13), where Fsym(t) is replaced by Fsym(n)(t), which satisfies (13) with f (τ ) replaced
by fn(τ ).

Theorem 6 (Deriving the Kermack–McKendrick model from message passing) Sup-
pose that for all T ≥ 0,

(i) εn(T ) = sup0≤t≤T |n fn(t) − f ∗(t)| → 0 as n → ∞,
(ii) MT = sup0≤t≤T f ∗(t) < ∞,

and that, for all n = 1, 2, . . . ,

(iii) fn(t) is continuously differentiable,
(iv)

(
Smes(n)(0), Imes(n)(0), Rmes(n)(0)

) = (S(0), I (0), R(0)) = (z, 1 − z − y, y).

Then, for all T > 0,

lim
n→∞ sup

0≤t≤T

∣∣Smes(n)(t) − S(t)
∣∣ = 0, (33)

lim
n→∞ sup

0≤t≤T

∣∣Imes(n)(t) − I (t)
∣∣ = 0, (34)

lim
n→∞ sup

0≤t≤T

∣∣Rmes(n)(t) − R(t)
∣∣ = 0. (35)

Proof Fix T > 0 and note first from (13) that, for feasible Fsym(n)(t) and all t ∈ [0, T ],

1 ≥ Fsym(n)(t) ≥ 1 −
∫ t

0
fn(τ )dτ (n = 1, 2, . . . ).

Now n
∫ t
0 fn(τ )dτ ≤ T (MT + εn(T )), for all t ∈ [0, T ], so conditions (i) and (ii)

imply that there exists ε
(1)
n (T ) ≥ 0 such that for all t ∈ [0, T ],

1 ≥ Fsym(n)(t) ≥ 1 − ε(1)
n (T ) (n = 1, 2, . . . ), (36)
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where ε
(1)
n (T ) → 0 as n → ∞. Thus, for all sufficiently large n, Fsym(n)(t) is non-zero

for all t ∈ [0, T ].
Differentiating (10) yields

Ṡmes(n)(t) = nzFsym(n)(t)
n−1 Ḟsym(n)(t), (37)

and differentiating (13), using Leibniz’s integral rule (see “Appendix 4”), gives

Ḟsym(n)(t) = − fn(t)(1 − y − z)

+(n − 1)z
∫ t

0
fn(τ )Fsym(n)(t − τ)n−2 Ḟsym(n)(t − τ)dτ. (38)

Substituting (38) into (37), and using (10), gives

Ṡmes(n)(t) = Smes(n)(t)

Fsym(n)(t)

[
n − 1

n

∫ t

0
n fn(τ )

Ṡmes(n)(t − τ)

Fsym(n)(t − τ)
dτ

−n fn(t)(1 − y − z)

]
. (39)

It can be shown, using (30) and (39) that, for all t ∈ [0, T ],
∣∣Ṡmes(n)(t) − Ṡ(t)

∣∣ ≤ A(n, T )

∫ t

0

∣∣Ṡmes(n)(u) − Ṡ(u)
∣∣ du + B(n, T ), (40)

where B(n, T ) → 0 as n → ∞ and 0 ≤ A(n, T ) ≤ 4MT for all sufficiently large
n (see “Appendix 5”). Application of Gronwall’s inequality (see “Appendix 4”) then
yields that, for all t ∈ [0, T ],

∣∣Ṡmes(n)(t) − Ṡ(t)
∣∣ ≤ B(n, T )eA(n,T )t . (41)

Thus
lim
n→∞ sup

0≤t≤T

∣∣Ṡmes(n)(t) − Ṡ(t)
∣∣ = 0,

whence

lim
n→∞ sup

0≤t≤T

∣∣Smes(n)(t) − S(t)
∣∣ = lim

n→∞ sup
0≤t≤T

∣∣∣∣
∫ t

0
Ṡmes(n)(u) − Ṡ(u)du

∣∣∣∣
≤ lim

n→∞ sup
0≤t≤T

∫ t

0

∣∣Ṡmes(n)(u) − Ṡ(u)
∣∣ du

≤ lim
n→∞ T sup

0≤t≤T

∣∣Ṡmes(n)(t) − Ṡ(t)
∣∣

= 0,

proving (33). Equation (35) now follows using a similar argument and (34) is then
immediate. 
�
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It is straightforward that if f ∗(τ ) = βke−γ τ and r(τ ) = γ e−γ τ then the Kermack–
McKendrick model reduces to a system of ODEs:

Ṡ(t) = −βkS(t)I (t), (42)

İ (t) = βkS(t)I (t) − γ I (t), (43)

Ṙ(t) = γ I (t). (44)

For this special case, we state the following corollary to Theorem 6, see alsoWilkinson
et al. (2016), where it is proved that, for non-random initial conditions, the Kermack–
McKendrick model bounds the so-called ‘general stochastic epidemic’.

Corollary 4 (In the Markovian case, message passing and pairwise models are better
approximations than the Kermack–McKendrick model) Assume that, in the homoge-
neous stochastic model, contact and recovery processes are independent and Poisson
with rates β and γ respectively. Specifically, h(τ ) = βe−βτ , r(τ ) = γ e−γ τ and
f (τ ) = βe−(β+γ )τ . Let k denote the regular degree of the symmetric graph (instead
of n). For this special case,

S(t) < Smes(t) ≤ PS(t), R(t) > Rmes(t) ≥ PR(t) (t > 0),

where S(t) and R(t) are given by (42)–(44), with S(0) = z, I (0) = 1 − y − z and
R(0) = y, and Smes(t) and Rmes(t) are given by (9)–(12) with n replaced by k.

Proof See “Appendix 6”. 
�

4 Discussion

The message passing equations of Karrer and Newman (2010) approximate the
expected time course for non-Markovian SIR epidemic dynamics on networks. In
a later paper, Wilkinson and Sharkey (2014) slightly generalised their equations in
order to make them applicable to stochastic models with more individual level het-
erogeneity. Here, for the first time, we have shown that Karrer and Newman’s system
of message passing equations, and its generalisation, have unique feasible solutions
(Theorem 1).

An important feature of themessage passing equations is that they produce an upper
bound to the expected epidemic size (cumulative number of infection events) at every
point in time. Thus, they give a ‘worst case scenario’. In addition, they exactly capture
the expected epidemic when the contact network is a tree. Here, we extended these
results to a further generalised stochastic model which includes realistic correlations
between post-infection contact times and the infectious period (Theorem 2). This
situation can occur when individuals may adopt disease-combating behaviour, such
as taking antiviral medication, which acts both on the ability of an individual to pass
on the infection as well as the duration of their infectivity.

Much of this paper was devoted to a special case of the stochastic model which
we referred to as the ‘homogeneous stochastic model’, in which individuals are
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homogeneous and the contact network is a symmetric graph (correlations between
post-infection contact times and the infectious period are still allowed). Examples of
a symmetric graph include a finite complete graph, an infinite square lattice and an
infinite Bethe lattice. Due to symmetry, the message passing system here reduces to
just four equations which we refer to as the ‘homogeneous message passing system’.
This system is equivalent in form to a special case of the system found by Karrer and
Newman (2010) to describe epidemic dynamics on random configuration networks,
but here it is applied to a different stochastic model. These equations were analysed,
making use of Theorem 2, to obtain a result which shows that cycles in the contact
network serve to inhibit the stochastic epidemic (Theorem 3). Following arguments
from Karrer and Newman (2010), we also obtained a single equation which provides
an upper bound on the final epidemic size (Theorem 4); for the Bethe lattice, the
final epidemic size is captured exactly. This naturally provides sufficient conditions,
in terms of an R0-like quantity and the level of vaccination, for there to be no major
outbreak (Theorem 4).

We found that the ‘limit’ of an appropriate sequence of homogeneous message
passing systems gives the same epidemic time course as the Kermack and McK-
endrick (1927) epidemic model (Theorem 6) showing that it can be viewed as a special
case of message passing. This also has the advantage of relating it to the underlying
stochastic model (see also Barbour and Reinert (2013) who establish an exact cor-
respondence). The final epidemic size result, and sufficient conditions for no major
outbreak, described above for the homogeneousmessage passing system then translate
directly.

From the homogeneous message passing system, we also constructed an equiva-
lent population-level pairwise system which incorporates a general infectious period
(Theorem 5). This can also be derived directly as a special case of the general
individual-level pairwise system of Wilkinson and Sharkey (2014, equations 8 and
9) by applying the conditions of the homogeneous stochastic model. Here we filled a
gap in the arguments of this paper by demonstrating sufficient conditions for the valid
application of Leibniz’s integral rule (“Appendix 4”). This population-level pairwise
system contains the Poisson pairwise model (without clustering) of Keeling (1999)
as a special case. It also contains the delay differential equation model of Kiss et al.
(2015) as a special case. We note that an entirely different derivation of (22)–(25) has
been found independently and in parallel by Röst et al. (2016).

In general, we have emphasised the equivalence between several different types
of SIR epidemic model. Specifically, we mention the derivation of the Kermack–
McKendrick model as a special case of message passing and the equivalence (under
Markovian transmission) of message passing and a class of pairwise models [see
also Wilkinson and Sharkey (2014)]. We also note the recently submitted paper by
Sherborne et al. (2016)which highlights the equivalence ofmessage-passing and edge-
based models (Miller et al. 2011), and that there is equivalence between edge-based
models and themodel ofVolz (2008) [proved byMiller (2011)], and between themodel
of Volz and the binding site model of Leung and Diekmann (2017, Remark 1). While
for SIR dynamics, message passing provides quite a general unifying framework, we
note that for other dynamics such as SIS, it remains difficult to formulate a similar
construction.

123



1580 R. R. Wilkinson et al.

Unification of models is valuable in narrowing the lines of enquiry and simplifying
ongoing research. In addition, owing to their different constructions, different types of
results have been more forthcoming for some models than for others, and unification
can allow results for onemodel to be automatically transferred to another. For example,
here, by unificationwithmessage passing,we have been able to show thatwhen contact
and recovery processes are independent andPoisson, theKermack–McKendrickmodel
(which then reduces to a mass action ODE model) provides a rigorous upper bound
on the expected epidemic size at time t > 0 in the homogeneous stochastic model
(Corollary 4). However, the bound is coarser than that provided by themessage passing
and pairwise systems, so we now know that these are better approximations. This
extends the result that, for non-random initial conditions, the Kermack–McKendrick
model bounds the so-called ‘general stochastic epidemic’ (Wilkinson et al. 2016).
An interesting development would be to show that the Kermack–McKendrick model
(30)–(32) bounds the homogeneous stochastic model more generally. We observe that
this could be achieved by showing that the message passing system for the stochastic
model is the first in a sequence of message passing systems indexed by n, which
satisfies the conditions for Theorem 6, and where Smes(n)(t) is non-increasing with
n; this is easy to do for Poisson transmission and recovery processes (“Appendix 6”).
Another extension worthy of investigation is to multitype SIR epidemics.
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Appendix 1: Proof of Theorem 1

Reproducing an argument from Karrer and Newman (2010), we construct here a
feasible (bounded between 0 and 1) solution of (3). Let Fi← j

(0) (t) = 1 for all i ∈ V, j ∈
Ni and all t ≥ 0, and define the following iterative procedure. For m = 1, 2, . . ., let

Fi← j
(m) (t) = 1 −

∫ t

0
fi j (τ )

⎛
⎝1 − y j − z j

∏
k∈N j\i

F j←k
(m−1)(t − τ)

⎞
⎠ dτ. (45)

It is easily shown that 1 ≥ Fi← j
(m) (t) ≥ Fi← j

(m+1)(t) ≥ 1−∫ t
0 fi j (τ )dτ , for all i ∈ V, j ∈

Ni , t ≥ 0 and m = 0, 1, . . . , whence Fm(t) ≡ (Fi← j
m (t) : i ∈ V, j ∈ Ni ) converges

to some F∞(t) as m → ∞, and F∞(t) is a feasible solution of (3). Moreover, letting
F∗(t) be any feasible solution of (3), it can be shown, arguing as in Corduneanu (1991),
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section 1.3, that

sup
i∈V, j∈Ni

|Fi← j∗ (t) − Fi← j
m (t)| ≤ (Nmax − 1)m(t fmax)

m+1

(m + 1)! , (46)

where Nmax = supi∈V |Ni | and fmax = supi∈V, j∈Ni
supt ′≥0 fi j (t ′). Assume that

Nmax < ∞ and fmax < ∞. Then, the right-hand side of (46) converges to zero as
m → ∞, and F∞(t) must be the unique feasible solution of (3).

Note that (45) implies that if, for all i ∈ V, j ∈ Ni , it is the case that F
i← j
(m−1)(t) is

non-increasing and belongs to [0, 1] for all t ≥ 0, then these properties are also held
by Fi← j

(m) (t) for all i ∈ V, j ∈ Ni . Since these properties are held by Fi← j
(0) (t)(= 1)

for all i ∈ V, j ∈ Ni , then, by induction, they hold for all m ≥ 0, so Fi← j
(∞) (t) is

non-increasing for all i ∈ V, j ∈ Ni . Thus, the feasible solution of (13) (for Fsym(t))
is non-increasing, whence Smes(t) is non-increasing.

To show continuity of the feasible solution, first note that (45) implies that if,
for all i ∈ V, j ∈ Ni , it is the case that Fi← j

(m−1)(t) is continuous, then Fi← j
(m) (t)

is also continuous for all i ∈ V, j ∈ Ni . Since Fi← j
(0) (t)(= 1) is continuous for all

i ∈ V, j ∈ Ni , then, by induction, F
i← j
(m) (t) is continuous for allm ≥ 0, i ∈ V, j ∈ Ni .

Now, for any fixed T > 0, the bound in (46) holds for all t ∈ [0, T ] provided t in the
right-hand side of (46) is replaced by T . Thus Fm(t) converges uniformly to F∞(t)
over [0, T ] as n → ∞ and, since each Fm(t) is continuous on [0, T ], it follows that
F∞(t) is also continuous on [0, T ]. This holds for any T > 0, so F∞(t) is continuous
on [0,∞).

Appendix 2: Proof of Theorem 2

We suppose first that the vertex set V is finite. Similarly to Wilkinson and Sharkey
(2014, section III), and Ball et al. (2015), it is straightforward to show that the indicator
variable 1i←A(t) for the event that a cavity state-individual i ∈ V does not receive any
infectious contacts from any of A ⊂ Ni by time t ≥ 0 is a function of the random
variables X ∗∗ ≡ ∪i∈V {X ∗

i ,Yi } (see the beginning of Sect. 2), and that it is non-
decreasing with respect to each element of X ∗∗. Thus, since X ∗∗ is a set of associated
variables [by assumption, and Esary et al. (1967, (P2) and (P3))] and Yi is independent
of all other members of X ∗∗, then using Esary et al. (1967, Theorem 4.1), we have

PSi (t) = ziE[1i←Ni (t)] ≥ zi
∏
j∈Ni

E[1i← j (t)] = zi
∏
j∈Ni

H i← j (t) (i ∈ V), (47)

with equality occurring when the graph is a tree or forest (where putting an individual
into the cavity state prevents any dependencies between the states of its neighbours).
Recall that zi ≡ P(Yi = 2) is the probability that i is initially susceptible.

Similarly, the indicator variable 1(i) j←A(t) for the event that a cavity state-
individual j ∈ V does not receive any infectious contacts from any of A ⊂ N j\i
by time t ≥ 0, where i ∈ N j is also in the cavity state, is a function of the random
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variables X ∗∗, and it is non-decreasing with respect to each. Again, since X ∗∗ is a set
of associated variables then we have [c.f. (2) and (3)],

Φ
j
i (t) = E[1(i) j←N j\i(t)] ≥

∏
k∈N j\i

E[1(i) j←k(t)]

≥
∏

k∈N j\i
E[1 j←k(t)]

=
∏

k∈N j\i
H j←k(t), (48)

where the second inequality follows from the fact that taking an individual out of
the cavity state cannot increase the probability that a different individual receives no
infectious contacts from a given neighbour by time t ≥ 0. Again, equality occurs
when the graph is a tree or forest.

The above derivations of (47) and (48) break down when the vertex set V is count-
ably infinite, since the theory in Esary et al. (1967) requires that the set of random
variables X ∗∗ is finite. Suppose now that V is countably infinite and label the vertices
1, 2, . . . . Fix i ∈ V and an integer n ≥ i . LetG(n) = (V(n), E (n)) be the graph obtained
from G by deleting the vertices n + 1, n + 2, . . . and all edges connected to those
vertices. Now, since |V(n)| < ∞, the inequality (47) yields

P(n)
Si

(t) ≥ zi
∏

j∈N (n)
i

H (n),i← j (t), (49)

where the superfix n denotes that the quantity is defined for the epidemic on G(n).
Further, for n = i, i + 1, . . . , the epidemic on G(n) can be defined using the same
set X ∗∗ ≡ ∪i∈V {X ∗

i ,Yi } of random variables. It then follows that, for any t ≥ 0, the
event that individual i is susceptible at time t in the epidemic on G(n) decreases with n
and tends to the event that individual i is susceptible at time t in the epidemic on G as
n → ∞, so P(n)

Si
(t) → PSi (t) as n → ∞ by the continuity of probability measures.

A similar argument shows that H (n),i← j (t) → Hi← j (t) as n → ∞. Letting n → ∞
in (49) then shows that (47) holds when V is countably infinite, as |Ni | < ∞. The
same method of proof shows that (48) also holds when V is countably infinite.

Using (48) in conjunction with (2) we have

Hi← j (t) ≥ 1 −
∫ t

0
fi j (τ )

⎛
⎝1 − y j − z j

∏
k∈N j\i

H j←k(t − τ)

⎞
⎠ dτ, (50)

where equality occurs when the graph is a tree or forest. Using (50), it is easy to show
by the iterative procedure in “Appendix 1” (except with Fi← j

(0) (t) = Hi← j (t)) that a

unique feasible solution of (3) exists and, using this solution, that Fi← j (t) ≤ Hi← j (t)
for all i ∈ V, j ∈ Ni and all t ≥ 0, with equality occurring when the graph is a tree
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or forest. This fact, in combination with (47), c.f. (4), proves (7), and consequently,
c.f. (6), gives (8).

Appendix 3: Proof of Theorem 5

Herewe consider the homogeneous stochasticmodel defined at the beginning of Sect. 3
with reference to the beginning of Sect. 2. We assume that transmission processes are
Poissonwith rateβ and that they are independent of the recovery processes, specifically
f (τ ) = βe−βτ

∫ ∞
τ

r(τ ′)dτ ′. We assume that r(τ ) is continuous so that we may apply
Leibniz’s integral rule to compute derivatives (see “Appendix 4”). In this case, a
pairwise system incorporating a general infectious period can be derived from the
homogeneous message passing system (10)–(13) with the additional variables:

SSmes(t) ≡ z2Fsym(t)2(n−1), (51)

SImes(t) ≡ zFsym(t)n−1
(−Ḟsym(t)

β

)
, (52)

where SSmes(t) approximates the probability that a pair of neighbours are susceptible
at time t , and SImes(t) approximates the probability that the first is susceptible and
the second is infected at time t [see Wilkinson and Sharkey (2014, section II B) where
these pairwise quantities were first considered in the context of message passing]. To
understand the construction of the factor in brackets in (52), note that for any pair of
neighbours i, j, the probability that i is susceptible and j is infected at time t remains
the same when i is placed into the cavity state. Further, when transmission processes
are Poisson with rate β, we must have that:

Ḣ i← j (t) = −β P( j infected at time t and no infectious

contacts from j to i before time t | i in cavity). (53)

Thus, the factor in brackets in (52) can be seen to approximate the probability on the
right-hand side of (53) for any pair of neighbours i, j (recall that Fsym(t) approximates
Hi← j (t) for any pair of neighbours i, j).

To obtain population-level quantities, we define [as in Sharkey (2008, appendix
B)]:

[S](t) ≡ NSmes(t), [I ](t) ≡ N Imes(t), [SS](t) ≡ nN SSmes(t), [SI ](t) ≡ nN SImes(t), (54)

where N is a positive number. Note that (10) and (52) imply

Ḟsym(t) = −βFsym(t)
SImes(t)

Smes(t)
(Smes(t) �= 0), (55)

so, since Fsym(0) = 1, we have:

Fsym(t) = exp

(
−

∫ t

0
β
SImes(τ )

Smes(τ )
dτ

)
(Smes(t) �= 0). (56)
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Substituting from (10)–(12) and (51), and using (55), it is straightforward to write
down the time derivatives of [S](t), [I ](t) and [SS](t) as in (22)–(24).

Finding the time derivative of [SI ](t) is more involved. Setting u = t − τ in (13)
and differentiating with respect to t using Leibniz’s integral rule yields, recalling
f (τ ) = βe−βτ

∫ ∞
τ

r(τ ′)dτ ′, that

Ḟsym(t) = −β
(
Fsym(t) − y − zFsym(t)n−1)

+
∫ t

0
βe−βτ r(τ )

(
1 − y − zFsym(t − τ)n−1

)
dτ. (57)

Substituting from (52) and (57) into (54), we can write

[SI ](t) = nNzFsym(t)n−1
(−Ḟsym(t)

β

)

= nNzFsym(t)n−1
[
Fsym(t) − y − zFsym(t)n−1

−
∫ t

0
e−βτ r(τ )

(
1 − y − zFsym(t − τ)n−1

)
dτ

]
. (58)

Differentiating the right-hand side of (58), we can now express the time derivative of
[SI ](t) as

˙[SI ](t) = n(n − 1)NzFsym(t)n−2 Ḟsym(t)

(−Ḟsym(t)

β

)

+ nNzFsym(t)n−1 Ḟsym(t)

− n(n − 1)Nz2Fsym(t)2n−3 Ḟsym(t)

+ n(n − 1)Nz2Fsym(t)n−1
∫ t

0
e−βτ r(τ )Fsym(t − τ)n−2 Ḟsym(t − τ)dτ

− nNzFsym(t)n−1e−βt r(t)(1 − y − z). (59)

Substituting from (10), (51), (52), (54), (55) and (56) into (59) yields the expression
for ˙[SI ](t) in (25); the terms on the right-hand side of (25) are ordered by equality
with the terms on the right-hand side of (59).

Appendix 4: Continuity conditions for the application of Leibniz’s integral
rule and Gronwall’s inequality

To derive (38), Leibniz’s integral rule is applied to (13), and this is valid if Fsym(t)
is continuously differentiable. Similarly, the application of the rule in the derivation
of (57) and (59) is valid if f (τ ) and Fsym(t) are continuously differentiable. Here we
show that Fsym(t) is continuously differentiable if f (τ ) is continuously differentiable.
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Note that if f (τ ) = βe−βτ
∫ ∞
τ

r(τ ′)dτ ′ then f (τ ) is continuously differentiable when
r(τ ) is continuous.

With reference to the message passing system, (10)–(13), assume that f (τ ) is
continuously differentiable. Thus we may apply Leibniz’s integral rule to (13), after
setting τ ′ = t − τ , in order to compute the derivative of Fsym(t) as follows

Ḟsym(t) = −
∫ t

0
ḟ (t − τ ′)(1− y − zFsym(τ ′)n−1)dτ ′ − f (0)(1− y − zFsym(t)n−1).

(60)
It follows from “Appendix 1” that Fsym(t) is continuous. Thus, since ḟ (τ ) is also
continuous, (60) implies that Ḟsym(t) is continuous.

To derive (41), Gronwall’s inequality is applied to (40), and this is valid if Ṡmes(n)(t)
and Ṡ(t) are continuous. By condition (iii) of Theorem 6, we have that Ḟsym(n)(t) is
continuous (by the above argument), so Ṡmes(n)(t) is continuous. Conditions (i) and
(iii) imply that f ∗(t) is continuous, which implies that Ṡ(t) is continuous.

We note that Leibniz’s integral rule was assumed to be applicable in Wilkinson and
Sharkey (2014). It is straightforward, using a similar argument to above, to show that
the application of the rule in that paper is valid if fi j (τ ) is continuously differentiable
for all i ∈ V, j ∈ Ni .

Appendix 5: Proof of (40)

It follows from (30) and (39) that, for all t ∈ [0, T ],
∣∣Ṡmes(n)(t) − Ṡ(t)

∣∣ ≤ An(t) + Bn(t), (61)

where

An(t) =
∣∣∣∣∣
Smes(n)(t)

Fsym(n)(t)

[
n − 1

n

∫ t

0
n fn(τ )

Ṡmes(n)(t − τ)

Fsym(n)(t − τ)
dτ

]
− S(t)

∫ t

0
f ∗(τ )Ṡ(t − τ)dτ

∣∣∣∣∣
and

Bn(t) =
∣∣∣∣ Smes(n)(t)

Fsym(n)(t)
n fn(t)(1 − y − z) − S(t)I (0) f ∗(t)

∣∣∣∣ .
Now

An(t) ≤ A(1)
n (t) + A(2)

n (t), (62)

where

A(1)
n (t) =

∣∣∣∣ Smes(n)(t)

Fsym(n)(t)

[
n − 1

n

∫ t

0
n fn(τ )

Ṡmes(n)(t − τ)

Fsym(n)(t − τ)
dτ

]

− Smes(n)(t)
∫ t

0
f ∗(τ )Ṡ(t − τ)dτ

∣∣∣∣
and

A(2)
n (t) = ∣∣Smes(n)(t) − S(t)

∣∣ ×
∣∣∣∣
∫ t

0
f ∗(τ )Ṡ(t − τ)dτ

∣∣∣∣ .
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Considering A(1)
n (t), note that, since 0 ≤ Smes(n)(t) ≤ 1,

A(1)
n (t) ≤

(
n − 1

n

)
1

Fsym(n)(t)
A(11)
n (t) + A(12)

n (t), (63)

where

A(11)
n (t) =

∣∣∣∣
∫ t

0
n fn(τ )

Ṡmes(n)(t − τ)

Fsym(n)(t − τ)
dτ −

∫ t

0
f ∗(τ )Ṡ(t − τ)dτ

∣∣∣∣
≤

∣∣∣∣
∫ t

0

n fn(τ )

Fsym(n)(t − τ)

(
Ṡmes(n)(t − τ) − Ṡ(t − τ)

)
dτ

∣∣∣∣
+

∣∣∣∣
∫ t

0

(
n fn(τ )

Fsym(n)(t − τ)
− f ∗(τ )

)
Ṡ(t − τ)dτ

∣∣∣∣
and

A(12)
n (t) =

∣∣∣∣
∫ t

0
f ∗(τ )Ṡ(t − τ)dτ

∣∣∣∣ ×
∣∣∣∣
(
n − 1

n

)
1

Fsym(n)(t)
− 1

∣∣∣∣ .
Now conditions (i), (ii) and (36) imply that, for all t ∈ [0, T ], τ ∈ [0, t],

n fn(τ )

Fsym(n)(t − τ)
≤ MT + εn(T )

1 − ε
(1)
n (T )

and
∣∣∣∣ n fn(τ )

Fsym(n)(t − τ)
− f ∗(τ )

∣∣∣∣ ≤ 1

Fsym(n)(t − τ)

( ∣∣n fn(τ ) − f ∗(τ )
∣∣

+ f ∗(τ )
(
1 − Fsym(n)(t − τ)

) )

≤ εn(T ) + MT ε
(1)
n (T )

1 − ε
(1)
n (T )

, (64)

whence

A(11)
n (t) ≤ MT + εn(T )

1 − ε
(1)
n (T )

∫ t

0

∣∣Ṡmes(n)(t − τ) − Ṡ(t − τ)
∣∣ dτ

+ εn(T ) + MT ε
(1)
n (T )

1 − ε
(1)
n (T )

∣∣∣∣
∫ t

0
Ṡ(t − τ)dτ

∣∣∣∣

≤ MT + εn(T )

1 − ε
(1)
n (T )

∫ t

0

∣∣Ṡmes(n)(u) − Ṡ(u)
∣∣ du + εn(T ) + MT ε

(1)
n (T )

1 − ε
(1)
n (T )

,

as
∫ t
0 Ṡ(t − τ)dτ = S(0) − S(t) ∈ [0, 1]. A similar argument, noting that

∣∣∣∣
∫ t

0
f ∗(τ )Ṡ(t − τ)dτ

∣∣∣∣ ≤
∫ t

0

∣∣ f ∗(τ )Ṡ(t − τ)
∣∣ dτ ≤ MT [S(0) − S(t)] ≤ MT ,
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shows that

A(12)
n (t) ≤

MT

(
ε
(1)
n (T ) + 1

n

)

1 − ε
(1)
n (T )

.

Hence, recalling (63),

A(1)
n (t) ≤ MT + εn(T )(

1 − ε
(1)
n (T )

)2
∫ t

0

∣∣Ṡmes(n)(u) − Ṡ(u)
∣∣ du

+εn(T ) + MT ε
(1)
n (T )(

1 − ε
(1)
n (T )

)2 +
MT

(
ε
(1)
n (T ) + 1

n

)

1 − ε
(1)
n (T )

. (65)

Turning to A(2)
n (t), note that since Smes(n)(0) = S(0),

∣∣Smes(n)(t) − S(t)
∣∣ =

∣∣∣∣
∫ t

0
Ṡmes(n)(u) − Ṡ(u)du

∣∣∣∣
≤

∫ t

0

∣∣Ṡmes(n)(u) − Ṡ(u)
∣∣ du,

so

A(2)
n (t) ≤ MT

∫ t

0

∣∣Ṡmes(n)(u) − Ṡ(u)
∣∣ du. (66)

Further, since I (0) = 1 − y − z and 0 ≤ I (0), Smes(n)(t) ≤ 1,

Bn(t) = I (0)

∣∣∣∣ Smes(n)(t)

Fsym(n)(t)
n fn(t) − S(t) f ∗(t)

∣∣∣∣
≤ I (0)

(
f ∗(t)

∣∣Smes(n)(t) − S(t)
∣∣ + Smes(n)(t)

∣∣∣∣ n fn(t)

Fsym(n)(t)
− f ∗(t)

∣∣∣∣
)

≤ MT

∫ t

0

∣∣Ṡmes(n)(u) − Ṡ(u)
∣∣ du + εn(T ) + MT ε

(1)
n (T )

1 − ε
(1)
n (T )

, (67)

using a similar result to (64).
Thus, using (61), (62), (65), (66) and (67), we may define

A(n, T ) = 2MT + MT + εn(T )(
1 − ε

(1)
n (T )

)2

and

B(n, T ) =
(
εn(T ) + MT ε

(1)
n (T )

) (
2 − ε

(1)
n (T )

)
(
1 − ε

(1)
n (T )

)2 +
MT

(
ε
(1)
n (T ) + 1

n

)

1 − ε
(1)
n (T )

,
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such that inequality (40) is satisfied for all t ∈ [0, T ]. Further, since both εn(T ) and
ε
(1)
n (T ) converge to 0 as n → ∞, it follows that B(n, T ) → 0 as n → ∞ and
0 ≤ A(n, T ) ≤ 4MT for all sufficiently large n.

Appendix 6: Proof of Corollary 4

Here, we consider the homogeneous stochastic model (defined at the beginning of
Sect. 3, with reference to the beginning of Sect. 2) for the special case where trans-
mission and recovery processes are independent and Poisson with rates β and γ

respectively. Specifically, h(τ ) = βe−βτ , r(τ ) = γ e−γ τ and f (τ ) = βe−(β+γ )τ .
For convenience, we let k denote the regular degree of the symmetric graph (instead
of n).

For this special case, we show here that for the same initial conditions and param-
eters,

PS(t) ≥ Smes(t) > S(t) for all t > 0, (68)

where PS(t) is the probability that an arbitrary individual is susceptible at time t
(this being the same for all individuals) and S(t) is given by the special case of the
Kermack–McKendrick model (42)–(44), with S(0) = z > 0, I (0) = 1 − y − z > 0
and R(0) = y; Smes(t) is given by (10) and (13) but with n replaced by k. Note that
since

PR(t) = y +
∫ t

0
γ e−γ τ

(
1 − y − PS(t − τ)

)
dτ,

Rmes(t) = y +
∫ t

0
γ e−γ τ

(
1 − y − Smes(t − τ)

)
dτ,

and

R(t) = y +
∫ t

0
γ e−γ τ

(
1 − y − S(t − τ)

)
dτ,

then (68) implies that R(t) > Rmes(t) ≥ PR(t) for all t > 0.
We already have PS(t) ≥ Smes(t) by Theorem 2 and the fact that the message

passing system, in this case, has a unique solution. Thus, we may prove (68) and
Corollary 4 by showing that Smes(t) > S(t) for all t > 0.

Setting fn(τ ) = (βk/n)e−(βk/n+γ )τ and f ∗(τ ) = βke−γ τ , the Kermack–
McKendrick model reduces to the system of ODEs (42)–(44) and the conditions for
Theorem 6 are satisfied. Thus, letting Fsym(n)(t) be defined by (13) but with f (τ )

replaced by fn(τ ), and letting Smes(n)(t) be defined by (10) but with Fsym(t) replaced
by Fsym(n)(t) (as in Sect. 3.4),

lim
n→∞ Smes(n)(t) = S(t)
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and

Smes(n)(t) = Smes(t) if n = k.

Therefore, if Smes(n)(t) ≡ zFsym(n)(t)n is strictly decreasing with respect to n, for all
t > 0, then we have Smes(t) > S(t) for all t > 0. We now show this to be the case.

Letting un(t) = Fsym(n)(t)n(= Smes(n)(t)/z), we can write [c.f. (14)]

u̇n(t) = nγ
(
un(t)

n−1
n − un(t)

)
− βk

(
un(t) − yun(t)

n−1
n − zun(t)

2(n−1)
n

)
.

For fixed u ∈ (0, 1), we have that u
n−1
n is strictly decreasing with n, and also that

n(u
n−1
n − u) = nu(u

−1
n − 1)

= ne−λ(e
λ
n − 1) (where u = e−λ, so λ > 0)

= e−λ
∞∑
k=1

1

k!
λk

nk−1

is strictly decreasing with n. Therefore, since un(0) = 1 and un(t) ∈ (0, 1) for t > 0,
it follows that un(t) (and hence Smes(n)(t)) is strictly decreasing with n for all t > 0.
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