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One of the most promising therapeutic approaches for numerous hematological

malignancies represents the allogeneic hematopoietic stem cell transplantation

(allo-HSCT). One major complication is the development of the life-threatening

graft-vs.-host disease (GvHD) which limits beneficial effects of graft-vs.-leukemia (GvL)

responses during allo-HSCT. Strengthening GvL effects without induction of severe

GvHD is essential to decrease the relapse rate after allo-HSCT. An interesting player

in this context is vitamin D3 since it has modulatory capacity in both preventing

GvHD and boosting GvL responses. Current studies claim that vitamin D3 induces

an immunosuppressive environment by dendritic cell (DC)-dependent generation of

regulatory T cells (Tregs). Since vitamin D3 is known to support the antimicrobial defense

by re-establishing the physical barrier as well as releasing defensins and antimicrobial

peptides, it might also improve graft-vs.-infection (GvI) effects in patients. Beyond that,

alloreactive T cells might be attenuated by vitamin D3-mediated inhibition of proliferation

and activation. Despite the inhibitory effects of vitamin D3 on T cells, anti-tumor

responses of GvL might be reinforced by vitamin D3-triggered phagocytic activity and

antibody-based immunotherapy. Therefore, vitamin D3 treatment does not only lead to

a shift from a pro-inflammatory toward a tolerogenic state but also promotes tumoricidal

activity of immune cells. In this review we focus on vitamin D3 and its immunomodulatory

effects by enhancing anti-tumor activity while alleviating harmful allogeneic responses in

order to restore the immune balance.
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INTRODUCTION

The most promising curative therapeutic strategy for a broad spectrum of hematological
malignancies remains the allogeneic hematopoietic stem cell transplantation (allo-HSCT) (1). Its
efficacy is mainly mediated by alloreactive donor-derived immune cells eliminating malignant host
cells, a process known as graft-vs.-leukemia (GvL) effect (2). However, infused donor cells can
also attack healthy host tissues due to histocompatibility mismatches, which leads to graft-vs.-host
disease (GvHD). This life-threatening complication limits the beneficial effects mediated by
GvL. Restoring the host’s immune balance during and after transplantation is one of the major

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.02586
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.02586&domain=pdf&date_stamp=2019-11-05
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:heiko.bruns@uk-erlangen.de
https://doi.org/10.3389/fimmu.2019.02586
https://www.frontiersin.org/articles/10.3389/fimmu.2019.02586/full
http://loop.frontiersin.org/people/834387/overview
http://loop.frontiersin.org/people/418728/overview
http://loop.frontiersin.org/people/418652/overview
http://loop.frontiersin.org/people/693410/overview


Flamann et al. Vitamin D in GvH and GvL

challenging obstacles in clinical research (3). Alleviating GvHD
responses while boosting anti-leukemia activities could be
the key to successful treatment in allo-HSCT. Since both
processes underlie more or less the same T cell activity, it is
very demanding to dissect GvHD from GvL effects (4). The
current standard treatment consists mainly of corticosteroids
and calcineurin inhibitors such as cyclosporine and tacrolimus
(5). Since these immunosuppressive drugs attenuate T-cell-
mediated inflammation (6) and the allo-stimulatory capacity of
DCs (7), they lead to alleviation of GvHD symptoms. However,
these immunosuppressive mechanisms might reduce GvL effects
as well. Recent studies have established promising strategies
for strengthening GvL responses without exacerbating GvHD.
Infusion of donor lymphocytes, CAR-T cells and checkpoint
inhibitors have gained pivotal interest in clinical studies over the
past years (8). However, none of these therapeutic approaches
target both GvHD and GvL.

Though vitamin D3 has been discovered as an important
regulator of calcium homeostasis in the early Twentieth century,
its putative immunoregulatory role remained undiscovered until
recently (9). Contrary to initial assumptions that vitamin D3 is
mainly produced in kidney and liver, vitamin D3 receptor (VDR)
and vitamin D3 metabolizing enzymes are also expressed in
various types of immune cells (10–12). The novel role of vitamin
D3 in regulating effector functions of human macrophages is
closely linked to the expression of the vitamin D-1-hydroxylase
CYP27B1. The precursor form of vitamin D3 is produced in the
epidermis upon ultraviolet B (UVB) irradiation or obtained from
dietary intake (13). Vitamin D3-binding protein (VDBP) binds
pre-vitamin D3 and is responsible for its transport into the liver.
Upon entering the cell, CYP27B1 catalyzes the conversion of 25-
hydroxy-vitamin D3 (25(OH)D3) into its bioactive form 1,25-
dihydroxy-vitamin D3 (1,25(OH)2D3, calcitriol) (14). Levels of
1,25(OH)2D3 are regulated by the inactivating 1,25(OH)2D3 24-
hydroxylase (CYP24A1). 1,25(OH)2D3 binds intracellularly to
VDR and induces as a transcription factor the expression of a
broad variety of target genes which contain vitamin D3 response
elements (VDRE) within their promoters (15) (Figure 1).

Since vitamin D3 is well-known for exerting both anti-
tumoricidal and anti-inflammatory functions, it might be an
attractive target for preservation of the immune balance in
patients undergoing allo-HSCT (16). In this review, we seek to
elucidate mechanisms by which vitamin D3 might act as potential
immune regulator in GvL as well as GvHD while highlighting its
effects on both innate and adaptive immune system.

VITAMIN D3 AND GvHD

At the beginning of the Twenty-first century, vitamin D3 has
gained more attention in the field of allo-HSCT. Given that
vitamin D3 exerts “non-classical” actions besides sustaining
bone metabolism and calcium homeostasis, paved the way for
pioneering studies which proved that vitamin D3 deficiency
correlates directly with immune diseases such as multiple
sclerosis (MS) (17), systemic lupus erythematosus (18),
inflammatory bowel disease (IBD) (19), rheumatoid arthritis

(20), and autoimmune thyroid disease (21). Vitamin D3

supplementation has been shown to reduce severity and
incidence of such diseases not only in animal models but also
in clinical studies (22). Based on studies which show that
application of several vitamin D3 analogs has been effective
in some solid organ transplantations (23–25), Pakkala and
colleagues successfully achieved prevention of GvHD symptoms
in a rat transplantation model by a 1,25(OH)2D3 analog
(MC1288) (26). Further investigations proved that certain VDR
polymorphisms are associated with higher risk of severe GvHD
(27–29). Since patients receiving HSCT are malnourished, less
exposed to sunlight and have an altered vitamin D3 metabolism
due to medications and impaired organ function, they are
predestined for vitamin D3 deficiency (30). In fact, Kreutz et al.
demonstrated that conversion of 25(OH)D3 into 1,25(OH)2D3

is impaired in GvHD patients and that 25(OH)D3 serum levels
were lower in grade III-IV than in grade I-II GvHD patients
(31). The high prevalence of low vitamin D3 levels in patients
undergoing HSCT is reported in other studies as well and might
also be associated with a higher incidence of GvHD (32–34).
These findings suggest a pivotal protective role of vitamin D3 in
GvHD pathogenesis. Recently, Chen and Mayne reviewed the
immunomodulatory effects of vitamin A and D in the context
of GvHD (35). In the following, vitamin D3 will be analyzed
briefly as an important modulator of both innate and adaptive
immune system.

Molecular Actions of Vitamin D3 in the
Innate Immune System of GvHD Patients
Antimicrobial Activities

Although the precise mechanisms of vitamin D3 remained
unclear for a long time, patients infected with Mycobacterium
tuberculosis (Mtb) have been treated with UVB irradation
and cod liver oil in the pre-antibiotic era (36, 37). In 1980,
Rook and colleagues could evidence that growth of Mtb was
impeded in vitro by 1,25(OH)2D3 in human monocytes and
macrophages (38, 39). Since then, it became increasingly clear
that vitamin D3 exerts anti-microbial effects (40). Subsequent
studies demonstrated that 1,25(OH)2D3 leads to release of
anti-microbial peptides such as LL-37 and β-defensin (41–
43). LL-37 is the cleavage product of human cathelicidin
antimicrobial peptide (hCAP18, CAMP) and is known for its
antibacterial function by inducing bacterial lysis and death
(44). Upon infection, lung epithelial cells locally produce
1,25(OH)2D3 which in turn enhances LL-37 expression (45).
Cathelicidin-deficient mice have been shown to be more
susceptible to infections with Streptococcus, Pseudomonas, and
E. coli (46). Cathelicidin does not only increase phagocytic
activity of macrophages (47) but also promotes reactive
oxygen species (ROS) production (48, 49), leading to direct
antimicrobial effects. Moreover, cathelicidin triggers autophagy
and reactivates phagolysosomal fusion in macrophages, which
enhances degradation of intracellular pathogens such as Mtb,
Salmonella, and Coxiella (14, 50). Even viral infections with
influenza A (51) or fungal infections with Candida albicans
(52) in mice are reduced by cathelicidin. Accumulating data
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FIGURE 1 | Vitamin D3 metabolism. The precursor form of vitamin D3 25(OH)D3 enters the cell and is then converted into the bioactive form 1,25(OH)2D3 by

CYP27B1. CYP24A1 regulates levels of 1,25(OH)2D3 by converting it into the inactive 24,25(OH)2D3. Active 1,25(OH)2D3 binds to the vitamin D3 receptor (VDR) in the

cytoplasm and this complex translocates into the nucleus. Finally, VDR binds to appropriate vitamin D response elements (VDRE) and triggers transcription of target

genes (e.g., LL-37). Adapted from Bruns and Stenger (14).

have revealed that the intestinal barrier is supported by vitamin
D3-dependent upregulation of tight junction proteins (53,
54), which is a fundamental requirement for efficient defense
against pathogens. The loss of intestinal barrier function is
also considered to be a driving factor for GvHD development
(55). Thus, vitamin D3-dependent release of cathelicidin and
the protection of epithelial barriers might improve graft- vs.-
infection (GVI) effects in allo-HSCT patients.

Recent studies have now discovered a novel role of LL-37 in
cancer (56) and inflammatory diseases (57). Strikingly, LL-37
does not only possess anti-microbial but also anti-inflammatory
features, since it has been shown to inhibit the release of
pro-inflammatory mediators such as TNF-α, IL-6, and IL-8 by
neutrophils (48). Additionally, cathelicidin reduces mortality in
mice infected with P. aeruginosa by neutralizing endotoxin-
mediated inflammation (58).

Hence, vitamin D3-triggered activity of cathelicidin links anti-
microbial and anti-inflammatory effects in the innate immune
system. Since GvHD patients have an increased risk for severe
infections due to immunosuppressive drugs (59), vitamin D3-
mediated enhancement of antimicrobial defense mechanisms
might reduce co-morbidity by infectious diseases. Therefore, it

is conceivable that vitamin D3 might play an important and yet
unrecognized role in GVI.

Anti-inflammatory Effects

As already mentioned, vitamin D3 elicits not only antimicrobial
but also anti-inflammatory responses. Even though vitamin
D3 enhances the maturation of human macrophages and
their function as phagocytes (60), their capacity of antigen
presentation and consequently also the priming of T cells
is limited due to reduction of MHC-II expression (30, 61).
Instead, 1,25(OH)2D3 polarizes macrophages toward an anti-
inflammatory M2 subtype, which restrains colitis in mice (62).
In humans and mice, vitamin D3 generates a tolerogenic
phenotype and alters the cytokine and chemokine profile of
mature DCs (mDCs) in vivo and in vitro, which are inhibited in
differentiation, maturation and proliferation (63–65). In mixed
lymphocyte reactions, proliferation of T cells, co-cultured with
these 1,25(OH)2D3-induced tolerogenic DCs, was indirectly
inhibited. Apart from preventing DCs to home into the lymph
node by reducing CCR7-expression, vitamin D3 also decreases
expression of the co-stimulatory molecules CD40, CD80 and
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CD86 and secretion of cytokines such as IL-6, IL-12, and TNF-
α (66). Recently, Saul and colleagues revealed that CD31 is
increasingly expressed on DCs, leading to impairment of cell-
cell contact, which is essential for T cell priming (67). Moreover,
secretion of immunosuppressive IL-10 is enhanced while IL-12
secretion by DCs is impaired, which leads to a weaker T helper
Th1- and Th17- cell immune response (68). As a result, activation
and differentiation of alloreactive CD4+ T cells is reduced
in vitro (65). Furthermore, vitamin D3-treated DCs increase
the frequency of suppressive CD4+CD25+FoxP+3 regulatory T
cells (Treg) (69), which fosters peripheral tolerance to allografts
(70). One study indicated that vitamin D3-mediated increase of
CD4+FoxP+3 Nrp-1

+ cells ameliorates collagen-induced arthritis
(71). Recently, Xu and colleagues established engineered DCs
to de novo produce calcitriol in order to generate more gut-
homing Tregs for efficient mitigation of intestinal inflammation
(72). These results proved that 1,25(OH)2D3-induced tolerogenic
DCs modulate T cells toward a regulatory and anti-inflammatory
immune response in vivo and ameliorate acute GvHD (aGvHD)
in mice (64, 73). Coussens and colleagues suggest that vitamin
D3 supplementation in tuberculosis patients helps to restrict
inflammatory responses by reducing circulating concentrations
of chemokines such as CXCL9, CXCL10, and MMP-9 (74, 75).
Additionally, upregulation of chemokine receptor CXCR3 fosters
DC migration to inflammation spots (69). In vitro studies
showed that Janus kinase/signal transducers and activators of
transcription (JAK/STAT) signaling and inflammatory cytokines,
such as IFN-γ, TNF-α, and Flt-3L, are significantly reduced in
NK-cells upon vitamin D3-treatment or its analog seocalcitol
(EB1089) (76). Interestingly, JAK1/2 have already been identified
as potential therapeutic targets in GvHD since it was shown
to reduce GvHD in mice while GvT could be preserved
(77). Clinical trials verified that the JAK1/2 inhibitor Jakafi R©

(Ruxolitinib) reduces efficiently steroid-refractory GvHD (78, 79)
and has recently been approved by the U.S. Food and Drug
Administration (FDA).

Altogether, vitamin D3 modifies the innate immune system
by exerting not only anti-microbial but also anti-inflammatory
functions. Since GvHD patients often show co-morbidity of
fungal, viral and bacterial infections (80, 81), increased infection
rate as well as exaggerated inflammation are key issues needed to
be combatted in this disease. Since persistence of APCs despite
the conditioning regimen is the major cause of generation of
alloreactive lymphocyte, manipulation of the innate immune
system toward tolerogenic host-DCs by vitamin D3 in order
to reduce their allo-stimulatory potential might help to prevent
GvHD (82).

Effects of Vitamin D3 on the Adaptive
Immune System
Apart from the above discussed indirect effects on T cells
by vitamin D3-dependent modulation of innate immune cells,
the hormone has also direct impacts on the adaptive immune
system since T cells are known to express VDR, which enables
them to respond to 1,25(OH)2D3 (83). Although the VDR
appeared to be upregulated in activated alloreactive T cells

indicating a role of vitamin D3 in T cell activation (30), studies
proved that 1,25(OH)2D3 directly inhibits proliferation and IL-
2 production of CD4+ T cells (84, 85). Similar to its effect
on APCs, 1,25(OH)2D3 reduces expression of homing receptors
such as CCR10 as well as secretion of IFN-γ and IL-10 by
T cells (86). Especially Th1 cell proliferation is inhibited via
the JAK/STAT signaling pathway (87), while Th2 cells are
increased directly (88, 89). Therefore, vitamin D3 alters the
T cell immunity by transforming Th1- and Th17-responses
toward an anti-inflammatory Th2-activity. This mechanism is
even amplified since expression of CYP27B1 is also enhanced
in activated lymphocytes (30). CD8+ T cells are inhibited in
proliferation in vitro and in vivo by vitamin D3 (90). It is
documented that vitamin D3 inhibits pro-inflammatory T cells
in IBD patients (91). Since IBD pathogenesis is driven by loss
of intestinal barrier function, clinical manifestations of IBD
resemble GvHD symptoms in the gastrointestinal tract (55). Such
parallels suggest that vitamin D3 might achieve similar effects
in allo-HSCT. However, 1,25(OH)2D3 does not only affect T
cells but also modulates differentiation and antibody-production
of B cells (92). In addition, it induces apoptosis and cell cycle
arrest of proliferating B cells resulting in impaired plasma cell
differentiation and less autoantibody expression (93).

Altogether, vitamin D3 has an overall anti-microbial and anti-
inflammatory effect on both innate and adaptive immune system.
Therefore, vitamin D3 could be a potent supplementary agent in
GvHD patients which might improve the patient’s life quality by
decreasing infectious- and inflammation-mediated co-morbidity.

POTENTIAL GvL-EFFECTS MEDIATED BY
VITAMIN D3

As mentioned earlier, it is pivotal to preserve the immune
balance by avoiding alloreactivity of donor T cells against
healthy tissue while still maintaining their anti-tumorigenic
effect. Interestingly, vitamin D3 does not only reduce harmful
GvHD effects but also exerts anti-tumor activity. So far, scientific
literature supporting this assumption in the transplantation
setting remains sparse. However, a few studies provide
indications for its hypothetical anti-cancer effects. In their
retrospective study, Radujkovic et al. could demonstrate that
pre-transplant vitamin D3 deficiency in patients diagnosed
with myeloid malignancies correlates with a higher risk of
relapse mortality (94). To our knowledge, only three other
studies have also investigated this association (90, 95, 96). So
far, only one study included few patients which underwent
autologous transplantation (97). However, they only figured out
that sufficient vitamin D3 levels are hard to achieve. In summary,
these data suggest that prospective randomized trials have to
prove whether vitamin D3 supplementation during stem cell
transplantation could enhance GvL effects.

Vitamin D3 and Cancer
The first correlation of solar radiation and cancer was initially
suggested by Apperly in 1941, who attributed sunlight radiation
a protective role against many types of cancer except skin
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cancer (98). Decades later, Colston et al. were the first ones
to show a dose-dependent inhibitory effect of 1,25(OH)2D3

on melanoma cells (99, 100). Epidemiological studies provide
evidence that poor sunlight exposure and vitamin D3 deficiency
correlate directly with incidence as well as mortality rate of
several cancer types. These findings suggest a protective role
of vitamin D3 in carcinogenesis (101). Accumulating studies
have revealed that 1,25(OH)2D3 suppresses tumor growth (102–
104) and exhibits anti-proliferative activities in squamous cell
carcinoma (105), prostate (106), breast (107, 108), lung (109),
head and neck cancer (110) and hematologic malignancies such
as Hodgkin’s lymphoma (111) or chronic lymphocytic leukemia
(CLL) (112). In colorectal cancer, a clinical trial provides evidence
that 1,25(OH)2D3 supplementation can efficiently reduce the risk
of tumor development (113). However, other epidemiological
studies report contradictory results (114–116), which might be
a result of using supra-physiological concentrations of calcitriol
(117), VDR gene polymorphisms (118), lack of control groups or
inappropriate dosage and administration of vitamin D3.

Apart from the discovery that sufficient vitamin D3

supplementation could help to prevent cancer pathogenesis,
numerous in vitro and in vivo studies provide evidence that
1,25(OH)2D3 and its analogs could reduce tumor growth and
might be used as potential anticancer agent (15, 119–121).
Supporting this, animal studies report that VDR-deletion
in mice makes them more susceptible to chemical induced
carcinogenesis in epidermis, lymphoid and mammary tissue
(122). Interestingly, life expectancy of leukemic mice could
be prolonged by treatment with a 1,25(OH)2D3 analog (123).
A chemoprevention study revealed that 1,25(OH)2D3-treated
Nkx3.1;Pten mutant mice show retarded development of
neoplasias when it was administered during early-stage
carcinogenesis (124).

There is clear evidence that cancer cells exploit and
dysregulate the vitamin D3 metabolism enabling them to escape
its cancer protective role (15). CYP24A1 has been shown to
be overexpressed in cancer cells while activity of CYP27B1 is
reduced in human prostate cancer cells (125, 126). Furthermore,
CYP24A1 was identified as potential oncogene in breast cancer
and elevated expression of VDR in tissues of breast and prostate
cancer correlates with better prognosis of survival (127).

Mechanisms of Anti-tumorigenic Actions
Although the precise mechanisms of vitamin D3-mediated anti-
tumorigenic action are not yet fully understood, it has been
postulated that vitamin D3 modulates gene expression involved
in apoptosis, cell cycle and autophagy in tumor cells (128).
Apoptosis is initiated due to downregulation of anti-apoptotic
protein Bcl2 while expression of pro-apoptotic proteins increases
(129). Jiang et al. suggest that 1,25(OH)2D3 induces cell death by
degrading telomerase reverse transcriptase (TERT) mRNA and
thus reduces telomerase activity (130). 1,25(OH)2D3-induced
upregulation of p21 and p27, which are cyclin-dependent kinase
(CDK) inhibitors, induces cell cycle arrest (121, 129, 131).
Furthermore, vitamin D3 mediates anti-proliferative activity
by enhancing expression of Dickkopf-1 (DKK-1), which is an
antagonist in the Wnt/β-catenin signaling pathway (132). In

vitro as well as in vivo studies report inhibition of proliferation
and angiogenesis by vitamin D3. It suppresses hypoxia-inducible
factor 1-alpha (HIF1A) leading to reduced expression of vascular
endothelial growth factor (VEGF) and thereby inhibition of
angiogenesis (133, 134). Autophagy is not only triggered in
infected macrophages, but also in tumor cells such as breast
cancer. Since autophagy appears to protect healthy tissue from
cancer initiation, vitamin D3-treatment might contribute to
suppression of carcinogenesis (135). It also increases activity of
antioxidant enzymes such as superoxide dismutase 1/2 (SOD1/2)
and therefore protects DNA from ROS-induced damage (129).
Upon vitamin D3 administration, DNA damage repair proteins,
such as p53, are upregulated in vitro (15).

Strikingly, anti-tumor activity of tumor-associated
macrophages (TAMs) against lymphomas has been shown
to be enhanced by vitamin D3-triggered increase of antibody-
dependent cellular toxicity (ADCC) and antibody-dependent
cellular phagocytosis (ADCP) (136). Current observations
of Busch et al. reveal that combination of vitamin D3 with
immunomodulatory drugs (IMiDs), such as lenalidomide,
helps to restore the defective vitamin D3 metabolism in
myeloma-associated macrophages and improves cytotoxicity
against multiple myeloma cells mediated by specific anti-CD38
antibodies such as MOR202 (137, 138). Furthermore, exosomal
transfer of microRNAs, which induce tumor-promoting
myeloid-derived suppressor cells, was impeded by vitamin D3

(139). The previously mentioned cathelicidin, which is secreted
by human macrophages, has also been shown to mediate direct
anti-tumor efficacy against high-grade B cell lymphoma by
increasing ADCC (136). In summary, there is strong evidence
that vitamin D3 exerts direct anti-tumorigenic functions which
might be applicable in allo-HSCT patients in order to boost
GvL effects.

Mediation of Anti-inflammation to
Antagonize Carcinogenesis
In 1863, Virchow postulated for the first time that tissue
proliferation and hence tumor progression might be provoked
by an inflammatory microenvironment connecting cancer with
inflammation (140, 141). Since inflammatory tissue provides
ideal conditions for genetic mutations, it seems obvious that
tumor progression occurs more frequently in inflammatory
environment than in healthy tissue. Clinical studies proved
that localized persistent inflammation is a risk factor for
the development of cancer in adjacent organs, e.g., patients
with ulcerative colitis have a higher incidence of colorectal
cancer (142). Given that inflammation promotes carcinogenesis,
vitamin D3-dependent anti-inflammatory activity could reduce
tumor progression. In esophageal squamous cell carcinoma,
1,25(OH)2D3 impedes tumor growth by inhibition of IL-6
signaling (117). Accumulating data report that 1,25(OH)2D3

inhibits prostaglandin (PG) (143), p38 MAPK (144) and nuclear
factor kappa B (NFκB) signaling pathways (15). Although there is
increasing evidence for inflammation-driven carcinogenesis, not
every type of chronic inflammation evokes tumor development,
which appears to be contradictory.
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FIGURE 2 | Positive effects of vitamin D3 in the allo-HSCT setting. Vitamin D3 affects a broad variety of cells of the adaptive and innate immune system which play an

important role in boosting GvL responses while alleviating GvHD. On side of GvHD, proliferation of T cells is inhibited and anti-inflammatory differentiation is favored.

Vitamin D3 enhances autophagy, phagocytic activity and tolerogenic capacity of macrophages. Vitamin D3-dependent release of antimicrobial peptides by

macrophages fortifies GvI effects, increases cell integrity, and induces cell death of bacteria. DCs are inhibited in proliferation and reduce Th1 and Th17 responses

while the Treg population increases. Vitamin D3 triggers apoptosis and cell cycle arrest of B cells and inhibits antibody secretion. Vitamin D3 reduces cytotoxic activity

of NK cells and impedes neutrophils to secrete pro-inflammatory cytokines. In case of GvL, apoptosis, autophagy and differentiation of cancer cells are directly

enhanced by vitamin D3, whereas inflammation and angiogenesis are reduced. Vitamin D3 enhances ADCC and ADCP of cancer cells by macrophages directly or by

release of LL-37.

Despite the well-founded evidence of anti-tumorigenic effects
of vitamin D3 in solid tumors, studies on hematological
malignancies remain elusive. Given that vitamin D3 deficiency
correlates with worse relapse-free survival (94–96) and the
known anti-tumorigenic effects of vitamin D3, one might think
that it could also enhance GvL. By using mice fed with low
and high vitamin D3 doses or by performing clinical trials with
vitamin D3 supplementation, the actual effect on GvL could
be investigated.

CONCLUSION/PERSPECTIVES

In summary, we assume that vitamin D3 could be a potential
immune modulating agent for supplementation before and
during allo-HSCT. It is conceivable that vitamin D3 might be
able to maintain and improve the patient’s immune balance
and epithelial barrier function. Mounting evidence indicates
that vitamin D3 could alleviate GvHD by enhancing anti-
inflammatory responses while it might coincidently ameliorate
GvI effects due to its anti-microbial activities. Moreover, GvL
might be boosted because vitamin D3 could at least reinforce
anti-tumorigenic responses of myeloid cells (Figure 2).

Besides its easy availability, economy and role in preserving
the intestinal barrier integrity (53), vitamin D3 helps to
maintain calcium and bone homeostasis and hence prevents
osteoporosis. Given that allo-HSCT patients often suffer from
bone loss upon conditioning regimens, immunosuppressive
treatment and immobilization, it might also improve GvHD
by preventing osteoporosis (34). Cholecalciferol can usually
be administered safely in high doses without occurrence
of abnormal calcium metabolism (145). However, sufficient
vitamin D3 levels cannot be achieved in all patients despite
high-dose supplementation (97). Therefore, treatment with
1,25(OH)2D3 might be the more efficient version. However, the
probably greatest restraining factor of 1,25(OH)2D3 is its dose-
limiting toxicity causing hypercalcemia and hypercalciuria. One
possible solution might be the administration of 1,25(OH)2D3

analogs, some of which have already been shown to be less
calcemic (146, 147).

Until now, only few clinical trials with vitamin D3 in
the allo-HSCT setting have been conducted and have shown
effective outcomes (90). The most recent study of Carillo-
Cruz et al. suggests that universal vitamin D3 medication
remains challenging due to VDR polymorphisms (29). Our
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hypothesis that vitamin D3 could improve GvL might seem
controversial due to its known anti-inflammatory activities on
T cells. However, it was shown by Essen et al. that TCR
signaling in naïve human T cells induces VDR expression
(148). This in turn results in upregulated PLC-γ1 expression
and thus higher activation and priming of naïve T cells.
Although there is evidence that vitamin D3 attenuates IL-
6 signaling in human esophageal squamous cell carcinoma
(SCC) cell lines (117), the in vivo study of Bendix-Struve and
colleagues demonstrated that T cells of vitaminD3-supplemented
Crohn’s disease (CD) patients produced more IL-6 (149).
Proliferation of CD4+ T cells was higher in vitamin D3-treated
patients compared to the placebo group. Additionally, VDR
was shown to be important for the development of CD8αα+

TCRαβ+ cells, which help to maintain tolerance in the gut and
suppress intestinal inflammation (150). Expression of the gut-
homing receptor CCR9 is suppressed in T cells upon vitamin
D3 stimulation, which might prevent homing of potential
alloreactive T cells into the gut. However, these data provide
only indications that vitamin D3 might promote GvL despite its
anti-inflammatory properties.

In conclusion, prospective in vivo studies in humans
are inevitable to investigate the efficacy of vitamin D3

supplementation and to achieve approved clinical application.
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