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Stain normalization often refers to transferring the color distribution to the target

image and has been widely used in biomedical image analysis. The conventional

stain normalization usually achieves through a pixel-by-pixel color mapping model,

which depends on one reference image, and it is hard to achieve accurately the style

transformation between image datasets. In principle, this difficulty can be well-solved

by deep learning-based methods, whereas, its complicated structure results in low

computational efficiency and artifacts in the style transformation, which has restricted

the practical application. Here, we use distillation learning to reduce the complexity of

deep learning methods and a fast and robust network called StainNet to learn the color

mapping between the source image and the target image. StainNet can learn the color

mapping relationship from a whole dataset and adjust the color value in a pixel-to-pixel

manner. The pixel-to-pixel manner restricts the network size and avoids artifacts in

the style transformation. The results on the cytopathology and histopathology datasets

show that StainNet can achieve comparable performance to the deep learning-based

methods. Computation results demonstrate StainNet is more than 40 times faster than

StainGAN and can normalize a 100,000 × 100,000 whole slide image in 40 s.

Keywords: stain normalization, cytopathology, histopathology, convolutional neural network (CNN), generative

adversarial network (GANs)

INTRODUCTION

Tissues or cells are usually transparent and need to be stained before observation under a
microscope. However, the potential factor in the staining reagent, staining process, and slide
scanner specifications often result in inconsistency of pathological images (1). These variations
not only affect the judgment of pathologists but also weaken the performance of CAD systems and
hamper their applications in pathology (2–4). So, stain normalization is a routine pre-processing
operation for pathological images, especially for CAD systems, and it is reported to help increase
the prediction accuracy, such as tumor classification (5). Stain normalization algorithms usually
transfer the color style of the source image to that of a target image (6) while preserving the
other information in the processed image (7), which can be broadly classified into two classes:
conventional methods and deep learning-based methods.

Conventional methods are mainly realized by analyzing, converting, and matching color
components, which can be divided into color matching and stain-separation methods. Color
matching methods calculated the mean and SD of source images and matched them to a reference
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image in the Lab color space (8, 9). Stain-separation methods try
to separate and normalize each staining channel independently
(10–12). For instance, Ruifrok and Johnston (10) proposed to
measure the relative proportion for three channels (R, G, and B)
with the slides stained by only a single stain reagent (Hematoxylin
or Eosin) to estimate stain vectors. And different mathematical
methods were applied to compute stain vectors, such as singular
value decomposition (SVD) in Optical Density (OD) space
(11), sparse non-negative matrix factorization (SNMF) (12), or
a pertained classifier (6). However, Pap stain used in cervical
cytopathology involves not only Hematoxylin and Eosin but also
Orange, Light Green, and Bismarck Brown (13), which makes
it more difficult to distill the various dye vectors on cervical
cytopathology. Nevertheless, most of these methods rely on a
reference image to estimate stain parameters, but it is hard for
one reference image to cover all staining phenomena or represent
all input images, which usually causes misestimation of stain
parameters and thus delivers inaccurate normalization results
(14, 15).

Deep learning-based methods mostly apply generative
adversarial networks (GANs) to achieve stain normalization
(3, 7, 8, 16–18). Shaban et al. (8) proposed an unsupervised stain
normalization method named StainGAN based on CycleGAN
(16) to transfer the stain style. Cai et al. (3) proposed a new
generator to improve the image quality and accelerate the
networks. On the other hand, Cho et al. (18), Salehi et al. (7),
and Tellez et al. (17) reconstructed original images from the
images with color augmentations, e.g., grayscale and Hue-
Saturation-Value (HSV) transformation, and tried to normalize
other color styles to the original. However, due to the complexity
of deep neural networks and the instability of GANs, it is hard
to preserve all source information; sometimes, it has a risk
of introducing some artifacts, which has some adverse effects
on subsequent analysis (19). At the same time, the network
of deep learning-based methods usually contains millions of
parameters, so it generally requires high-computing resources
and the computing efficiency is generally low (14).

Deep learning-based methods perform well in stain
normalization, but they are not satisfactory in the robustness
and computational efficiency. In this paper, we propose a stain
normalization network named StainNet, which employs a
fully 1 × 1 convolution network to adjust the color value in a
pixel-by-pixel manner. In the method, StainGAN was used as
the teacher network and StainNet as the student network to learn
the color mapping by distillation learning. Results show that
StainNet can achieve comparable normalization performance
with StainGAN but retains the source information better. The
results also demonstrate that StainNet was more than 40 times
faster than StainGAN in computational efficiency, which allows
StainNet to normalize a 100,000 × 100,000 whole slide image
in 40 s.

MATERIALS AND METHODS

Dataset
Five datasets were used to evaluate the performance of different
methods. Among them, the aligned cytopathology dataset and

the aligned histopathology dataset are used to evaluate the
similarity between the normalized image and the target image.
The cytopathology classification dataset and the histopathology
classification dataset are used to verify normalization algorithms
in the classification task. Twenty metastases whole slide
images (WSIs) from the University Medical Center Utrecht in
Camelyon16 testing part was used to test the effects of the
StainNet normalization on the clinical diagnostics. This study
was approved by the Ethics Committee of Tongji Medical
College, Huazhong University of Science and Technology.

The Aligned Cytopathology Dataset for Evaluating

the Similarity
These cytopathology datasets are taken from the same slides
(Thinprep cytologic test slides from the Maternal and Child
Hospital of Hubei Province) with two slide scanners. One scanner
is custom constructed, called Scanner O, equipped with a 20x
objective lens with a pixel size of 0.2930µm. The other from
Shenzhen Shengqiang Technology Co., Ltd., called scanner T,
has a 40x objective lens and a pixel size of 0.1803µm. We
resampled the images from scanner T to reduce the pixel size to
0.2930µm, and then performed rigid and no-rigid registration
to align the resampled images to these from scanner O. Finally,
3,223 aligned image pairs with the size of 512 × 512 pixels
were collected. Among these images, 2,257 pairs of images were
randomly selected as the training set, and the remaining 966 pairs
of images were used as the test set. The images from the scanner
O and T are seen as source images and target images, respectively.

The Cytopathology Classification Dataset for

Verifying Normalization Algorithms
This dataset used the same data source as that in section The
Aligned Cytopathology Dataset for Evaluating the Similarity. The
patches from scanner T are used as the training set to train the
classifier, and these from scanner O are used as the test set to
evaluate the classifier. In this dataset, the patches with abnormal
cells were labeled by cytopathologists as abnormal patches and
the patches without abnormal cells as normal patches. There are
6,589 abnormal patches, 6,589 normal patches in the training
dataset, 3,343 abnormal patches, and 3,192 normal patches in
the test dataset. The resolution of patches was resampled to
256 × 256 with 0.4862µm per pixel. We used StainGAN and
StainNet trained on the aligned cytopathology dataset in section
The Aligned Cytopathology Dataset for Evaluating the Similarity
to normalize the patches in the test set to the style of the training
set. Then, we used the original test set and the normalized test
set to verify the necessity of stain normalization and evaluate the
performance of StainGAN and StainNet.

The Aligned Histopathology Dataset for Evaluating

the Similarity
The histopathology dataset is from the publicly available
part of the MITOS-ATYPIA ICPR’14 challenge (20). In the
MITOS-ATYPIA dataset (20), there are 16 slides with standard
hematoxylin and eosin (H&E) staining, 11 slides as the training
set, and 5 slides as the test set. And all the aligned images are
taken from the same slide but using two slide scanners: Aperio
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Scanscope XT called scanner A and Hamamatsu Nanozoomer
2.0-HT called scanner H. The number of image frames is variable
from slide to slide. The training data set contains 1,200 frames,
and the test data set contains 496 frames at 40x magnification.
The resolution of the frames from scanner H was resampled to
that of frames from scanner A, and then performed rigid and
no-rigid registration to align the resampled frames to these from
scanner A. We cropped 16 patches with the size of 256 × 256
from every frame without overlap, so there are 19,200 patch pairs
in our training set and 7,936 patch pairs in our testing set. In this
dataset, the images from the scanners A and H are seen as source
images and target images, respectively.

The Histopathology Classification Dataset for

Verifying Normalization Algorithms
The publicly available Camelyon16 dataset (21) is used, which
contains 399 WSIs from two centers. In our experiments, 170
WSIs from Radboud University Medical Center in Camelyon16
training part were used to extract the training patches, and 50
WSIs from University Medical Center Utrecht in Camelyon16
testing part were used to extract the test patches. We labeled the
patches containing tumor cells as abnormal and the patches not
containing any tumor cells as normal. For abnormal patches, we
extracted patches of size 256× 256 from the tumor area in tumor
slides. For normal patches, we randomly extracted patches of size
256× 256 from the normal area in tumor slides and normal slides
until the number of normal patches was equal to the number of
abnormal patches. In this way, there are 40,000 patches in our
training set and 10,000 patches in the testing set. In addition, we
also randomly extracted 6,000 patches from the training set and
test set to train StainGAN and StainNet, where the patches from
the test set were used as the source image, and the patches from
the training set were used as the target image. For the classifier
trained on the training set, we used the original test set and the
normalized test set to evaluate the classifier and the performance
of StainGAN and StainNet.

StainNet for Stain Normalization
The framework is shown in Figure 1, which mainly consists
of two steps: one step is StainGAN training, a generative
confrontation network with two generators and two
discriminators, and the other step is StainNet generation,
which is composed of a fully convolutional neural network.
StainNet needs paired source and target images to learn the
transformation from the source color space to the target color
space. In practice, it is hard to get the paired images and align
the images perfectly; we used StainGAN as the teacher network
and StainNet as the student network. That is, StainNet uses the
L1 loss to learn the output of StainGAN.

There are two generators (GA and GB) and a discriminator
(DA and DB) in StainGAN. GA is used to transfer the image
from the source domain to the target domain, and GB is used
to transfer from the target domain to the source domain. DA

is used to distinguish the image generated by GAand a real
target image, DB is used to distinguish the image generated by
GB or a real source image. There are two losses in StainGAN,

namely cycle-consistency loss and adversarial loss. The cycle-
consistency loss (16) ensures that the generated images byGA can
be reconstructed to source image byGB, and the generated images
byGB can be reconstructed to target image byGA. The adversarial
loss tries to ensure the stain distribution of the generated images
is consistent with the real distribution.

In the current convolutional neural network, convolution
operations employ a kernel size of 3 × 3 or larger. However,
a 3 × 3 or larger convolution performs a weighted summation
in the local neighborhood of the input image. Therefore, the
pixel value in the output image is inevitably affected by the local
neighborhood of the input image. Unlike the 3× 3 convolutions,
the 1 × 1 convolution only maps a single pixel and has nothing
to do with the local neighborhood values. That is, it will not be
affected by the texture and can keep the source information of
inputs. Following this, a fully 1× 1 convolutional neural network
named StainNet is used to extract the mapping relationship
from StainGAN. Except for the last convolutional layer, ReLU
is used as a convolutional layer to enhance the non-linear
mapping ability. Considering the balance of performance and
computational efficiency, we used three convolutional layers with
32 channels by default. Therefore, our network only contains
about 1,000 parameters, whereas the generator in StainGAN
contains millions of parameters.

The training process mainly consists of three steps. Firstly, we
trained StainGAN using an unpaired source and target images.
Then, the generator of StainGAN was used to normalize the
source images. At last, the normalized images were taken as
the Ground Truths to train StainNet with L1 Loss and SGD
optimizer. The mapping relationship of StainGAN is based on
the image content, that is, the mapping relationship will change
accordingly with the different image contents. By learning the
normalized images by StainGAN, StainNet can transfer the
mapping relationship of StainGAN based on image content into
a mapping relationship based on pixel values.

EXPERIMENTS AND RESULTS

In this section, StainNet is compared with the state-of-
the-art methods of Reinhard (9), Macenko (11), Vahadane
(12), and StainGAN on the cytopathology and histopathology
dataset. We report: (1) Quantitative comparison of different
methods in the visual appearance, (2) Application results
on the cytopathology and histopathology classification task,
(3) Quantitative comparison between the whole slide images
normalization results and the whole slide images metastasis
detection results.

Evaluation Metrics
In order to evaluate the performance of different methods, we
measured the similarity between the normalized image and the
target image, and the consistency between the normalized image
and the source image.

Two similarity metrics—Structural Similarity index (SSIM)
(21) and Peak Signal-to-Noise Ratio (PSNR)—are used to
evaluate the performance. The SSIM and PSNR of the target
image (SSIM Target and PSNR Target) are used to evaluate the

Frontiers in Medicine | www.frontiersin.org 3 November 2021 | Volume 8 | Article 746307

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Kang et al. StainNet

FIGURE 1 | The framework of StainNet. First, StainGAN normalizes the images from the source domain to the target domain. Then, the normalized images by

StainGAN are set as Ground Truth to train StainNet. The images from the source domain are mapped to the source domain and then back to the target domain by

StainGAN. The same reverse process is also performed for images from the target domain. StainNet is a fully 1 × 1 convolutional neural network, which can directly

map the images from the source domain to the target domain.

TABLE 1 | Evaluation metrics of various stain normalization methods on the

cytopathology dataset.

Methods SSIM target PSNR target SSIM source FPS

Reinhard 0.739 ± 0.046 19.8 ± 3.3 0.885 ± 0.042 54.8

Macenko 0.731 ± 0.054 22.5 ± 3.1 0.853 ± 0.054 4.0

Vahadane 0.739 ± 0.050 22.6 ± 3.0 0.867 ± 0.050 0.5

StainGAN 0.764 ± 0.030 29.7 ± 1.6 0.905 ± 0.021 19.6

StainNet 0.809 ± 0.027 29.8 ± 1.7 0.945 ± 0.025 881.8

similarity between the normalized image and the target image.
The extent of source information preservation is weighed by the
SSIM of the source image (SSIM Source), which also was used
to measure the similarity between the normalized image and the
source image. SSIM Target and PSNR Target are calculated using
the original RGB values. SSIM Source is used to measure the
preservation of the source image texture information, similar to
(22), we used grayscale images to calculate SSIM Source. And the
statistic results of SSIM Target, PSNR Target, and SSIM Source
on the testing set in the aligned cytopathology dataset and the
aligned histopathology dataset are shown in Tables 1, 2, which
contain 966 and 7,936 patch pairs, respectively.

The Area Under the Curve (AUC) of the Receiver
Operating Characteristics (ROC) is used to evaluate the

TABLE 2 | Evaluation metrics of various stain normalization methods on the

histopathology dataset.

Methods SSIM target PSNR target SSIM source

Reinhard 0.617 ± 0.106 19.9 ± 2.1 0.964 ± 0.031

Macenko 0.656 ± 0.115 20.7 ± 2.7 0.966 ± 0.049

Vahadane 0.664 ± 0.116 21.1 ± 2.8 0.967 ± 0.046

StainGAN 0.706 ± 0.099 22.7 ± 2.6 0.912 ± 0.025

StainNet 0.691 ± 0.107 22.5 ± 3.3 0.957 ± 0.007

classifier performance. The statistic results of AUC on the
cytopathology and histopathology datasets are shown in Table 3,
as Mean ± standard deviation, which contain 6,535 and 10,000
patches, respectively.

Implementation
For conventional methods, Reinhard (9), Macenko (11), and
Vahadane (12), a carefully picked image was used as the reference
image. For the StainGAN, the model was trained using Adam
optimizer, and training was stopped at the 100th epoch, which
was chosen experimentally. For StainNet, the trained StainGAN
was used to normalize the source images in both the training
dataset and the test dataset. Then, the normalized images were
used as the ground truths during training. StainNet was trained
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with stochastic gradient descent (SGD) optimizer, an initial
learning rate of .01, and a batch size of 10. The L1 loss was used
to minimize the difference between the output of the network
and the normalized image by the trained StainGAN. A cosine
annealing scheduler was adopted to decay the learning rate
from 0.01 to 0 during 300 epochs. The weights corresponding
to the model with the lowest test loss were selected during
the training.

TABLE 3 | The AUC for various stain normalization methods on the cytopathology

and the histopathology classification dataset.

AUC The cytopathology

classification dataset

The histopathology

classification dataset

Original 0.832 ± 0.016 0.685 ± 0.033

Reinhard 0.738 ± 0.014 0.821 ± 0.005

Macenko 0.872 ± 0.006 0.843 ± 0.007

Vahadane 0.832 ± 0.011 0.847 ± 0.005

StainGAN 0.896 ± 0.002 0.905 ± 0.006

StainNet 0.901 ± 0.002 0.895 ± 0.009

On the application task, stain normalization was used as
a pre-processing step to increase the performance of the
CAD system. A classifier was trained on the cytopathology
classification dataset and histopathology classification dataset to
prove this. We used a pre-trained SqueezeNet (23) on ImageNet
(24) as the classifier and fine-tuned it on the images of the training
dataset. The classifier was trained with Adam optimizer, an initial
learning rate of 2e-4, and a batch size of 64. Cross-entropy loss
was used as our loss function. A cosine annealing scheduler was
adopted to decay the learning rate from 2e-3 to 0 in 60 epochs.
The training was stopped at the 60th epoch, which was chosen
experimentally. The experiment was repeated 20 times in order
to enhance reliability.

Results
Stain Transfer Results
Firstly, we evaluated the effectiveness of our method. The
normalized images by StainNet are evaluated with the target
images through vision and the gray value profiles around the
cell nucleus shown in Figures 2, 3. The results on the aligned
cytopathology dataset are shown in Figure 2, the source images

FIGURE 2 | StainNet normalization effects on the cytopathology image. The source images, the target images, and the normalized images by StainNet are shown in

(a,e), (b,f), and (c,g), respectively. The image in the box is enlarged below. Gray value profiles of the lines on (a–c) are shown in the line chart (d), and the lines in

(e–g) are shown in the line chart (h).
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FIGURE 3 | StainNet normalization effects on the histopathology image. The source images, the target images, and the normalized images by StainNet are shown in

(a,e) (b,f), and (c,g), respectively. The image in the box is enlarged below. Gray value profiles of the lines on (a–c) are shown in the line chart (d), and the lines in (e–g)

are shown in the line chart (h).

FIGURE 4 | Visual comparison of different normalization methods on the aligned cytopathology dataset. Source image (a), target image (b), and normalized image by

Reinhard (c), Macenko (d), Vahadane (e), StainGAN (f), and StainNet (g) are listed.

are from scanner O, and the target images are from scanner
T. From the figure, the normalized images in Figures 2c,g are
similar to the target images in Figures 2b,f. The gray value
profiles at the nucleus of the source images, target images,

and normalized images are shown in Figures 3d,h. The gray
value profiles of the normalized images by StainNet and the
target images coincide on the whole indicating that, after being
normalized by StainNet, the normalized images have similar
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FIGURE 5 | Visual comparison of different normalization methods on the aligned histopathology dataset. Source image (a), target image (b), and normalized image by

Reinhard (c), Macenko (d), Vahadane (e), StainGAN (f), and StainNet (g) are listed.

FIGURE 6 | The whole slide image normalization result on the cytopathology dataset. The source slide (a), the target slide (b), the normalized slide by StainGAN (c),

and the normalized slide by StainNet (d) are listed.

color distribution with the target images. In terms of local gray
value profiles, the changing trend of the normalized images
by StainNet is the same as that of the source images, which
shows that StainNet can fully retain the information of the
source images.

The results on the aligned histopathology dataset are shown
in Figure 3. The histopathology dataset was from the publicly
available part of the MITOS-ATYPIA ICPR’14 challenge (20).
The aligned images are taken from the same slide but using
two slide scanners: Aperio Scanscope XT called scanner A and
Hamamatsu Nanozoomer 2.0-HT called scanner H. From the
figure, we can see, after normalization, the images have a similar
vision and the gray value profiles with the target images.

Furthermore, we compare the normalization effect of StainNet
with the other four classic methods, Reinhard, Macenko,
Vahadane, and StainGAN. Results are shown in Figure 4. From
the figure, we can see the Reinhard method performs badly

because it is hard to choose an image to represent the entire
dataset due to the discreteness of cytopathological images.
Macenko and Vahadane, based on stain separation, perform
poorly on cytopathological images. Both StainGAN and StainNet
perform well.

The quantitative results on the aligned cytopathology dataset
are shown in Table 1. From Table 1, parameters PSNR Target of
the conventional methods is lower than that of StainGAN and
StainNet. StainNet outperforms other methods in all indicators.
Among them, SSIM Target and SSIM Source are 0.809 and 0.945
higher than 0.764 and 0.905 of StainGAN, which shows that
StainNet is not only more similar to the target image but also
better to retain the source image information.

The visual comparison of the aligned histopathology dataset
is shown in Figure 5. From it, the normalized images by the
conventional methods are still visually different from the target
image due to the dependence on the reference image and the
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FIGURE 7 | The whole slide image normalization result on the Camelyon16 dataset. The source slide (a), the target slide (b), the normalized slide by StainGAN (c),

and the normalized slide by StainNet (d) are listed.

TABLE 4 | The SSIM source of the normalized whole slide image by StainGAN

and StainNet.

StainGAN StainNet

The cytopathology WSIs 0.905 ± 0.093 0.954 ± 0.050

The histopathology WSIs 0.762 ± 0.182 0.980 ± 0.013

difficulty of image selection of the conventional methods. The
normalized images by StainGAN and StainNet are consistent
with the style of the target image. In addition, the normalized
image by StainNet not only has a similar color to the target image
but also retains more source information.

The quantitative comparison of the aligned histopathology
dataset is shown in Table 2. The test data and training data are
completely separated at the slide level and divided in the same
way as in the MITOS-ATYPIA ICPR’14 challenge (20), so there
is no deviation caused by personal factors. Due to the rigid and
non-rigid registration, the source image and the target image can
be precisely matched. The dataset division and image registration
make our results more reliable. StainGAN and StainNet are
higher than conventional methods in the similarity of SSIM
Target and PSNR Target with the target images. The SSIM Target
and PSNR Target of StainNet are 0.691 and 22.5, respectively,
which are slightly lower than 0.706 and 22.7 of StainGAN, 0.957
of StainNet is higher than 0.912 of StainGAN in the SSIM Source.
Therefore, StainNet can obtain normalized results comparable to
StainGAN but retain the source image information better, which
is important in real CAD systems.

Next, we compared the normalization effects StainNet and
StainGAN on image classification. SqueezeNet (22) pre-trained
on ImageNet (23) was chosen as the classifier because of its
small size and relatively high accuracy. On the cytopathology
classification dataset, we used 13,178 image patches from scanner
T to train the classifier and use 6,535 image patches from scanner

O to evaluate the classifier. On the histopathology classification
dataset, the classifier was trained with 40,000 image patches
from Radboud University Medical Center, and the classifier was
evaluated with 10,000 image patches from University Medical
Center Utrecht. Table 3 shows the performance of the classifier
with normalization and not with normalization. For the original
images in the test set, there is only an AUC of 0.832 on
the cytopathology classification dataset, and only 0.685 on the
histopathology classification dataset. It shows that the classifier
has a strong color bias and cannot be directly applied to the
test data with different color styles from the training data. The
AUC was increased to 0.896 and 0.905 by using StainGAN
and 0.901 and 0.895 by using StainNet on the cytopathology
classification dataset and histopathology classification dataset.
The conventional stain normalization methods hardly achieve
a better AUC, especially in the histopathology classification
dataset, and the performance of the conventional method is lower
than StainGAN and StainNet. The above results show that both
StainGAN and StainNet can effectively improve the accuracy of
the classifier, and the performance of the StainNet method and
the StainGAN method is comparable.

Whole Slide Images Results
For a whole slide image (WSI), there are two main challenges in
stain normalization: One is that WSIs are very large: a typical
WSI may contain 100,000 × 100,000 pixels. So, computational
efficiency is very important. The other is that WSIs may contain
many naturally occurring and human-induced artifacts, e.g., air
bubbles, dust, and out-of-focus. So, the methods must be robust
to these phenomenawhen they are applied in a real-world system.
Since StainNet has a very concise structure and only maps based
on color values, it is less affected by the distribution of the training
data and has better robustness.

In this experiment, we randomly selected 20 cytopathology
WSIs from the same data source in section The Aligned
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FIGURE 8 | Effects of color normalization on metastasis cancer tissue detection. The original whole slide image (a), the normalized image by StainNet (b), the ground

truth (c) of the metastasis cancer, and the detection heat maps from the original image (d), from the image by normalized StainGAN (e), and from the image by

normalized StainNet (f).

Cytopathology Dataset for Evaluating the Similarity and 20
histopathology WSIs from the Camelyon16 dataset. StainGAN
and StainNet are used to normalize these WSIs to the target style.
Results show the computational efficiency of StainNet is more
than 40 times that of StainGAN and can normalize a 100,000 ×

100,000 whole slide image in 40 s, which is very important for
real-time application.

For the cytopathology WSIs, StainGAN and StainNet trained
on the aligned cytopathology dataset were used to perform
normalization, as shown in Figure 6. From Figure 6, the
normalized WSI by StainGAN has artifacts in the center of
crowded cell clusters. Our proposed StainNet achieves better
results maybe because of its robustness and less reliance on the
distribution of the training set.

For the histopathology WSIs, StainGAN and StainNet trained
on the histopathology classification dataset were used to perform
normalization, as shown in Figure 7. StainGAN has artifacts in
the blank background area and the out-of-focus area. Similar to
the cytopathology WSIs, StainNet achieves a better performance.

SSIM Source was used to quantitatively evaluate the
normalized performance by StainGAN and StainNet in this
experiment. In Table 4, StainNet has a higher mean value and
a lower standard deviation, which shows that StainNet not only
can obtain better image quality but also has consistent and robust
performance on the WSIs. The standard deviation of StainGAN
is increased, which shows that the performance of StainGAN is
not stable enough on the WSIs.

Furthermore, we tested the effects of the StainNet
normalization on clinical diagnostics. Here, we chose the

TABLE 5 | The recall, precision, and accuracy of the metastasis detection at the

WSI level.

Recall Precision Accuracy

The original WSIs 0.781 0.368 0.940

The normalized WSIs by StainGAN 0.686 0.708 0.977

The normalized WSIs by StainNet 0.629 0.781 0.979

metastasis cancer slides and demonstrated the detection results
on the WSI level. Twenty metastases WSIs from the University
Medical Center Utrecht in Camelyon16 testing part were used,
and the whole slide image was divided into several 256 × 256
image blocks with a 64 × 64 stride by a sliding window way.
SqueezeNet was trained on the histopathology classification
dataset, and then to detect the original WSIs and the normalized
WSIs by StainGAN and StainNet, shown in Figure 8. From the
picture, we can see, compared with the grand truth, there are a
large number of normal areas that are misidentified as metastasis
areas. After being normalized with StainGAN and StainNet, the
misidentification area is reduced. The statistic results are shown
in Table 5; the parameters of recall, precision, and accuracy are
used to quantitatively evaluate the metastasis detection results
on the WSIs. It can be seen that the precision of the original
WSIs is only 0.368, and StainGAN and StainNet can improve the
precision of recognition, which are 0.708 and 0.781, respectively.
For the accuracy of recognition of all image blocks on the
whole slide image, the accuracy of the original image without
normalization is 0.940, and the accuracy of StainGAN and
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FIGURE 9 | Effects of 1 × 1 and 3 × 3 convolutions. NxConv1x1 and MxConv3x3 refer to the number of 1 × 1 convolution and 3 × 3 convolutions. StainNet

contains only three convolution layers, so the total number of 1 × 1 convolution and 3 × 3 convolutions is three, that is, M + N = 3. The image in the dashed box is

enlarged below. Gray value profiles of the straight lines in (a–f) are shown in the line chart (g).

StainNet is 0.977 and 0.979, respectively. The preliminary results
show that our method is better than StainGAN in accuracy and
precision in the application of WSI metastasis detection.

The effectiveness of 1 × 1 convolution is verified by
replacing the three 1 × 1 convolutions in StainNet with 3
× 3 convolutions in turn. The source image, target image,
and normalized image by different structures of StainNet are
shown in Figures 9a–f, and the gray value profiles of the
straight lines in Figures 9a–f are shown in Figure 9g. It is
clear that, with the increase of 3 × 3 convolutions, the
normalized image becomes more blurred, and the ability to
preserve the source information is getting worse. The best
image quality can be obtained fully using 1 × 1 convolution
in Figure 9c. In particular, at the place pointed by the
black arrow in Figure 9g, only a fully 1 × 1 convolutional
network can best preserve the grayscale changes of the
source image.

The different evaluation metrics, SSIM Target, PSNR Target,
and SSIM Source for different structures of StainNet are
reported in Table 6. Although the 3 × 3 convolutions may
help improve the similarity with the target images, they affect
the ability to preserve the source information. Not changing
the information of the source image is a basic requirement for
stain normalization, so a fully 1 × 1 convolutional network
is chosen.

TABLE 6 | Evaluation metrics of different StainNet structures.

Number of

Conv 1 x 1

Number of

Conv 3 x 3

SSIM target PSNR target SSIM source

3 0 0.808 29.8 0.960

2 1 0.814 30.0 0.958

1 2 0.814 30.0 0.956

0 3 0.804 29.8 0.950

DISCUSSION AND CONCLUSION

In this paper, we achieved stain normalization by using a fully
1 × 1 convolutional network in a pixel-to-pixel manner, which
not only avoids the low computational efficiency and possible
artifacts of deep learning-based methods but also preserves
well the information of the source image. Compared with
conventional methods, StainNet learns the mapping relationship
from the whole dataset instead of relying on one single reference
image, so it can obtain the normalized image with high similarity.
Furthermore, StainNet has been validated on four datasets,
including two public datasets, and the results show that StainNet
has better performance, especially in computational efficiency
and robustness.
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Compared with the traditional methods, StainNet avoids the
difficulty of choosing reference images. For the cytopathy image,
the proportion of blank backgrounds is various, so the standard
deviation and mean of the different images also are different, and
we cannot find an image to represent the entire dataset. This is
the reason that the Reinhard method does not perform well in
Figure 4c. For Macenko and Vahadane, the color normalization
method is based on stain separation, it is difficult to perform
stain separation correctly due to the use of multiple stains for
cytopathological images instead of only eosin and hematoxylin
in histopathology.

Compared with StainGAN, StainNet achieves comparable
normalization performance. At the same time, StainNet is
more than 40 times that of StainGAN in the computational
efficiency and can normalize a giga-pixel WSI in 40 s. And,
more importantly, StainNet retains the source information better
and would not produce some artifacts. StainNet retains the
advantages of better color normalization of StainGAN, while a
fully 1 × 1 convolutional network overcomes the determination
of slow speed and instability.

In short, StainNet, a fast and robust stain normalization
network, has the potential to perform normalization in real-time
in a real-world CAD system.
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