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T 
HE segregation of chromosomes during mitosis in- 
volves dynamic interactions between the kinetochores 
of mitotic chromosomes and spindle microtubules. At 

the metaphase-anaphase transition, sister chromatids sepa- 
rate and move toward opposite poles of the spindle. During 
anaphase A, the chromosome to pole distance shortens, and 
subsequently during anaphase B, the spindle elongates. 
Anaphase A-like movements also occur during metaphase as 
chromosomes oscillate toward and away from poles (18). 
Spindle-marking experiments performed during anaphase A 
using photobleaching and photoactivation of labeled tubulin 
have shown that the major site of depolymerization of 
kinetochore microtubules is at the kinetochore, at least in ver- 
tebrate mitosis (1, 3). These studies imply that the force for 
poleward chromosome movement is predominantly generated 
at kinetochores. Current attention is focused on two potential 
mechanisms for force generation: activity of minus-end- 
directed ATPase motor proteins on kinetochores and/or har- 
nessing of energy released by microtubule depolymerization. 

The idea of harnessing depolymerization to move chromo- 
somes has a distinguished history dating back to Inoue (6, 
7). However, the idea that kinetochores move using ATPase 
motor activity has gained force from recent discoveries of 
dynein and kinesin-like motors at kinetochores (16, 22, 23). 
Two recent papers from Lombillo, Mclntosh, and co- 
workers (10, 11) go some way towards resolving this question 
by showing that kinetochores may use motor proteins as the 
molecular interface that couples microtubule depolymeriza- 
tion to chromosome movement. 

Purified Chromosomes and Microtubules: 
A Brief History 

The studies by McIntosh and co-workers represent a culmi- 
nation of the use of purified mitotic chromosomes as tools 
to investigate the interactions of chromosomes with microtu- 
bules in vitro. The first in vitro studies on mitotic chromo- 
somes showed that kinetochores could nucleate microtu- 
bules by incubating chromosomes with tubulin, fixing, and 
processing for electron microscopy (20) or immunofluores- 
cence (reviewed in reference 13). This fixed time point ap- 
proach was extended to show that kinetochores could cap- 
ture preformed microtubules, and these microtubules could 
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slide over kinetochores in the presence of ATP (5). Motor 
protein activity was more convincingly demonstrated by real 
time analysis of ATP-dependent microtubule sliding, which 
revealed the presence of two motors of opposite polarities on 
kinetochores whose activity could be differentially regulated 
by thiophosphorylation (5). 

ATP-independent movement of kinetochores, driven by 
microtubule depolymerization, was observed by two differ- 
ent approaches. First, anaphase A in lysed cells could be 
driven by calcium-induced microtubule depolymerization in 
the absence of ATP (19). Second, using isolated chromo- 
somes, Koshland and co-workers showed that kinetochores 
could reel in depolymerizing microtubules in the absence of 
ATP (8). However, the fixed time point assays used by the 
latter relied on statistical analysis of microtubule lengths to 
demonstrate movement. Skeptics argued that depolymeriza- 
tion could have occurred while microtubule ends were tran- 
siently detached from kinetochores. Furthermore, these ex- 
periments did not demonstrate that significant amounts of 
force could be generated by depolymerization. These short- 
comings, and perhaps also the rather ambitious title of the 
Koshland et al. paper, may have provided part of the inspira- 
tion for McIntosh and co-workers to develop a real time as- 
say for depolymerization-driven chromosome movement 
(9). Their elegant innovation was to use Tetrahymena pelli- 
cles (detergent-extracted cortices of deciliated Tetrahymena 
cells) as a microtubule-nucleating template. The pellicles 
were attached to the coverslip of a perfusion cell, and 
microtubules were elongated from the exposed basal bodies, 
providing a dense, plus end out array of microtubules. Iso- 
lated chromosomes in buffer with tubulin were perfused into 
the cell, where they bound to the nucleated microtubules. 
Microtubule depolymerization was then initiated by diluting 
out the tubulin, and chromosome movement was observed in 
real time by DIC optics. This assay demonstrated unambigu- 
ously that chromosomes could be pulled toward microtubule 
minus ends by depolymerization in the absence of ATP, and 
furthermore, that this mechanism could generate apprecia- 
ble force against a counter-flow of buffer (1). 

Pure Motors on Beads Can Couple Bead Movement to 
Depolymerizing Microtubules 

A key question in any experimental situation where micro- 
tubule depolymerization drives motility (1, 2) is the nature 
of the molecular interface coupling subunit loss to physical 
movement. Theoretical studies suggested a requirement for 
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Figure L A model for kinetochore movement driven by microtubule 
depolymerization. A kinetochore is cartooned as comprising multi- 
pie coupling proteins (triangles) attached to a structural matrix. A 
mlerotubule (circles) penetrates it, making contact with several 
coupling proteins. The microtubule is drawn as imposing order on 
randomly arranged couplers. The motile mechanism is broken down 
into two basic processes, diffusional sliding of the kinetochores 
over the microtubule lattice, and depolymerization of the micro- 
tubule. Comparing t~ and t2, the flee energy of the system has 
decreased by formation of new coupler-microtubule interactions. 
Comparing t2 and t3, these favorable interactions have been lost, 
but this is offset by decreased free energy caused by microtubule 
depolymerization. Comparing t~ and t3, the only energy change is 
the net decrease in free energy resulting from depolymerization. 
The mechanism is a form of Brownian rachet. In this scheme, the 
rate of movement is governed by the rate of subtmit loss, the rate 
of coupler detachment, and the Brownian diffusion of the kineto- 
chore. The force generated is dependent only on the energy differ- 
ence between t~ and t3 and the distance moved. The energy term 
depends on how much of the free energy of the GTP hydrolysis that 
accompanied microtubule polymerization is stored and released 
during depolymerization. For more quantitative derivations, see 
reference 4. (Adapted from reference 4.) 

multiple tubulin-binding sites on the moving structure that 
are capable of sliding readily between adjacent tubulin mole- 
cules in the microtubule lattice while maintaining a signifi- 
cant favorable interaction energy, as shown in Fig. 1 (4). 
Motor proteins have similar requirements during their mech- 
anochemical cycles, making them candidates for constituting 
the coupling interface (Fig. 1, triangles). Certain motor pro- 
teins have been shown to allow one-dimensional diffusional 
sliding of bound microtubules under conditions where their 
ATPase activity is prevented (21), consistent with a role in 
coupling depolymerization to movement. Lombillo, Mcln- 
tosh, and co-workers have addressed this potential role for 
motors in two ways. In one paper, they tested the properties 
of beads coated with pure motor proteins in their depolymer- 
ization assay (11). In the paper in this issue, they use antibod- 

ies to probe the role of specific motors in depolymerization- 
driven chromosome movement in vitro (10). 

In the experiments with pure motors on beads, depolymer- 
ization was found to drive ATP-independent, minus-end- 
directed motility of three different proteins. These included 
the plus-end-directed motor kinesin, a chimeric kinesin-like 
protein (KLP) 1, and flagellar dynein in the presence of 
ATP-vanadate. The last two proteins are incapable of ATP- 
driven motility, but they support one-dimensional diffusion of 
microtubules. Although these experiments do not mimic pre- 
cisely any specific in vivo motility process, they clearly dem- 
onstrate that motor proteins can couple depolymerization to 
movement in the absence of ATP, increasing our confidence 
that polymer disassembly is a potentially important cellular 
force generating mechanism. 

Another intriguing observation made by the authors using 
the motor-coated beads was the ability of beads coated with 
the chimeric KLP to dramatically stimulate the depolymer- 
ization rate of the microtubules to which they were coupled. 
The coupling mechanism requires a favorable free energy of 
interaction between the bead-bound motors and tubulin. 
Since both tubulin-tubulin and tubulin-motor bonds need to 
be broken to release a subunit from the depolymerizing end 
ofa microtubule with a bead attached, one would predict that 
microtubules with beads attached would depolymerize more 
slowly than those with free ends. Slowing of depolymeriza- 
tion was indeed observed with kinesin-coated beads. Unex- 
pectedly, the chimeric KLP has the opposite effect, speeding 
up depolymerization. The authors do not mention whether 
the density of the chimeric KLP on beads is different than 
that for kinesin, and although the mechanism of this effect 
is unclear, resolving it might tell us a lot about the nature of 
the depolymerizing end and perhaps indirectly about the 
mechanism of dynamic instability. Regulation of microtu- 
bule polymerization dynamics is a novel role for motor pro- 
teins, adding to the biological possibilities of these versatile 
molecules. 

C h r o m o s o m e  M o v e m e n t  In  Vitro 

The results of the pure motor bead experiments lead to the 
hypothesis that motor proteins at the kinetochore are respon- 
sible for coupling chromosome movement to depolymeriz- 
ing microtubules. The paper in this issue attempts to identify 
the specific motor protein(s) at the kinetochore that acts as 
the coupling factor diagrammed in Fig. 1. To date, two KLPs 
and cytoplasmic dynein have been localized to mammalian 
kinetochores. Neither function-blocking antidynein antibod- 
ies nor UV-vanadate cleavage of cytoplasmic dynein affected 
chromosome movement in the assay. In contrast, the inhibi- 
tory effects of an antibody that recognizes multiple KLP 
motor domains prompted further investigation of kineto- 
chore KLPs. Antibodies to two specific KLPs were tested for 
inhibitory effects in the assay: centromedc protein-E 
(CENP-E), a 312-kD KLP with an NH2-terminal motor do- 
main present in kinetochores and the midzone of anaphase 
spindles (23) and mitotic centromere-associated kinesin 
(MCAK), a 90-kD KLP with a central motor domain present 
in centromeres and spindle poles (22). Three out of four 

1. Abbreviations used in this paper: CENP-E, centromeric protein-E; KLP, 
kinesin-like protein. 
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polyclonal antibodies to different regions of CENP-E, when 
preincubated with chromosomes, inhibit the depolymeriza- 
tion-driven movement of chromosomes, with one of them 
blocking it completely, while antibodies to MCAK had no 
effect. 

These results clearly implicate CENP-E in depolymeriza- 
tion-driven chromosome movement, but with some caveats. 
It is always a concern that antibody inhibition may be steric 
rather than direct with a nearby protein being the real cou- 
pling factor. On a technical note, the anti-CENP-E antibod- 
ies were not affinity purified, and they were used at rather 
high concentrations to see a functional effect, far higher than 
the concentrations at which their specificity was tested by 
immunoblot and immunofluorescence methods. The latter 
concern is largely alleviated by the effects of three indepen- 
dent antibodies. More seriously, the morphological data in 
the paper do not prove that the microtubule-chromosome 
connection is mediated by kinetochores in the depolymeriza- 
tion assay. However, kinetochores are known to be strongly 
preferred binding sites for microtubules on chromosomes in 
vitro (14). Overall, the balance of evidence is strongly in 
favor of the authors' conclusion that CENP-E is important 
in coupling chromosome movement to microtubule depoly- 
merization. 

An important point in the paper that makes CENP-E an 
attractive candidate for mediating anaphase A movement in 
vivo is the observation by immunofluorescence that the pro- 
tein is still attached to kinetochores at this stage of mitosis. 
Previously, it was thought that CENP-E was at kinetochores 
only until metaphase, and that it began to relocate to the 
spindle midzone at the metaphase-anaphase transition (23). 
By reexamining the localization in a different cell line with 
more prominent anaphase A, the authors show that this relo- 
cation is incomplete, and that CENP-E remains attached to 
kinetochores during anaphase A. In combination with the 
results of the in vitro analysis, this revised localization 
strongly suggests that CENP-E may play an important role 
in chromosome movement during anaphase A. 

One surprise in the paper is the observation that preincu- 
bation of chromosomes with antibodies that inhibit their 
depolymerization-driven movement does not inhibit micro- 
tubule capture by kinetochores. The pellicle assay is not 
ideal for quantitating capture, so the significance of this ob- 
servation is unclear. However, it may suggest that distinct 
molecules mediate capture and movement. In favor of this 
idea, recent in vitro work has identified distinct proteins (a 
motor protein Kar3 [12] and unidentified microtubule-bind- 
ing proteins [17]) that interact with the centromere-binding 
CBF3 complex in Saccharomyces cerevisiae. Alternatively, 
CENP-E may mediate both capture and movement in mam- 
malian chromosomes, with the antibodies blocking only the 
latter activity. The most potent CENP-E-specific antibody 
interacts with the neck of CENP-E, where it might block 
movement of the head on the stalk without blocking micro- 
tubule binding. Neck flexibility is probaby required in the 
ATPase mechanochemical cycle, but its importance during 
motor-mediated diffusional sliding is less clear. Addressing 
the effects of the various antibodies on the interaction of pure 
CENP-E with microtubules would help address this issue. 
Another useful extension of the current work would be to 
look at the behavior of pure CENP-E on beads in the depoly- 
merization assay. It will be interesting to see if CENP-E en- 

hances or decreases microtubule depolymerization in the 
pellicle assay. 

Anaphase A In Vivo 

The use of microtubule depolymerization to power anaphase 
A movement represents an elegant way to use the energy 
stored in the labile lattice of the polymer to do work in the 
cell. The thermodynamic drive to depolymerization derives 
from the GTP hydrolysis that accompanies polymerization. 
It is somewhat ironic to see an ATPase motor protein cou- 
pling this energy to movement in the absence of ATP hydrol- 
ysis. Proving that microtubule depolymerization drives ana- 
phase A in vivo and that CENP-E is the coupling protein will 
be challenging. Domain analysis of CENP-E and microinjec- 
tion of inhibitory antibodies will be important future ap- 
proaches, as will genetic tests of all putative anaphase mech- 
anisms. 

Having a motor as the candidate coupling factor adds an 
extra element of uncertainty in interpreting such experiments 
because the role of the motor as a force generating ATPase 
will have to be distinguished from its coupling role. The ex- 
tent of this ambiguity might be addressed by extending the 
analysis of pure motors attached to beads to determine how 
motors with different intrinsic rates and polarities behave 
in the depolymerization assay in the presence of ATP. The 
authors' analysis of kinesin-coated beads in the presence of 
ATP uses extremely fast microtubule depolymerization rates, 
making it difficult to interpret their data. Performing their 
assay using motors of different polarities and rates at physio- 
logical depolymerization rates will be very informative. For 
CENP-E, distinguishing between its motor activity and its 
role as a coupling factor during anaphase A will depend in 
part on its polarity. If it is a plus-end-directed motor, then 
any role in anaphase A force production could only be as 
a coupling factor. The same would be true if it is not a mo- 
tile ATPase despite its similarity to kinesin, though absence 
of motile function would be hard to prove. If, however, it 
turns out to be a minus-end-directed motor (as suggested by 
Thrower, D. A., M. A. Jordan, B. Schaar, T. Yen, and L. 
Wilson. 1994. MoL Biol. Cell. 5[Suppl.]:40a), then the dis- 
tinction will be more difficult. However, the two papers by 
Lombillo, Mclntosh, and co-workers define a new function 
for motor proteins as molecules that couple their attached 
cargo to depolymerizing microtubules and their identifica- 
tion of CENP-E as being the kinetochore coupling factor 
in vitro will help elucidate the mechanism of anaphase A 
in vivo. 
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