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Time-lapse microscopy images generated by biological experiments have been widely used

for observing target activities, such as the motion trajectories and survival states. Based on

these observations, biologists can conclude experimental results or present new hypoth-

eses for several biological applications, i.e. virus research or drug design. Many methods or

tools have been proposed in the past to observe cell and particle activities, which are

defined as single cell tracking and single particle tracking problems, by using algorithms

and deep learning technologies. In this article, a review for these works is presented in

order to summarize the past methods and research topics at first, then points out the

problems raised by these works, and finally proposes future research directions. The

contributions of this article will help researchers to understand past development trends

and further propose innovative technologies.
Nearly two decades, recording and storing biological images is

already a commonly used and necessary job in most of bio-

logical experiments. Among them, the microscopes are
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usually used to display these images based on various scale

requirements. Hence, time-lapse microscopy images gener-

ated by biological experiments have been widely used for
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observing the activities of targets, such as cells and particles,

and these observations are useful for solving biological ap-

plications, such as the virus research or drug design works

[1,2]. In order to observe the target activities, such as the

motion trajectories and survival states, in general, the first

step is to identify and segment the shape and location of

target in each microscopy image, and then track the target

from the first microscopy image to last one. Finally, several

physical measurements of target, such as the size an instan-

taneous and speed, are calculated in order to observe the

changes in the experiments.

Due to the characteristics of various microscopes, the

captured images are different resulting in different sizes and

colors of targets. Moreover, there are many types of cells and

particles. Therefore, in the past, many methods and tools

have been proposed to solve the single cell tracking (SCT) and

single particle tracking (SPT) problems by using state-of-the-

art algorithms and deep learning (DL) technologies. For

example, Dhada et al. [3] demonstrated that stem cell viability

can be tracked by using photoacoustic imaging based on a

nanoparticle-based contrast agent; Cui et al. [4] showed that

the partitioning and dynamics of AtPIP2;1 are cell type-specific

by using SPTmethod; Holsteen et al. [5] presented a light-field-

based approach to obtain the SPT trajectory by placing a

standard microscope coverslip with a multifunctional and

light-field meta-surface on a specimen. Therefore, in this

article, a mini-review for these works is presented in order to

summarize the past methods and research topics at first, then

points out the problems raised by these works, and finally

proposes future research directions. In order to avoid confu-

sion and excessive descriptions, in the following, we ignore

the works that only focus on the classification and counting

problems of cells and particles. Besides, we also ignore the

works that focus on the problems of non-microscopic images,

such as the magnetic resonance imaging (MRI), computed

tomography, x-ray CT, and 3D images. Many famous works

solving the segmentation and tacking problems have been

illustrated and divided into the following sections.
SCT by algorithms

Chen et al. [6] presented a systemwith several cellular image

analysis methods to segment, classify, and track individual

cells in microscopy images. Li et al. [7] proposed a multi-

target tracking system for cells in phase contrast micro-

scope (PCM). Their system integrated multiple modules,

including cell detector, a topology-constrained contour

tracker, a motion filter, and spatio-temporal trajectory opti-

mization. Dzyubachyk et al. [8] further introduced several

modifications and extensions to the coupled-active surfaces

algorithm for multi-cell segmentation and tracking to over-

come the shortcomings of multiple-level-set method. Pad-

field et al. [9] showed a tracking approach to analyze cell

behaviors in a graph-theoretic framework. The split and

merged cells can be processed by calculating a minimum-

cost flow algorithm. Schindelin et al. [10] presented an

open-source project Fiji to update the architecture of ImageJ,

and Fiji allows researchers to develop the process of

biological-image analysis. The Fiji project has powerful tools
to process images via scripting languages and feature-rich

libraries. Bergeest and Rohr [11] proposed a globally

optimal approach for cell nuclei segmentation based on

active contours and level sets with Chan-Vese functional and

the Bayesian functional in fluorescence microscope (FM)

images. Meijering et al. [12] presented a survey work with

various approaches, tools, and quantitative measures in

microscopy images. In general, these cells are segmented by

the thresholding approach, which classifies pixels as the

object and background. However, the thresholding approach

fails when the image with severe noise and poor quality.

Several methods are also proposed to overcome the above

situations, such as the template matching and deformable

models. However, new problems arise with these methods.

Many tools under the different platforms and dimensions for

SCT problem, such as Braincells, CellTrack, CellTracker,

DcellIQ, DIAS, DYNAMIK, FARSIGHT, LevelSetTracker, Line-

ageTracker, Oko-Vision, QuimP, StarryNite, TLA, have been

proposed, and the survey of these tools can be seen in this

article.

Su et al. [13] showed a semi-supervised learning-based al-

gorithm for SCT problem in PCM images. In their algorithm, a

PCM image is partitioned into phase-homogeneous atoms by

clustering neighboring pixels’ feature vectors at first, and then

cells are segmented by classifying the phase-homogeneous

atoms. Chowdhury et al. [14] presented a matching and link-

ing method for bipartite graphs to track human monocyte

cells in a FM video. A cost function is used to track cells over a

pair of frames, and the tracking results are refined by a rank-

based filtering mechanism. Dimopoulos et al. [15] proposed a

cell segmentation method to detect cell boundaries using the

cell membrane information. Moeller et al. [16] showed a to-

pology preserving variational segmentation approach for SCT

problem in PCM videos. Magnusson et al. [17] presented a

track linking algorithm Viterbi to link segmented cells into

tracks by considering the information from the complete

image sequence. They also used a way to alter previously

created tracks when new tracks are added in order to mitigate

the effects of error propagation. Schiegg et al. [18] proposed a

probabilistic graphical model to select the best segmentation

and tracking for multiple cells by using the intra-frame and

inter-frame constraints between conflicting segmentation

and tracking hypotheses. Paintdakhi et al. [19] developed an

open-source package Oufti to measure microbial cells and

fluorescence signals from microscopy images. Oufti can

handle various cell morphologies and provide quantitative

analysis of diffraction and non-diffraction limited fluores-

cence signals.

Hilsenbeck et al. [20] developed two software tools, tTt and

qTfy, in FM images. In tTt tool, individual cells in each time

frame were observed and tracked bymanually evaluating, not

a computer algorithm. Yang et al. [21] proposed two frame-

works for SCT problem. In the first framework, each cell is

detected, segmented and represented as a dot in PCM images.

These dots are then linked between time frames to create cell

trajectories. In second framework, an SCT algorithm is pro-

posed by a mathematical model with the data evolution.

Masuzzo et al. [22] reviewed research works for in vitro cell

migration with image pre-processing, motion estimation and

feature extraction at first, then several silico models of cell
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migration are summarized, and available software tools for

cell migration are listed finally. In their article, these SCT al-

gorithms can be classified into three categories: (1) tracking by

detection, (2) tracking by model evolution, and (3) tracking by

filtering. In tracking by detection category, cells must be

segmented from the background image by using pixel labeled

or edge detection, and then these cells need to be connected

over time to form SCT trajectories. The commonly usedway is

to connect each segmented cell in a frame to the nearest cell in

the subsequent frame by considering the cell centroids. When

cells are moving slowly and their distribution is sparse, this

way is efficient than others. Another way is the feature

matching (as template matching), which is to locate similar

cells using a list of features such as the morphology and area.

In general, this way requires the users to specify the maximal

distance that cells canmove between two consecutive frames.

In tracking by model evolution category, a deformable model

is designed for SCT problem tomatch the images. The analysis

result in one frame is then used as an initial condition for the

next frame. In tracking by filtering category, SCT can be seen

as the problem of estimating object's state (i.e. posterior

density function), and it also called sequential Monte Carlo

technique. By comparing with the article [12], more tools

under the different platforms and dimensions for SCT prob-

lem are proposed, such as CELLMIA, Cell motility Bio-

Applications, OpenLab, Adapt, AveMap, Cell Image

Velocimetry, iTrack4U, Pathfinder, TScratch. The survey of

these tools can be seen in this article.

Ulman et al. [23] presented a report on the results of SCT

challenge in order to promote the development and objective

evaluation of algorithms and machine learning (ML) models.

In the discussion of this article, they pointed out several re-

sults for the comparison of these algorithms and models,

which are briefly described as follows: (1) in most practical

scenarios, SCT algorithms by detection outperformed those by

model evolution. (2) ML models performed best in most seg-

mentation scenarios. (3) In SCT algorithms by detection, it is

better by considering the global and spatio-temporal contexts

than that by only considering the nearest neighbors. (4) Long

runtimes by complex algorithms can be reduced by running

them on graphics hardware. (5) There is no simple way to

point out the right algorithm for a given data set due to the

complex factors for affecting the results of SCT problem. (6)

They encouraged researchers to make their method available

to biologists through simple installation and intuitive user

interface. Arbelle et al. [24] presented a framework in micro-

scopy videos to segment and track cells through the graphical

and probabilistic model without the assumption of cell shape

and a marching algorithm.
SPT by algorithms

Jaqaman et al. [25] presented a SPT algorithm to link

segmented particles between consecutive frames at first, and

then it links the resulting tracks into complete trajectories to

capture split and merged particles. In their algorithm, a

mathematical framework as a linear assignment problem is

used to provide an accurate solution. Yang et al. [26] proposed

a framework with an enhancement filter based on a
probability model. The detection method is combined fore-

ground and background markers. They also developed the

multiple mode filter for particle motion modeling and data

association. Meijering et al. [12] also presented a survey work

for SPT problem. In general, these particles can be segmented

by similar methods used in SCT problem. However, these

particles are hardly visible in bright field microscopy (BFM) or

PCM images since the size of particles is general two orders of

magnitude smaller than cells, and they are usually imaging in

the FM. Moreover, particles may disappear, (re)appear, split,

and merge in FM images. The consistent results should be

achieved by using global linking strategies rather than local

one, such as the spatio-temporal tracing, graph-based opti-

mization and Bayesian estimation approaches. Several tools

under the different platforms and dimensions for SPT prob-

lem, such as ClusterTrack, ManualTracking, Mtrack2,

MTrackJ, Octane, ParticleTracker, plusTipTracker, Spot-

Tracker, TIKAL, u-track, have been proposed.

When the particle number is known andallowedparticles to

disappear and (re)appear, the aim is important to match as

many particles as possible. Hence, a large number of SPT tasks

(or scenarios) should be excluded. Vallotton and Olivier [27]

devised a software Tri-track to reduce SPT tasks, which is

formed as a max-flow min-cost problem, through a graph

structure comprised from three consecutive image frames.

Chenouard et al. [28] proposed a Bayesian model to solve the

problem of SPT in microscopy images at first, and then

described a multiple hypothesis tracking algorithm for

extracting trajectories from the analysis results of the former.

Shuang et al. [29] reviewed a range of available techniques used

in SPT problem. They summarize some observations and

briefly described as follows: (1) It is difficult to do the quanti-

tative analysis on SPT data without an automatic program. (2)

No general SPT program is existed to be suitable for all cases. (3)

The future directions in the program development focused on

higher speed and more reliability, i.e., using the GPU to speed

up the calculation. (4) It will become an important technique to

synchronous data analysis with SPT measurements.

Liang et al. [30] proposed a SPT method for analyzing an

essential subcellular process to manage trajectories, solve

data association problems, and handle pseudo-split/merged

particles. Chenouard et al. [31] organized an open competi-

tion for many SPT algorithms and ML models. In the discus-

sion of this article, they pointed out several results for the

comparison of these algorithms andmodels, which are briefly

described as follows: (1) SPT algorithmswithmulti-frame and/

or multi-track optimization schemes in the linking stage

perform better performance than those only using simple per-

frame and per-particle nearest-neighbor approaches. (2) The

parameter tuning and prior knowledge are important for

computational image analysis, and suggest to develop the

learning-based trackingmethods. (3) Nonemethod performed

perfectly on any data set, and real biological datamay bemore

complex, it is necessary to develop new SPT methods. Jaiswal

et al. [32] proposed a SPT approach based on the multi-scale

detection and two-step multi-frame association. The pro-

posed algorithm is to determine reliable associations for each

particle by local neighborhoods at first, and then the global

spatial information over multi-frames are used to determine

optimal associations.

https://doi.org/10.1016/j.bj.2021.10.001
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Smal and Meijering [33] presented the comparison results

of data association techniques withmulti-frame or two-frame

for solving the linking problem in SPT problem. In the dis-

cussion of this article, they pointed out several results for the

comparison of these techniques, which are briefly described

as follows: (1) all linking techniques have good performance

with the assumption of no detection errors; however, their

performance decreases as the number of detection errors in-

creases. (2) In most cases, the linking techniques with multi-

frame outperformed those with two-frame. (3) For SPT prob-

lem, the performance by the linking techniquemay depend on

themotion type and density level. Shen et al. [34] summarized

the algorithms and applications of SPT problem, including the

particle identification, localization, and trajectory recon-

struction. They pointed out that the future direction for SPT

method development is to integrate compressive imaging

methods and ML techniques to achieve the goal of real-time

analysis. Tinevez et al. [35] proposed an open source tool

TrackMate for SPT to provide a simple and intuitive user

interface that the developers can write their own algorithms;

Zhang et al. [36] proposed a program UmUTracker to detect

and track 3D particles in the microscopy video. UmUTracker

detects the 2D lateral positions of particles based on the

isosceles triangle transform at first, then reconstructs their 3D

axial positions by the RayleigheSommerfeld model with a

radial intensity profile.
Duple work by algorithms

Althoughmanyworks above have been proposed, theseworks

are designed to solve the individual problem for SCT or SPT. A

few of works and tools have been proposed with the ability to

solve SCT and SPT at the same time. Carpenter et al. [37]

presented the free and open-source system CellProfiler for

SCT problem. In CellProfiler, the original images are processed

at first, then cells in each image are identified, and the mea-

surements of every cell in each image are calculated finally,

such as the location, size, shape, intensity, texture. Except for

the SCT problem, CellProfiler also provide the measurement

for Coulter particle counter. Chaumont et al. [38] presented an

open source software ICY for image analysis applications. In

ICY, the multiplatform software framework is bundled with,

and many API functions are provided to solve SCT and SPT

problems. Vallotton et al. [39] developed a software package

Diatrack for SPT problem. In Diatrack, an input image is pre-

processed at first, then particles are produced and selected,

finally all images are processed to do the particle tracking and

calculate themeasurements, such as the speed. The functions

in Diatrack for SPT problem also were used to solve the SCT

problem by other researchers. Several commercial tools, such

as Image-Pro Plus, Imaris Trak, MetaMorph and Volocity, are

also provided for image analysis applications. The survey of

these tools can be seen in the articles [12,22].
SCT and SPT by DL

Recently, the DL technologies [40] have been used to solve

more and more problems, especially for the image analysis
applications. For example, Litjens et al. [41] reviewed the

major DL concepts for medical image analysis and summa-

rized the contributions to this field. Several works by adopting

ML models have been proposed to solve the related problems

of particles and cells. However, most of these works are

focused on the classification, identification and segmentation.

For example, Held et al. [42] presented a computational

strategy, called CellCognition, to combine ML method (for

classification by support vector machine, SVM) and hidden

Markov modeling (for cell detection) to measure morpholog-

ical classes in live-cell FMmovies. Zaritsky et al. [43] proposed

a segmentation algorithm, called MultiCellSeg, to separate

between multi-cellular and background regions for BFM

image, which is partition into local patches and then each

patch is classified by SVM. Ronneberger et al. [44] presented a

network, called U-Net, and training strategy with data

augmentation in PCM images to win the ISBI cell tracking

challenge 2015. Akram et al. [45] developed a CNN-based

method to provide the functions for cell detection and seg-

mentation, in three kinds of microscopy images. Valen et al.

[46] showed that a deep Convolutional neural network (CNN)

(called conv-net) can robustly segment bacterial and

mammalian cells in PCM and FM images. Song et al. [47] pre-

sented a framework based on multi-scale deep CNN and a

deformation model to segment overlapped cervical cells in

Pap smear images. Different from cell segmentation works

above, Xie et al. [48] proposed fully convolutional regression

networks for cell density maps to do both cell counting and

detection tasks in FM images.

A few works were proposed to solve the tracking problem

by integrating DL technologies. For example, Tsai et al. [49]

proposed a pipeline, called Usiigaci, implemented in Python,

to do the cell segmentation, cell tracking, and visualization of

cell movement and morphological changes in PCM images.

They applied a mask regional convolutional neural network

(Mask ReCNN) to do the cell segmentation, and then a

graphical user interface is designed for cell tracking and

verification. Hu et al. [50] presented an integrated graphical

user interface software, called CellTracker implemented in

Python, for cell segmentation and tracking of time-lapse mi-

croscopy images. CellTracker covers several steps, including

project management, image pre-processing, cell segmenta-

tion (by U-Net), cell tracking, manually correction and statis-

tical analysis, such as the cell size. Lou et al. [51] showed a cell

tracking approach with ML technique (as a max-margin

structured learning) to optimize the parameters based on

user annotated tracks. He et al. [52] proposed a cell tracking

method based on CNN with a filter motion model and an up-

date strategy. In their tracking procedure, the cell position in

the first frame is assigned, then, a filter model is used to

generate a set of candidate bounding boxes in the subsequent

frames. The filter motion model predict and produce the

confidence probabilities for each candidate, and choice the

candidate with the highest probability. Finally, an update

strategy is applied for entire tracking procedure.

Yao et al. [53] presented DL-based methods, such as CNN

and long short-term memory networks, to extract dynamics

features and predict the movement of a particle in FM images

from one time point to the next. In their method, the results of

particle detection (segmentation) by other previous works are

https://doi.org/10.1016/j.bj.2021.10.001
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used as the input. Chamier et al. [54] presented an entry-level

platform ZeroCostDL4Mic based on Google Colab to apply DL

models to perform various tasks for microscopy images. In

ZeroCostDL4Mic, U-Net and StarDist are used to do the seg-

mentation for 2D and 3D electronmicroscopy images; YOLOv2

is used to do the object detection for cells; CARE and Noise2-

Void are used to do the image denoising and resolution

improvement; Deep-STORM is used for the super-resolution

microscopy; fnet, pix2pix and CycleGAN are used to do the

image-to-image translation. For the tracking problem, in

ZeroCostDL4Mic, the StarDist model is directly compatible

with the TrackMate [35] to enable automated cell tracking.
Conclusion

From the survey above, we can see that many methods or

tools have been proposed to solve SCT and/or SPT problems by

using algorithms or DL technologies. Most of themethods and

tools by algorithms were proposed in 2006e2018. After that,

few innovative methods are proposed. On the contrary, most

of themethods and tools by DL technologies were proposed in

2014e2021 and new innovative methods continue to be pro-

posed. However, in practical applications, new methods or

tools by algorithms and DL technologies are still needed by

applying new technologies or doing the integration work.

For solving SCT and SPT problems by algorithms, the

advantage is that the algorithms can be applied into different

types of cells and particles. The reason is that the algorithms

are usually designed based on universal physical/chemistry

properties. In the past, differentmethods or tools were used to

solve individual problems or constrains. However, there is a

lack of integrated tools that can solve these problems or

constraints at the same time. Moreover, with the advance-

ment of microscope technology and the advancement of

biotechnology, more and more new forms of cell and particle

images have been published. It will be necessary to integrate

these methods or tools. Besides, the disadvantage of them by

algorithms is the time-consuming when doing this work.

Although some papers have pointed out this problem, and

then recommended to use GPU to accelerate the calculations.

Unfortunately, few successful (famous) methods or tools are

proposed at present. There are two possible reasons: (1) it is

not easy and sustainable to obtain GPUs by researchers or

users under the limited funding, (2) the threshold for pro-

gramming skill is relatively high. Based on the above sum-

mary and observation, there are two suggestions for future

research directions: (1) using the multi-core CPU and OpenMP

may be another option to speed up the calculations; (2)

developing an integrated tool that can solve these problems or

constrains at the same time.

For solving SCT and SPT problems by using DL technolo-

gies, the advantage is that non-expert users (as biologists) can

use the training models for their applications. The reason is

that the parameters of algorithms should be carefully

adjusted by expert users; the adjustment of the trainingmodel

is relatively simple for non-expert users. However, the

disadvantage of using training models is that it needs to build

many individual models for different types of cells and par-

ticles. Due to the small scale and brightness of the particles,
there is a lack of relatively mature technology. Moreover, its

performance of them by DL technologies is easily affected by

the image quality or noise. Based on the above summary and

observation, there are two suggestions for future research

directions: (1) developing related particle identification tech-

nology will help the development of related applications; (2)

combining computer graphics algorithms with DL technolo-

giesmay be helpful in order to label different types of cells and

particles and correct the image quality.
Conflicts of interest

The authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Acknowledgement

This work was supported in part by Affiliated Cancer Hospital

& Institute of Guangzhou Medical University, China; National

Natural Science Foundation of China (Grant No. 61872084);

Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent

Micro-Nano Optoelectronic Technology, School of Mathe-

matics and Big Data of Foshan University, China (Grant No.

2020B1212030010); Ministry of Science and Technology,

Taiwan (Grant No. MOST 109-2222-E-126-001-MY3, MOST 110-

2221-E-468-016); Chang Gung Memorial Hospital Project,

Taiwan (Grant No. CORPD2J0011, CORPD2J0012); Higher Edu-

cation Sprout Project, Taiwan.
r e f e r e n c e s

[1] Krueger TEG, Thorek DLJ, Denmeade SR, Jsaacs JT,
Brennen NW. Concise review: mesenchymal stem cell-based
drug delivery: the good, the bad, the ugly, and the promise.
Stem Cells Transl Med 2018;7:651e63.

[2] Plaza-Oliver M, Cano EL, Arroyo-Jimenez MM, G�amez M,
Lozano-L�opez MV, Santander-Ortega MJ. Taking particle
tracking into practice by novel software and screening
approach: case-study of oral lipid nanocarriers.
Pharmaceutics 2021;13:370.

[3] Dhada KS, Hernandez DS, Suggs LJ. In vivo photoacoustic
tracking of mesenchymal stem cell viability. ACS Nano
2019;13:7791e9.

[4] Cui Y, Zhao Y, Lu Y, Su X, Chen Y, Shen Y, et al. In vivo
single-particle tracking of the aquaporin AtPIP2;1 in stomata
reveals cell type-specific dynamics. Plant Physiol
2021;185:1666e81.

[5] Holsteen AL, Lin D, Kauvar I, Wetzstein G, Brongersma ML. A
light-field metasurface for high-resolution single-particle
tracking. Nano Lett 2019;19:2267e71.

[6] Chen X, Zhou X, Wong STC. Automated segmentation,
classification, and tracking of cancer cell nuclei in time-lapse
microscopy. IEEE Trans Biomed Eng 2006;53:762e6.

[7] Li K, Miller ED, Chen M, Kanade T, Weiss LE, Campbell PG.
Cell population tracking and lineage construction with
spatiotemporal context. Med Image Anal 2008;12:546e66.

[8] Dzyubachyk O, Cappellen WAV, Essers J, Niessen WJ,
Meijering E. Advanced level-set-based cell tracking in time-

http://refhub.elsevier.com/S2319-4170(21)00135-9/sref1
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref1
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref1
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref1
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref1
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref2
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref2
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref2
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref2
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref2
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref2
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref2
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref3
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref3
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref3
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref3
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref4
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref4
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref4
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref4
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref4
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref5
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref5
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref5
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref5
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref6
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref6
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref6
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref6
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref7
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref7
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref7
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref7
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref8
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref8
https://doi.org/10.1016/j.bj.2021.10.001
https://doi.org/10.1016/j.bj.2021.10.001


b i om e d i c a l j o u r n a l 4 5 ( 2 0 2 2 ) 4 6 5e4 7 1470
lapse fluorescence microscopy. IEEE Trans Med Imaging
2010;29:852e67.

[9] Padfield D, Rittscher J, Roysam B. Coupled minimum-cost
flow cell tracking for high-throughput quantitative analysis.
Med Image Anal 2011;15:650e68.

[10] Schindelin J, Arganda-Carreras I, Frise E, Kaynig V,
Longair M, Pietzsch T, et al. Fiji: an open-source platform for
biological-image analysis. Nat Methods 2012;9:676e82.

[11] Bergeest JP, Rohr K. Efficient globally optimal segmentation
of cells in fluorescence microscopy images using level sets
and convex energy functionals. Med Image Anal
2012;16:1436e44.

[12] Meijering E, Dzyubachyk O, Smal I. Methods for cell and
particle tracking. Methods Enzymol 2012;504:183e200.

[13] Su H, Yin Z, Huh S, Kanade T. Cell segmentation in phase
contrast microscopy images via semi-supervised
classification over optics-related features. Med Image Anal
2013;17:746e65.

[14] Chowdhury AS, Chatterjee R, Ghosh M, Ray N. Cell tracking
in microscopic video using matching and linking of
bipartite graphs. Comput Methods Progr Biomed
2013;112:422e31.

[15] Dimopoulos S, Mayer CE, Rudolf F, Stelling J. Accurate cell
segmentation in microscopy images using membrane
patterns. Bioinformatics 2014;30:2644e51.

[16] Moeller M, Burger M, Dieterich P, Schwab A. A framework for
automated cell tracking in phase contrast microscopic
videos based on normal velocities. J Vis Commun Image
Represent 2014;25:396e409.

[17] Magnusson KEG, Jalden J, Gilbert PM, Blau HM. Global linking
of cell tracks using the Viterbi algorithm. IEEE Trans Med
Imaging 2015;34:911e29.

[18] Schiegg M, Hanslovsky P, Haubold C, Koethe U, Hufnagel L,
Hamprecht FA. Graphical model for joint segmentation and
tracking of multiple dividing cells. Bioinformatics
2015;31:948e56.

[19] Paintdakhi A, Parry B, Campos M, Irnov I, Elf J, Surovtsev I,
et al. Oufti: an integrated software package for high-
accuracy, high-throughput quantitative microscopy
analysis. Mol Microbiol 2016;99:767e77.

[20] Hilsenbeck O, Schwarzfischer M, Skylaki S, Schauberger B,
Hoppe PS, Loeffler D, et al. Software tools for single-cell
tracking and quantification of cellular and molecular
properties. Nat Biotechnol 2016;34:703e6.

[21] Yang FW, Venkataraman C, Styles V, Kuttenberger V, Horn E,
Guttenberg ZV, et al. A computational framework for particle
and whole cell tracking applied to a real biological dataset. J
Biomech 2016;49:1290e304.

[22] Masuzzo P, Troys MV, Ampe C, Martens L. Taking aim at
moving targets in computational cell migration. Trends Cell
Biol 2016;26:88e110.

[23] Ulman V, Ma�ska M, Magnusson KEG, Ronneberger O,
Haubold C, Harder N, et al. An objective comparison of cell-
tracking algorithms. Nat Methods 2017;14:1141e52.

[24] Arbelle A, Reyes J, Chen JY, Lahav G, Raviv TR. A probabilistic
approach to joint cell tracking and segmentation in high-
throughput microscopy videos. Med Image Anal
2018;47:140e52.

[25] Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S,
Schmid SL, et al. Robust single-particle tracking in live-cell
time-lapse sequences. Nat Methods 2008;5:695e702.

[26] Yang L, Qiu Z, Greenaway AH, Lu W. A new framework for
particle detection in low-SNR fluorescence live-cell images
and its application for improved particle tracking. IEEE Trans
Biomed Eng 2012;59:2040e50.

[27] Vallotton P, Olivier S. Tri-track: free software for large-scale
particle tracking. Microsc Microanal 2013;19:451e60.
[28] Chenouard N, Bloch I, Olivo-Marin JC. Multiple hypothesis
tracking for cluttered biological image sequences. IEEE T
Pattern Anal 2013;35:2736e50.

[29] Shuang B, Chen J, Kisleya L, Landes CF. Troika of single
particle tracking programing: SNR enhancement, particle
identification, and mapping. Phys Chem Chem Phys
2014;16:624e34.

[30] Liang L, Shen H, Camilli PD, Duncan JS. A novel multiple
hypothesis based particle tracking method for clathrin
mediated endocytosis analysis using fluorescence
microscopy. IEEE Trans Image Process 2014;23:1844e57.

[31] Chenouard N, Smal I, Chaumont FD, Ma�ska M, Sbalzarini IF,
Gong Y, et al. Objective comparison of particle tracking
methods. Nat Methods 2014;11:281e9.

[32] Jaiswal A, Godinez WJ, Eils R, Lehmann MJ, Rohr K. Tracking
virus particles in fluorescence microscopy images using
multi-scale detection and multi-frame association. IEEE
Trans Image Process 2015;24:4122e36.

[33] Smal I, Meijering E. Quantitative comparison of multi-frame
data association techniques for particle tracking in time-
lapse fluorescence microscopy. Med Image Anal
2015;24:163e89.

[34] Shen H, Tauzin LJ, Baiyasi R, Wang W, Moringo N, Shuang B,
et al. Single particle tracking: from theory to biophysical
applications. Chem Rev 2017;117:7331e76.

[35] Tinevez JV, Perry N, Schindelin J, Hoopes GM, Reynolds GD,
Laplantine E, et al. TrackMate: an open and extensible
platform for single-particle tracking. Methods
2017;115:80e90.

[36] Zhang H, Stangner T, Wiklund K, Rodriguez A, Andersson M.
UmUTracker: a versatile MATLAB program for automated
particle tracking of 2D light microscopy or 3D digital
holography data. Comput Phys Commun 2017;219:390e9.

[37] Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH,
Friman O, et al. CellProfiler: image analysis software for
identifying and quantifying cell phenotypes. Genome Biol
2006;7:R100.

[38] Chaumont FD, Dallongeville S, Olivo-Marinm JC. ICY: a new
open-source community image processing software. In:
Proceedings of IEEE International Symposium on Biomedical
Imaging: From Nano to Macro (ISBI); 2011. p. 234e7.

[39] Vallotton P, Oijen AMV, Whitchurch CB, Gelfand V, Yeo L,
Tsiavaliaris G, et al. Diatrack particle tracking software:
review of applications and performance evaluation. Traffic
2017;18:840e52.

[40] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature
2015;521:436e44.

[41] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F,
Ghafoorian M, et al. A survey on deep learning in medical
image analysis. Med Image Anal 2017;42:60e88.

[42] Held M, Schmitz MHA, Fischer B, Walter T, Neumann B,
Olma MH, et al. CellCognition: time-resolved phenotype
annotation in high-throughput live cell imaging. Nat
Methods 2010;7:747e54.

[43] Zaritsky A, Natan S, Horev J, Hecht I, Wolf L, Ben-Jacob E,
et al. Cell motility dynamics: a novel segmentation algorithm
to quantify multi-cellular bright field microscopy images.
PLoS One 2011;6:e27593.

[44] Ronneberger O, Fischer P, Brox T. U-net: convolutional
networks for biomedical image segmentation. In: The
proceedings of international conference on medical image
computing and computer-assisted intervention (MICCAI),
vol. 9351. Springer; 2015. p. 234e41. LNCS.

[45] Akram SU, Kannala J, Eklund L, Heikkil€a J. Cell segmentation
proposal network for microscopy image analysis. Book: deep
learning and data labeling for medical applications. Lect
Notes Comput Sci 2016;10008:21e9.

http://refhub.elsevier.com/S2319-4170(21)00135-9/sref8
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref8
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref8
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref9
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref9
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref9
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref9
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref10
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref10
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref10
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref10
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref11
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref11
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref11
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref11
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref11
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref12
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref12
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref12
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref13
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref13
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref13
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref13
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref13
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref14
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref14
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref14
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref14
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref14
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref15
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref15
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref15
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref15
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref16
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref16
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref16
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref16
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref16
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref17
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref17
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref17
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref17
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref18
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref18
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref18
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref18
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref18
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref19
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref19
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref19
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref19
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref19
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref20
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref20
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref20
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref20
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref20
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref21
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref21
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref21
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref21
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref21
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref22
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref22
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref22
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref22
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref23
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref23
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref23
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref23
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref23
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref24
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref24
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref24
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref24
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref24
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref25
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref25
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref25
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref25
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref26
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref26
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref26
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref26
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref26
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref27
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref27
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref27
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref28
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref28
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref28
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref28
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref29
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref29
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref29
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref29
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref29
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref30
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref30
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref30
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref30
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref30
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref31
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref31
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref31
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref31
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref31
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref32
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref32
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref32
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref32
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref32
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref33
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref33
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref33
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref33
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref33
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref34
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref34
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref34
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref34
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref35
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref35
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref35
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref35
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref35
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref36
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref36
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref36
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref36
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref36
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref37
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref37
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref37
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref37
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref38
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref38
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref38
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref38
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref38
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref39
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref39
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref39
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref39
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref39
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref40
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref40
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref40
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref41
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref41
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref41
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref41
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref42
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref42
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref42
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref42
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref42
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref43
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref43
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref43
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref43
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref44
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref44
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref44
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref44
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref44
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref44
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref45
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref45
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref45
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref45
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref45
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref45
https://doi.org/10.1016/j.bj.2021.10.001
https://doi.org/10.1016/j.bj.2021.10.001


b i om e d i c a l j o u r n a l 4 5 ( 2 0 2 2 ) 4 6 5e4 7 1 471
[46] Valen DAV, Kudo T, Lane KM, Macklin DN, Quach NT,
DeFelice MM, et al. Deep learning automates the quantitative
analysis of individual cells in live-cell imaging experiments.
PLoS Comput Biol 2016;12:e1005177.

[47] Song Y, Tan EL, Jiang X, Cheng JZ, Ni D, Chen S, et al.
Accurate cervical cell segmentation from overlapping
clumps in Pap smear images. IEEE Trans Med Imaging
2017;36:288e300.

[48] Xie W, Noble JA, Zisserman A. Microscopy cell counting and
detection with fully convolutional regression networks.
Comput Method Biomec 2018;6:283e92.

[49] Tsai HF, Gajda J, Sloan TFW, Rares A, Shen AQ. Usiigaci:
instance-aware cell tracking in stain-free phase contrast
microscopy enabled by machine learning. Software
2019;9:230e7.
[50] HuT, Xu S,Wei L, ZhangX,WangX. CellTracker: an automated
toolbox for single-cell segmentation and tracking of time-lapse
microscopy images. Bioinformatics 2021;37:285e7.

[51] Lou X, Schiegg M, Hamprecht FA. Active structured learning
for cell tracking: algorithm, framework, and usability. IEEE
Trans Med Imag 2014;33:849e60.

[52] He T, Mao H, Guo J, Zhang Y. Cell tracking using deep neural
networks with multi-task learning. Image Vis Comput
2017;60:142e53.

[53] Yao Y, Smal I, Grigoriev I, Akhmanova A, Meijering E. Deep-
learning method for data association in particle tracking.
Bioinformatics 2020;36:4935e41.

[54] Chamier VL, Laine RF, Jukkala J, Spahn C, Krentzel D,
Nehme E, et al. Democratising deep learning for microscopy
with ZeroCostDL4Mic. Nat Commun 2021;12:2276.

http://refhub.elsevier.com/S2319-4170(21)00135-9/sref46
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref46
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref46
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref46
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref47
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref47
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref47
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref47
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref47
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref48
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref48
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref48
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref48
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref49
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref49
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref49
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref49
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref49
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref50
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref50
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref50
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref50
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref51
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref51
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref51
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref51
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref52
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref52
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref52
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref52
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref53
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref53
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref53
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref53
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref54
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref54
http://refhub.elsevier.com/S2319-4170(21)00135-9/sref54
https://doi.org/10.1016/j.bj.2021.10.001
https://doi.org/10.1016/j.bj.2021.10.001

	A review for cell and particle tracking on microscopy images using algorithms and deep learning technologies
	SCT by algorithms
	SPT by algorithms
	Duple work by algorithms
	SCT and SPT by DL
	Conclusion
	Conflicts of interest
	Acknowledgement
	References


