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Abstract

Rationale: Recent evidence highlights the importance of optimal
lung development during childhood for health throughout life.

Objectives: To explore the plasticity of individual lung function
states during childhood.

Methods: Prebronchodilator FEV1 z-scores determined at age 8,
16, and 24 years in the Swedish population-based birth cohort
BAMSE (Swedish abbreviation for Child [Barn], Allergy, Milieu,
Stockholm, Epidemiological study) (N= 3,069) were used. An
unbiased, data-driven dependent mixture model was applied to
explore lung function states and individual state chains. Lung
function catch-up was defined as participants moving from low
or very low states to normal or high or very high states, and
growth failure as moving from normal or high or very high states
to low or very low states. At 24 years, we compared respiratory
symptoms, small airway function (multiple-breath washout), and
circulating inflammatory protein levels, by using proteomics,
across states. Models were replicated in the independent Dutch

population-based PIAMA (Prevention and Incidence of Asthma
and Mite Allergy) cohort.

Measurements and Main Results: Five lung function states
were identified in BAMSE. Lung function catch-up and growth
failure were observed in 74 (14.5%) BAMSE participants with
low or very low states and 36 (2.4%) participants with normal or
high or very high states, respectively. The occurrence of catch-up
and growth failure was replicated in PIAMA. Early-life risk factors
were cumulatively associated with the very low state, as well as with
catch-up (inverse association) and growth failure. The very low state
as well as growth failure were associated with respiratory symptoms,
airflow limitation, and small airway dysfunction at adulthood.
Proteomics identified IL-6 and CXCL10 (C-X-C motif chemokine 10)
as potential biomarkers of impaired lung function development.

Conclusions: Individual lung function states during childhood
are plastic, including catch-up and growth failure.

Keywords: asthma; early life risk factors; inflammation;
multiple-breath washout; respiratory health

Lung function normally increases from
birth to early adulthood and attains its
peak at around 20–25 years of age (1).
Suboptimal lung development with failure
to achieve normal peak lung function in

early adulthood occurs in 4–12% of the
general population (2) and is associated
with a higher prevalence and an earlier
incidence of respiratory, cardiovascular, and
metabolic diseases, as well as with

premature death (3–8). These observations
highlight the importance of optimal lung
development during childhood and
adolescence for health and disease
throughout life (2).
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Evidence from previous longitudinal
studies shows that there is a range of different
lung function trajectories in the general
population, the majority indicating that the
level of lung function in later life is already set
in early childhood (4, 9, 10). However, the
analytical approaches used so far may have
been limited in their ability to identify
individual-level variations (2, 11) and the
potential plasticity of individual lung function
states during childhood and adolescence into
early adulthood, including both catch-up
(moving from low to normal or high lung
function) and growth failure (moving
from normal or high to low lung function)
(see Figure E1 in the online supplement).
To better identify windows of opportunity

for prevention and early intervention of lung
function development abnormalities during
childhood and adolescence, the use of
methods that can accurately detect individual
variations is essential. Furthermore, the
relationship between lung function
development and preventable risk exposures,
as well as potential biomarkers, needs to be
explored and may yield new pathobiological
insights and identify subjects at risk and,
potentially, novel pharmacological targets for
early intervention (12).

Here we used an unbiased, data-driven,
dependent mixture modeling (13) in the birth
cohort BAMSE (Swedish abbreviation for
Child [Barn], Allergy, Milieu, Stockholm,
Epidemiological) study (14) to identify and
characterize individual lung function growth
from childhood to early adulthood. Models
were replicated in the independent Dutch
PIAMA (Prevention and Incidence of Asthma
andMite Allergy) birth cohort (15, 16).
To explore potential determinants and
consequences of individual lung function
development, we characterized lung function
states with respect to early-life risk factors,
respiratory symptoms, small airway function,
and airway as well as systemic inflammatory
biomarkers in early adulthood. Some of the
results of these studies have been previously
reported in the form of an abstract (17).

Methods

Subjects and Ethics
The Swedish population-based birth cohort
BAMSE recruited 4,089 infants from

inner-city, urban, and suburban districts of
Stockholm (Sweden) between February 1994
and November 1996 and followed them up
from birth until around 24 years (14, 18).
BAMSE was approved by the Ethics
Committee of Karolinska Institutet
(Ref 2016/1380-31/2), Stockholm. All parents
(at inclusion, 4, and 8 yr) and participants
(at age 16 and 24 yr) signed their informed
consent, under the Helsinki Declaration.

Measurements
Additional study details, some of which have
been published previously, are presented in
the online supplement (14). Briefly,
information on demographics, lifestyle
characteristics, and exposures was obtained
from parental questionnaires administered at
recruitment, and follow-up questionnaires
were answered by parents at ages 1, 2, 4, 8,
12, and 16 years. At age 24 years, participants
themselves answered the questionnaire (19).
Prebronchodilator spirometry was
determined at 8, 16, and 24 years following
the American Thoracic Society/European
Respiratory Society (ATS/ERS)
recommendations (details in the online
supplement) (20). Post-bronchodilator lung
function was measured at 24 years (21).
Predicted values and z-scores of FEV1 and
FVCwere calculated from the Global Lung
Function Initiative Equations (22). In 1,186
participants, multiple-breath nitrogen
washout was determined (two or more times)
at 24 years (Exhalyzer D, Ecomedics
Technologies) according to ERS
recommendations (23) to measure the lung
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clearance index (LCI), a sensitive marker
of ventilation inhomogeneity (24).
Examinations were made and quality checked
using the software Spiroware 3.3.1 (25).
Fractional exhaled nitric oxide (FENO) was
measured at 24 years according to the
ATS/ERS guidelines (26). Data on specific
IgE, eosinophil, and neutrophil counts were
available from clinical follow-ups (14). Finally,
92 inflammation-related protein biomarkers
(Table E10) were measured in plasma by
ProseekMultiplex Inflammation I panel
(Olink Bioscience) at 24 years (27).

Lung Function States Modeling
We used a data-driven dependent mixture
model (13) to assign participants to their
most likely lung function states based on
FEV1 z-scores. We assumed that there were
several different states in the general
population and that the FEV1 z-scores that
belonged to each of them followed a
Gaussian distribution. Participants could
move between the states at the following
measurement (8–16–24 yr), a process that
can be statistically described as a Markov
process (details in the online supplement).
Models were compared for goodness of fit
using the Bayesian information criterion
(Table E1). We built the models using data
from participants with two or more lung
function measures available as well as with
participants with one or more measures
available, respectively.

After the optimal model had been
selected, participants with two or more lung
function data available were used to define
catch-up and growth failure, a post hoc
analysis of the individual lung function state
chains. Catch-up was defined as participants
moving from low states (low or very low) to
normal or high states (normal, high, or very
high); participants increasing from the very
low to low states, or those increasing from
normal or high states were not considered to
belong to the catch-up group (Figure E1).
Growth failure was defined as participants
moving from normal or high or very high
states to low or very low states; participants
who decreased from low state to very low
state, or those decreasing from high or very
high states to normal were not considered as
growth failure (Figure E1).

Sensitivity analyses related to the state
assignment of the participants as well as
catch-up and growth failure were conducted
using the k-means–based longitudinal
trajectory analysis (28) as well as participants’

moving between lung function quartiles
(FEV1 z-scores) at different ages, respectively.

Replication Study
The prospective, population-based Dutch
PIAMA birth cohort was used to
independently replicate the models (details in
the online supplement). Lung function
measurements were performed in subsets of
participants at ages 8, 12, and 16 years.
PIAMAwas approved by the respective
Medical Ethics Committees; informed
(parental or legal guardian) consent was
obtained from all participants (Medisch
Ethische Toetsings-Commissie (METC)
protocol number 07-337/K). Themodels were
built using data from participants with two or
more lung functionmeasures available as well
as participants with one or more measures
available. Models were compared for
goodness of fit using the Bayesian information
criterion (Table E2). Catch-up and growth
failure were calculated subsequently using
the model with five lung function states.

Statistical Analyses
Comparisons of early-life risk factors, clinical
data, and respiratory symptoms between
states were performed using t test/ANOVA,
Wilcoxon’s/Kruskal-Wallis’ and chi-square
tests, and/or Fisher’s exact test, as appropriate.
Associations of early-life factors and protein
levels with lung function states (including
catch-up and growth failure) were investigated
usingmultinomial logistic and linear
regressionmodels, respectively, adjusted for
potential confounders (details presented in
table footnotes and in the online supplement).
P values were adjusted for false discovery rate
by applying the Benjamini-Hochberg method
(29). All the analyses were performed using
R 4.0.4. with the dependent mixture model
using R package depmixS4 version 1.5-0 (13).

Results

Lung Function States
Of the 4,089 participants originally recruited
in the BAMSE cohort, we included in the
current analysis 3,069 (75.1%) with lung
function data available (Figure E2).
Spirometry was measured three times in 837,
two times in 1,173, and one time in 1,059
subjects. The model including participants
with two or more lung function measures
and the model including participants with
one or more measures available showed
overall the same results (Table E3,
kappa= 0.99). To increase the power of the

analysis of associations with early-life and
adulthood factors, the model based on the
larger sample size was selected. The data-
driven dependent mixture model used here
identified five lung function states (Figure E3
and the details shown in Figure E4), which
were labeled according to mean FEV1

z-scores as: 1) very high (n=317, 10.3%); 2)
high (n=1,014, 33.0%); 3) normal (n=1,031,
33.6%); 4) low (n=595, 19.4%); and 5) very
low (n=112, 3.7%) states. Sensitivity analysis
showed the assignment of participants to
each state to be highly correlated (0.86) to the
results obtained using k-means–based
longitudinal trajectory analysis (details in the
online supplement).

Characteristics of Participants by
Lung Function State at Age 24 Years
Male sex was more prevalent in the low
states, and some differences in relation to
height and body mass index distributions
were noted among the five states (Table 1).
At 24 years, participants in the very low state
had a higher prevalence of respiratory
symptoms, asthma, use of inhaled
corticosteroids, and chronic bronchitis and
were more often smokers than those in the
normal state. Airflow limitation (FEV1/FVC
less than the lower limit of normal),
reversible or irreversible, occurred in almost
40% of the participants belonging to the very
low state. A higher LCI was observed in the
very low state, suggesting the presence of
small airway dysfunction. No clinically
relevant differences in FENO or circulating
neutrophil and eosinophil levels in blood
were observed across states.

Factors Associated with Lung
Function States
Table 2 presents adjusted associations
between early-life factors and lung function
states. Compared with participants in the
normal state, those included in the very low
state were more likely to have been born
prematurely, and participants in both the low
and very low states were more likely to have
suffered respiratory infections in the first years
of life, to have been exposed to higher air
pollution levels (nitrogen oxides, NOx), and to
have been diagnosed with asthma. A short
period of exclusive breastfeeding (,4mo)
was associated with the low state, with similar
effect estimates as for the very low state. The
very high state was characterized by lack of
parental or childhood asthma and low
prevalence of IgE sensitization to airborne
allergens (Table 2). Finally, the number of
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coexisting risk factors was cumulatively
associated with very low and very high states
(vs. the normal state; Figure E7).

Plasma Inflammatory Proteins
Out of the 92 plasma inflammatory markers
tested, 25 (27%) were different between lung
function states (Table E4). After adjustment
for multiple testing and potential
confounders, 17 of the proteins were

associated with the very low state (vs. normal
and/or vs. very high; Table E5). When FEV1

z-scores at 24 years were analyzed as a
continuous trait, we identified four
associated proteins: IL-6, TNF (tumor
necrosis factor)-related weak inducer of
apoptosis, stem cell factor, and CXCL10
(C-X-Cmotif chemokine 10) (Table E6).
IL-6 and CXCL10 emerged as potential
biomarkers for impaired lung function

development, as they both were negatively
associated with FEV1 z-score (independently
of states) and the very low state.

Catch-Up and Growth Failure
In general, individual lung function states
were remarkably stable over time, but 16.8%
and 6.3% of the participants moved between
states between 8 and 16 years and 16 and 24
years, respectively (Figure 1 and Table E7).

Table 2. Multivariable Adjusted Associations between Early-Life Factors and Lung Function States with the Normal State as
Reference

Very High
(n=317)

High
(n= 1014)

Low
(n=595)

Very Low
(n=112)

Demographics
Sex, male 0.84 (0.65–1.08) 0.76 (0.63–0.90)* 1.02 (0.84–1.25) 1.22 (0.82–1.81)
Parental education
University Ref Ref Ref Ref
Primary school/high school 1.25 (0.96–1.62) 1.19 (1.00–1.43) 1.21 (0.99–1.49) 1.3 (0.87–1.94)

Early-life events
Premature birth 0.94 (0.51–1.73) 1.12 (0.75–1.68) 1.18 (0.75–1.87) 2.26 (1.13–4.50)†

Birth weight, per 1 kg 1.09 (0.86–1.38) 1.18 (1.00–1.39)† 0.92 (0.77–1.11) 0.75 (0.53–1.06)
Exclusive breastfeeding for more than 4 mo 1.00 (0.72–1.4) 1.07 (0.85–1.35) 0.75 (0.58–0.97)† 0.84 (0.52–1.38)
Bronchitis during 0–1 yr 1.45 (0.89–2.36) 0.95 (0.65–1.37) 1.69 (1.16–2.45)* 2.47 (1.34–4.55)*
Pneumonia/RSV infections during 0–1 yr 0.66 (0.37–1.17) 0.82 (0.57–1.17) 1.05 (0.71–1.55) 2.04 (1.12–3.71)†

RSV infections during 0–1 yr 0.78 (0.40–1.53) 0.73 (0.46–1.15) 1.03 (0.64–1.67) 1.39 (0.61–3.18)
Pneumonia during 0–1 yr 0.37 (0.13–1.06) 0.79 (0.47–1.33) 0.93 (0.53–1.66) 2.28 (1.02–5.07)†

Pneumonia during 0–4 yr 0.80 (0.52–1.25) 0.91 (0.69–1.22) 1.07 (0.78–1.48) 2.21 (1.34–3.63)*
Exposures
Maternal smoking during pregnancy 0.89 (0.58–1.35) 1.08 (0.82–1.42) 1.10 (0.80–1.51) 1.21 (0.67–2.18)
Parental smoking

0–1 yr 0.95 (0.64–1.40) 1.09 (0.84–1.43) 0.82 (0.60–1.12) 0.87 (0.47–1.59)
0–4 yr 0.87 (0.63–1.20) 0.89 (0.71–1.11) 0.87 (0.67–1.13) 1.22 (0.76–1.97)
0–8 yr 0.97 (0.71–1.33) 0.96 (0.77–1.19) 0.95 (0.74–1.23) 1.14 (0.71–1.83)

NOx higher than the median‡

0–1 yr 1.26 (0.82–1.95) 0.93 (0.70–1.25) 0.93 (0.66–1.29) 1.40 (0.74–2.64)
1–4 yr 0.93 (0.64–1.36) 1.22 (0.94–1.59) 1.43 (1.04–1.95)† 2.08 (1.07–4.03)†

4–8 yr 1.10 (0.77–1.56) 1.08 (0.85–1.37) 1.00 (0.76–1.32) 1.63 (0.90–2.97)
Allergies and asthma
Parental asthma 0.66 (0.47–0.93)† 0.84 (0.68–1.05) 0.82 (0.64–1.06) 1.05 (0.65–1.68)
Childhood asthma during 0–8 yr (any vs. never) 0.62 (0.44–0.86)* 0.84 (0.68–1.03) 1.28 (1.02–1.61)† 2.20 (1.45–3.34)§

Childhood asthma during 0–8 yr
Never Ref Ref Ref Ref
Transient 0.60 (0.42–0.84)* 0.85 (0.68–1.05) 1.21 (0.96–1.54) 2.09 (1.36–3.22)§

Persistent 0.87 (0.35–2.2) 0.72 (0.37–1.42) 2.09 (1.13–3.85)† 3.52 (1.35–9.18)†

Airborne allergen sensitizationjj

4 yr 0.81 (0.53–1.25) 0.92 (0.69–1.23) 1.09 (0.79–1.50) 1.34 (0.75–2.38)
8 yr 0.66 (0.46–0.95)† 0.92 (0.73–1.16) 1.15 (0.88–1.49) 1.16 (0.71–1.89)

Food allergen sensitization¶

4 yr 1.08 (0.72–1.62) 1.10 (0.83–1.47) 1.10 (0.79–1.52) 1.28 (0.71–2.31)
8 yr 0.93 (0.65–1.35) 1.11 (0.86–1.43) 1.09 (0.82–1.47) 1.55 (0.94–2.57)

Definition of abbreviations: kUA=Kilounits of allergen-specific IgE; NOx=nitrogen oxides; Ref = reference; RSV= respiratory syncytial virus.
Data are shown as odds ratio (95% confidence interval). The multinomial logistic regression models were adjusted for sex, maternal smoking
during pregnancy, asthma heredity, and socioeconomic status. Statistically significant values are highlighted using bold text.
*P, 0.01 for regression analysis between each state and the normal states (Ref).
†P, 0.05 for regression analysis between each state and the normal states (Ref).
‡The multinomial logistic regression models for air pollution were adjusted for municipality at birth, sex, maternal smoking during pregnancy,
asthma heredity, and socioeconomic status.
§P, 0.001 for regression analysis between each state and the normal states (Ref).
jjSensitization to a mix of common airborne allergens with Phadiatop (ImmunoCAP System; ThermoFisher. A positive test was defined as specific
IgE >0.35 kUA/L).
¶Sensitization to a mix of common food allergens with fx5 (ImmunoCAP System; ThermoFisher. A positive test was defined as specific
IgE >0.35 kUA/L).
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Overall, 14.5% of the participants with low or
very low states showed lung function catch-
up, and 2.4% of the participants with normal
or high or very high states showed growth
failure (Figures 2, 3A, and 3B and Table E8).
Both catch-up and growth failure appeared
to occur at any age but were more common

in the 8–16 years age bin (13.1% and 3.0%,
respectively; Figure 2).

Similar catch-up and growth failure
trends were observed in FEV1 z-score
quartile-based moving patterns (as
complementary analysis), albeit not with
complete overlap with the state-based

patterns (kappa=1.0 for catch-up and 0.53
for growth failure, respectively; online
supplement).

Table E9 summarizes the main
characteristics of participants with catch-up
or growth failure. Compared with
participants persistently in the low or very
low lung function states, those with catch-up
were characterized by a lower prevalence of
bronchitis in the first year of life, maternal
smoking during pregnancy, or parental
smoking exposure (both of borderline
significance). At 24 years, spirometry was
fully recovered in the catch-up group, and no
differences in LCI were found.

Compared with participants persistently
in the normal or high or very high states,
children with growth failure were
predominantly females, born prematurely,
suffered pneumonia/respiratory syncytial
virus infections during the first year of life,
were more often diagnosed with asthma,
were treated with inhaled corticosteroids
more often, and were frequently sensitized to
food allergens. Participants with growth
failure had a higher prevalence of airflow
limitation and worse LCI at age 24 years
compared with those who remained in the
high states (Table E9). Biomarker association
with catch-up and growth failure was not
explored because of limited study power.

Figure 3C shows that the prevalence of
catch-up decreased and that of growth failure
increased cumulatively in relation to the
number of early-life risk factors present.
Likewise, the odds ratios for catch-up or

Figure 1. Alluvial plot that illustrates transition of lung function states from childhood to early
adulthood. Participants with two or more lung function measures recorded were included. The
width of each line is proportional to the number of participants included. The numbers behind
Figure 1 are available in Table E6.

Figure 2. Prevalence of catch-up (left) and growth failure (right) at different age bins (8–16 yr, 16–24 yr, and 8–24 yr). A subgroup of
participants contributed lung function data only at 8 and 24 years (but not 16 yr); therefore, the total proportion of subjects (gray) does not
always match the sum of 8–16 (blue) and 16–24 (orange) year proportions. The numbers behind Figure 2 are available in Table E7.
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growth failure decreased or increased,
respectively, with increased number of risk
factors (Figure 3D).

Replication in an Independent Dataset
There were 1,484 participants in PIAMA
with lung function data available for
replication analysis. Spirometry was
measured three times in 252, two times in
379, and one time in 853 subjects. The five
lung function states (Figure E5 and the
details showed in Figure E6) were labeled
according to mean FEV1 z-scores as: 1) very
high (n=94, 6.3%); 2) high (n=446, 30.1%);
3) normal (n=501, 33.8%); 4) low (n=407,
27.4%); and 5) very low (n=36, 2.4%) states.
Individual lung function states were found
stable over time also in PIAMA, although
13.6% of participants changed their states
between 8 and 16 years. Specifically, 4.1%
(7/172) of participants with low or very low
states showed lung function catch-up, and
5.7% (26/459) of participants with normal or
high or very high states showed
growth failure. In BAMSE, 13.1%
(40/305) and 3.0% (28/919) of participants
experienced catch-up and growth failure
between 8 and 16 years.

Discussion

This study explored the plasticity of
individual lung function states from
childhood to early adulthood in two
population-based birth cohorts, BAMSE
and PIAMA. Althoughmost individual lung
function states were stable over time, some
participants in the low lung function states
displayed catch-up to normal lung function,
and growth failure occurred in some
participants with initial normal or high lung
function. Our results also highlight a
cumulative effect of several risk factors and
identify novel state-associated inflammatory
biomarkers to consider in future preventive
and/or interventional strategies.

Previous Studies
Previous studies have identified four (10) to
six (4) lung function trajectories from school
age to adulthood; our methodology identified
five parallel states (Figures 1 and E3).
Differences in population type and size,
quality, and frequency of lung function
measures, as well as the different analytical
tools used, can account for these relatively
minor discrepancies in the number of
trajectories/states identified.

Multiple host factors (genetics/
epigenetics) and environmental exposures
can contribute to membership in a lung
function state or trajectory group up to
adolescence (30, 31). In line with previous
studies (4, 10, 14, 18, 30, 32), we found that
preterm birth, childhood asthma,
bronchitis, respiratory infections, and air
pollution exposure during early life were
associated with low lung function states
and that parental asthma, sensitization to
airborne allergens, and childhood asthma
decreased the likelihood of a high state.
Importantly, we could also show that there
is a cumulative effect of these risk factors
on the likelihood of belonging to a lower
state. These are important findings from a
public health point of view because several
of the risk factors are avoidable.

Interpretation of Novel Findings
Our study provides several novel findings of
interest. First, we show that individual lung
function states are remarkably stable over
time, but individual catch-up and growth
failure can indeed occur, particularly in the
8–16 years age range. The overall estimates of
subjects moving among the five states were
quite similar in BAMSE and the replication

Figure 3. Individual FEV1 z-scores in participants with lung function (A) catch-up and (B) growth failure. (C) Prevalence and (D) OR of catch-up
and growth failure by the number of associated risk factors coexisting in the same participants. The risk factors included in the association with
catch-up were maternal smoking during pregnancy, parental smoking during 0–1 years, and early bronchitis. The risk factors included in the
association with growth failure were preterm birth, early bronchitis, respiratory syncytial virus/pneumonia during infancy, sensitization to food
allergens during 4–8 years, and childhood asthma during 0–8 years. CI= confidence interval; OR=odds ratio; Ref = reference.

ORIGINAL ARTICLE

Wang, Hallberg, Faner, et al.: Plasticity of Individual Lung Function States 413



cohort PIAMA (16.8% vs. 13.6%,
respectively, between 8 and 16 yr), whereas
the catch-up and growth failure estimates
differed somewhat (catch-up 13.1% vs. 4.1%
and growth failure 3.0% vs. 5.7%).
Differences in population type and size,
environmental exposures, as well as the
different data points available may contribute
to these discrepancies. However, the PIAMA
results confirm the concept that at the group
level, the lung function states are rather
stable over time, whereas at the individual
level, the lung function states may be plastic,
including both catch-up and growth failure.
The finding that lung function changes
occur rather early during childhood, also
confirmed using FEV1 quartile data in both
cohorts, strongly argues in favor of early
detection and follow-up of lung function
deviations in children and adolescents
(33, 34).

Lung function catch-up has previously
been observed in subjects born preterm
(11). We did not observe this in the current
study (presumably due to few children
born extremely preterm) but found that
early bronchitis was associated with a
permanent low state, suggesting that early
viral infections may decrease the chance of
lung function catch-up. Although catch-up
was rare in children in the very low state,
the possibility of such development
should encourage research aimed at
understanding the molecular basis of
catch-up to help children regain normal
lung function.

We also observed participants who
had a lower-than-expected growth rate in
FEV1 (i.e., growth failure). In a previous
study (35), growth failure has been observed
in very young children with persistent
wheezing. Our results extend this finding by
demonstrating that growth failure can also
occur during school age (Figure 2) and that
female sex, preterm birth, early respiratory
infections, childhood asthma, and
sensitization to food allergens play a role.
Finally, we could show that the combination
of several risk factors greatly increases the
risk of growth failure and, conversely,
reduces the likelihood of catch-up, in an
additive manner (Figure 3).

In our analysis, lung function states
were determined based on FEV1 only.
However, almost 40% of participants in
the lowest state showed airflow limitation
(FEV1/FVC less than lower limit of
normal) at 24 years and were often
symptomatic (Table 1). Furthermore,

FVC levels gradually decreased from the
very high to the very low states, but the
lack of total lung capacity measurements
prevents determining whether this is an
effect of air trapping related to increasing
airflow limitation or a sign of a restrictive
lung impairment. Further studies are
needed to jointly model more lung
function parameters together, such as
FEV1 and FVC. Finally, we could show that
the low lung function state, as well as
growth failure, was associated with
ventilation inhomogeneity measured as
LCI at the age of 24 years. Higher values of
LCI have been reported to associate with
disease severity in adults with chronic
obstructie pulmonary disease (36) or
bronchiectasis (37) but have to our
knowledge not been assessed in large,
younger populations. Whether earlier
respiratory insults, such as viral/bacterial
respiratory infections also linked to severe
childhood wheeze (38), relate to small
airway pathophysiology remains to be
formally evaluated, but, as discussed below,
several of our biomarker observations
support it.

The plasma levels of IL-6 and CXCL10
were associated with the very low lung
function state, as well as negatively with
FEV1 (independently of states). These two
pleiotropic factors are associated with a
wide range of biological processes,
including IFN-g pathways (39, 40).
Interestingly, respiratory infections early in
life (known activators of IFN pathways)
were strongly associated with a very low
state and growth failure, so the prevention
of respiratory infections during childhood
may help to improve the peak lung
function achieved at early adulthood.
Further exploration of IFN-driven
pathways may identify potentially new
pharmacological targets for prevention
and/or early intervention during early
childhood.

Potential Limitations
We acknowledge that our definitions of
catch-up and growth failure are arbitrary
with regard to capturing participants
moving from relatively higher-risk to
lower-risk subgroups (or relatively
lower-risk to higher-risk subgroups) of
future diseases. Yet, with this study, we are
introducing the concept of plastic
individual lung function states during
childhood, which includes catch-up and
growth failure. We acknowledge, though,

the complexity of modeling age-dependent
lung development using clinical endpoints
like lung function and that further efforts
are needed to evaluate the optimal
statistical approaches, data input (single vs.
multiple lung function measures, age
categories, etc.), and validation in other
ethnic groups and in other environmental
contexts. In addition, our observations on
related inflammatory biomarkers are
needed to be validated in other
populations, and other omics layers such as
epigenetics need to be further explored
(41). Large-scale collaboration involving
multiple cohorts, such as the CADSET
(Chronic Airway Disease Early
Stratification) collaboration (42), would be
needed for such analyses. Also, we do not
have lung function data earlier than 8 years
of age. Although reliable spirometry data
are very challenging to achieve in
preschool children, lung function assessed
by alternative methods could assist in the
evaluation of when early lung function
changes may have occurred.

Conclusions
Individual lung function states from 8 to
24 years of age are remarkably stable over
time, but catch-up or lung growth failure can
indeed occur in a population-based setting.
Our study identifies risk factors and blood
biomarkers associated with impaired lung
function development. Collectively, these
results contribute to a better understanding
of the determinants, consequences, and
implications of abnormal lung development
and open new research avenues of great
relevance to promote respiratory and global
health starting during childhood and
continuing throughout life.�
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