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A B S T R A C T

Accelerated intermittent theta burst stimulation (AiTBS) has attracted much attention in the past few years as a
new form of brain stimulation paradigm. However, it is unclear the relative efficacy of AiTBS on cortical excit-
ability compared to conventional high-frequency rTMS. Using concurrent TMS and electroencephalogram (TMS-
EEG), this study systematically compared the efficacy on cortical excitability and a typical clinical application (i.e.
pain), between AiTBS with different intersession interval (ISIs) and 10-Hz rTMS. Participants received 10-Hz
rTMS, AiTBS-15 (3 iTBS sessions with a 15-min ISI), AiTBS-50 (3 iTBS sessions with a 50-min ISI), or Sham
stimulation over the primary motor cortex on four separate days. All four protocols included a total of 1800 pulses
but with different session durations (10-Hz rTMS ¼ 18, AiTBS-15 ¼ 40, and AiTBS-50 ¼ 110 min). AiTBS-50 and
10-Hz rTMS were more effective in pain reduction compared to AiTBS-15. Using single-pulse TMS-induced
oscillation, our data revealed low gamma oscillation as a shared cortical excitability change across all three active
rTMS protocols but demonstrated completely opposite directions. Changes in low gamma oscillation were further
associated with changes in pain perception across the three active conditions. In contrast, a distinct pattern of
TMS-evoked potentials (TEPs) was revealed, with 10-Hz rTMS decreasing inhibitory N100 amplitude and AiTBS-
15 reducing excitatory P60 amplitude. These changes in TEPs were also covarying with low gamma power
changes. Sham stimulation indicated no significant effect on either cortical excitability or pain perception. These
results are relevant only for provoked experimental pain, without being predictive for chronic pain, and revealed
a change in low gamma oscillation, particularly around the very particular frequency of 40 Hz, shared between
AiTBS and high-frequency rTMS. Conversely, cortical excitability (balance between excitation and inhibition)
assessed by TEP recording was modulated differently by AiTBS and high-frequency rTMS paradigms.
Introduction

Repetitive transcranial magnetic stimulation (rTMS) is able to induce
neuroplastic changes and bears clinical implications for certain psychi-
atric and neurological disorders. The schedule of rTMS delivery can be
accelerated by applying multiple sessions of intermittent theta burst
stimulation (AiTBS) per day, with the purpose to increase treatment ef-
ficacy as well as reducing the duration of treatment courses [1]. AiTBS
has received fast-growing attention in the last few years since the
introduction of the Stanford Neuromodulation Therapy (SNT) [2,3].
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Indeed, there is a clear antidepressant effect of delivering multiple iTBS
sessions per day (AiTBS) over the left dorsolateral prefrontal cortex
(L-DLPFC) [4–7].

In light of the promising outcomes, it is unclear the relative efficacy of
AiTBS on neural plasticity compared to conventional high-frequency
rTMS. In fact, intersession interval (ISI) could be critical in the genera-
tion of accumulative effects with AiTBS protocols [for reviews see 1, 8].
Duration around 15 and 50 min are the two most common intersession
intervals in AiTBS protocols. A series of experimental studies indicated
that repeated iTBS sessions with a 15-min interval may not be able to
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generate additive neuroplastic changes [8–11]. Similarly, a few clinical
trials revealed that AiTBS with a 15-min ISI had similar antidepressant
efficacy with standard 10-Hz rTMS but not a superior effect [4,7]. In
contrast, long-term potentiation (LTP) was increased by multiple iTBS
sessions spaced apart by 1 h or longer but not when shorter intervals were
employed [11]. However, this early plastic evidence primarily comes
from animal studies or human spinocortical assessment, with scarce ev-
idence from human cortical excitability.

Concurrent TMS and electroencephalogram (TMS-EEG) is able to
evaluate local and distributed cortical excitability [12–14]. TMS-evoked
potentials (TEPs), a series of reproducible peaks including N45, P60,
N100, and P180 [15,16], provide a direct read-out of cortical excitation
and inhibition following rTMS [17]. Using this technique, our group
provided the first line of evidence whereby 10-Hz rTMS modulated N100
amplitude that was closely associated with rTMS analgesia [18]. How-
ever, there is very limited evidence on AiTBS effects on cortical excit-
ability, except that one recent study demonstrated a smaller N100
amplitude in treatment-resistant depression [19]. Moreover, single-pulse
TMS-induced oscillation is able to evaluate cortical responses following
rTMS intervention. Recent studies indicated that excitatory rTMS (iTBS
or 10 Hz) increased theta and gamma band oscillation [13,18].

This study was designed to systematically compare the effects on
cortical excitability between two common forms of AiTBS and conven-
tional high-frequency rTMS. The primarymotor cortex (M1) was targeted
as it has long been established to modulate corticomotor excitability [20,
21], and has Level A evidence in treating neuropathic pain [22,23].
Healthy participants received 10-Hz rTMS, AiTBS-15, AiTBS-50, or Sham
stimulation on four separate days. This study compared the effects of
these different rTMS protocols on pain intensity and cortical excitability
without any a priori hypothesis on the induced effects. Findings from this
study would translate to the clinical applications rTMS in pain manage-
ment and other conditions.

Methods

Experimental design and procedure

This was a double-blind, crossover, and randomised study. Partici-
pants visited the laboratory four times (�7 days intervals), receiving a
single session of M1 rTMS (10-Hz, AiTBS-15, AiTBS-50) or Sham stim-
ulation with the sequence being pseudo-randomised and counter-
balanced. All four protocols included a total of 1800 pulses but with
different session durations (10-Hz rTMS ¼ 18 min, AiTBS-15 ¼ 40 min,
and AiTBS-50 ¼ 110 min). Sham stimulation was only performed in a
random selection of twelve participants as a control condition. This
design was incorporated from previous TMS studies to save the experi-
mental burden of participants [24]. Before and after rTMS, 105 single
pulses were delivered to the M1 region to assess neuroplastic changes.
Participants also underwent a capsaicin pain protocol before and after
rTMS in each session. The primary outcome measures included TEPs and
oscillations, and the secondary outcome was pain perception. In terms of
blinding, XC performed sequence randomization, YW performed rTMS
intervention and BT collected the outcome measures. Both the partici-
pants and outcome assessor were blinded to the group allocation.

Participants

An a priori sample size calculation was performed based on the size of
N100, which was reliably modulated by 10-Hz TMS in our previous study
and has the highest signal-to-noise ratio [18,25]. Sample size calculation
(alpha¼ 0.05, beta¼ 0.8, mean¼ 0.41, SD¼ 0.77) indicated a minimum
of 22 participants for the study to be sufficiently powered [18,26]. A
group of thirty healthy, right-handed, TMS-eligible [27] adults were
recruited to account for potential dropouts. Potential participants initi-
ated the contact from posts in the Hangzhou Normal University or the
Affiliated Hospital of Hangzhou Normal University. They were then
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screened for eligibility. Handedness was determined by self-reporting of
the participants without using the well-established Edinburgh Handed-
ness Inventory [28]. Exclusion criteria included a history or current
diagnosis of psychiatric disorder, or use of psychoactive medication, as
assessed by the Mini International Neuropsychiatric Interview (MINI)
[29]. Two participants withdrew from this study as pain induction failed
with a pain score less than 3. Data from 28 participants (age range: 21–66
years, mean � SD: 29.23 � 13.83, 18 females) were therefore analysed.
All participants provided a written informed consent prior to participa-
tion. This study was approved by the ethics committee in the Affiliated
Hospital of Hangzhou Normal University (2022-E2-HS-044) and was
conducted in accordance with the Declaration of Helsinki.

Pain protocol and intensity

Capsaicin application is a widely used tonic pain protocol that has
been demonstrated to evoke tonic heat pain [30–32]. In this study,
capsaicin (Chattem Chemicals Inc. 0.1%) was applied over the inner side
of right wrist in an area of 2� 2 cm and wrapped with medical tape. Pain
experience was measured using a 0–10 visual-analogic scale (VAS) (0: no
pain, 1–3: mild pain, 4–6: moderate pain, 7–10: severe pain) in a duration
of 40 min at an interval of 10 min. In the capsaicin pain protocol, pain
perception started to ascend within 10 min and reached to a peak
amplitude around 30–40 min [30–32]. Data on pain experience was
therefore determined with the max pain intensity within 30–40 min after
capsaicin application. It is worth noting that capsaicin-induced tonic pain
peaked within 30–40 min and decreased significantly at 90 min [30,33].
A single capsaicin session was thus not able to induce consistent pain for
the purpose of the current study, due to the apparent different durations
of rTMS protocols (i.e. from 18 to 40 and 110 min). We thus adopted a
Pre and Post capsaicin paradigm that was successfully used in recent
studies [34,35]. Capsaicin was removed from the skin when a pain pro-
tocol was done and the skin area was treated with an ice cube to reduce
pain sensations. In order to reduce carryover effects, there was an in-
terval of more than 2 h between the two sessions of pain induction.

Repetitive transcranial magnetic stimulation

rTMS was delivered to the left M1 with an intensity of 90% resting
motor threshold (RMT). This intensity was used to coincide with the SNT
studies [2,3]. A 90% RMT is also recommended to generate consistent
analgesia in expert reviews [36]. It is noted that iTBS protocols were also
delivered at 80% of the active motor threshold (AMT) in previous studies
[37,38]. The 10-Hz rTMS protocol included 36 trains of 5-s stimulation
given at 10 Hz, with the inter-train interval being set to 25 s (1800
pulses). The two AiTBS protocols each included three standard iTBS
sessions totaling 1800 pulses, but with inter-session-intervals of 15 min
(AiTBS-15) or of 50 min (AiTBS-50). A standard iTBS session consists of a
burst of 3 pulses given at 50 Hz repeated every 5 Hz, in which a 2-sec
train of TBS repeated every 10-sec for a total of 192 s [38]. Sham stim-
ulation was randomised to the three active protocols between partici-
pants (4 of each, totaling 12 participants), but with a 75-mm high plastic
block to avoid the penetration of the magnetic field [39].

Resting motor threshold and TMS-EEG

Resting motor threshold (RMT), defined as the minimum intensity to
induce motor-evoked potentials (MEPs) > 0.05 mV of the first dorsal
interosseous (FDI) muscle in 5/10 trials, was measured before each ses-
sion. Single pulses to the hand region of the left M1 (45� to the midline,
handle pointing backward) at 4s � 10% jitter intervals were sent by a
figure-eight coil connected to a Magstim Rapid2 system (Magstim Com-
pany Ltd, UK). It is noted that delivering single-pulse TMS over the same
site with an interstimulus interval of more than 3 s does not alter corti-
comotor excitability [40,41]. RMT was determined with the EEG cap on
for consistency as rTMS and single pulses were both delivered with the
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EEG cap on. Coil position was measured relative to the nasion and inion
to facilitate consistent re-positioning of the coil between sessions [14,
42–44].

Single pulses were delivered to the left M1, which was located based
on the hotspot method. A semi-grid method was used in which the coil
was adjusted approximately half centimetre in each attempt to locate the
hotspot. ‘Hotspot’ refers to the scalp location triggering the highest peak-
to-peak MEP amplitude in EMG recordings. The coil was positioned at
45� relative to the midline (handle pointing backward), with the in-
tensity being set to 110% RMT (Che et al., 2019). A total of 105 single
pulses were delivered in order to increase the signal-to-noise ratio in
TMS-EEG recordings [14,45]. A masking noise was played through ear-
plugs during TMS-EEG recordings [13], with the sound level adjusted
such that each individual could barely hear single-pulse TMS at 110%
RMT. Induced current flows from the front end towards the handle for
this coil [36], which was suggested to be provided in the assessment of
the motor system with single and pair pulse TMS [46].

EEG recordings during single-pulse TMS took place in a temperature-
controlled, sound-attenuated, and electrically shielded room. Partici-
pants sat in a chair with their eyes opening and looking forward. A 64-
channel EEG cap (Brain Products GmbH, Germany) was used to record
continuous EEG with FCz and AFz as the reference and ground electrode
respectively. EEG impedances were kept below 5 kΩ throughout the
recordings.

TMS-EEG data were analysed using EEGLAB [47] and custom scripts
running on MATLAB platform (R2017b, the MathWork, USA). TMS-EEG
data were preprocessed as previously reported [14,42,48]. Data were
epoched around the TMS pulses (�1000 to 2000 ms) and baseline cor-
rected (�500 to 50 ms). The large magnetic pulses were removed and
interpolated (�5 to 20ms). Data were then downsampled to 1000 Hz and
were visually inspected for bad channels and trials containing excessive
muscle activities. In each session, epochs across pre- and post-stimulation
were concatenated to avoid bias in component rejection of the inde-
pendent component analysis [49]. A first round of FastICA was per-
formed to remove large muscle artefacts and decay artefacts using the
semi-automated component classification algorithm [12,48]. Data were
then filtered using Butterworth filters (band-pass ¼ 1–100 Hz; band-stop
¼ 48–52 Hz), and epochs were manually inspected again. The second
round of FastICA was performed to remove non-neural artefacts, such as
eye blinks, eye movements, persistent muscle activity, and electrode
noise. Interpolation was then applied for removed channels. Data were
then re-referenced to the common average. Finally, data were segmented
into initial blocks (pre- and post-stimulation) for each session. The final
pulse numbers were (Mean� SD): Pre_10-Hz: 67.11� 21.44; Post_10-Hz:
70.18 � 16.31; Pre_AiTBS-15: 68.93 � 16.48; Post_AiTBS-15: 64.96 �
20.45; Pre_AiTBS-50: 69.82 � 14.57; Post_AiTBS-50: 70.25 � 19.46;
Pre_Sham: 68.17 � 14.47; Post_Sham: 68.42 � 18.37.

Time-frequency analyses were performed using Hanning tapered
“mtmconvol” method in FieldTrip toolbox [50]. Power was calculated in
the range of 1–100 Hz in the time window of�50 to 500 ms and baseline
corrected (�50 to 0 ms) for each trial before averaging trials in each
condition for each subject.

Statistical analysis

For pain perception, percent change was initially calculated from Pre-
to Post-stimulation and was then examined with repeated measures of
one-way ANOVA (rTMS: 10-Hz, AiTBS-15, AiTBS-50) in SPSS (IBM Corp,
Armonk, NY, version 22). Pairwise comparisons were conducted using a
Bonferroni correction (α � 0.05).

For TEPs, non-parametric cluster-based permutation statistics were
performed at a global level. This method is able to control multiple
comparisons across EEG channels and time [51]. Statistics were con-
ducted on peaks of interest. Time windows for each peak were deter-
mined based on previous studies (N45 (30–45 ms), P60 (50–75 ms),
N100 (75–110 ms) and P180 (160–220 ms)) [13,18,52,53] as well as on
3

the waveforms of our data (Fig. 3a). Comparisons were made between
Pre- and Post-stimulation for each stimulation condition using paired
T-tests. An observed statistics value was considered in the cluster per-
mutation if it was below the threshold of 0.05 in at least two of the
neighbouring channels [50]. We performed 5000 iterations of trial
randomization for generating the permutation distribution, controlling
for multiple comparisons across space (P < 0.025; two-tailed test).

For time-frequency data, the same cluster-based permutation tests
were performed in all channels. Comparisons were initially made be-
tween Pre- and Post-stimulation for each stimulation condition (‘within-
comparison’). Statistical analysis was performed in delta (1–4 Hz), theta
(4–8 Hz), alpha (8–12 Hz), low-beta (12–20 Hz), high-beta (20–30 Hz),
low gamma (30–45 Hz), and high gamma (45–100 Hz). Due to the sig-
nificant between-condition differences in pain, EEG oscillation compar-
isons between AiTBS-15 and the other two active conditions (‘between-
comparison’) were then performed using the delta score of each condi-
tion (Δ ¼ Post–Pre).

Pearson's correlation analyses were conducted to evaluate brain-
behaviour relationships between changes in pain perception, changes
in TEP amplitude, as well as changes in EEG power.

Supplementary analysis

Supplementary analysis was performed on the twelve participants
with a Sham condition. Specifically, a repeated measures of one-way
ANOVA with four levels (10-Hz, AiTBS-15, AiTBS-50, Sham) was
initially conducted on pain perception. TEP data was then analysed on
the Sham condition from Pre-to Post-stimulation.

Results

Effects of rTMS on pain ratings

One-way ANOVA revealed a significant condition effect (F1.99,53.93 ¼
6.82, P ¼ 0.002, η2p ¼ 0:20Þ, with pairwise comparisons indicating that
both 10-Hz rTMS (Mean10-Hz ¼ �6.48, MeanAiTBS-15 ¼ 9.78, PBonferroni ¼
0.007) and AiTBS-50 (MeanAiTBS-50 ¼ �4.26, MeanAiTBS-15 ¼ 9.78, PBon-
ferroni ¼ 0.022) reduced pain perception compared to AiTBS-15 (Fig. 2).
There was no significant difference between 10-Hz rTMS and AiTBS-15.

Plastic effects of rTMS on TEPs

Time-domain signals were initially presented as butterfly plots as well
as voltage distribution across the scalp with baseline data averaged from
three conditions (Fig. 3). Single-pulse TMS over the left M1 resulted in a
series of negative and positive peaks including N45, P60, N100 and P180,
in line with previous TMS-EEG studies assessed in the motor cortex
[54–57]. Each peak showed a distinct pattern in scalp topography,
indicating the spreading of voltage distribution across time.

Cluster-based permutation tests revealed that the amplitude of the
primary TEP component of interest, N100, was significantly decreased
from Pre-to Post-10-Hz rTMS (Pcorrected ¼ 0.025) (Fig. 4a). Moreover, the
topography of this change was mainly distributed around the left motor
cortex where rTMS pulses were delivered (Fig. 4b).

In terms of AiTBS-15, cluster statistics indicated that the amplitude of
P60 was reduced from Pre-to Post-stimulation (Pcorrected ¼ 0.021)
(Fig. 4c). The topography of this effect was also distributed around the
left central cortices (Fig. 4d). There were no significant changes in either
peak of interest following AiTBS-50 (Fig. 4e and f).

Effects of rTMS on EEG oscillations

In the 10-Hz rTMS condition, cluster-based permutation statistics
revealed a significant increase in low gamma power in the time window
of 55 ms–85 ms from Pre-to Post-stimulation (Pcorrected ¼ 0.015). The



Fig. 1. Experimental procedure. Participants received 10-Hz rTMS, AiTBS-15 (ISI ¼ 15 min), AiTBS-50 (ISI ¼ 50 min), or Sham stimulation over the primary motor
cortex on four separate days. Participants underwent a capsaicin pain protocol and TMS-EEG assessment before and after rTMS in each session.

Fig. 2. Pain perception results. 10-Hz rTMS (PBonferroni ¼ 0.007) and AiTBS-50
(PBonferroni ¼ 0.022) reduced pain perception compared to AiTBS-15. * in-
dicates Pcorrected < 0.05.
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topography of this power increase had a bilateral central distribution
similar to the topography of the TEP cluster (Fig. 5a–c). No difference
was found in any other frequency bands.

In the AiTBS-15 condition, two significant clusters were revealed by
the cluster-based permutation statistics. The first cluster was decreased
low gamma power in the time window of window of 82 ms–153 ms from
4

Pre-to Post-stimulation (Pcorrected ¼ 0.020) (Fig. 5d–f). This cluster
distributed around the left central regions similar to the P60 TEP cluster.
The second cluster was a decrease in theta power in the time window of
window of 24 ms–155 ms (Pcorrected ¼ 0.023), which also had a distri-
bution mainly surrounding the left central regions (Fig. 5g and h). There
was a significant positive correlation between decreased P60 amplitude
and theta power (P ¼ 0.013) (Fig. 5i).

In terms of the AiTBS-50 condition, no significant difference was
found in any frequency bands in whole-brain analyses. A further local
analysis revealed a significant increase in left frontocentral low gamma
power in the time window of 135 ms–148 ms from Pre-to Post-stimula-
tion (Pcorrected ¼ 0.018) (Fig. 5j-l). It is noted that a local analysis was
performed whereby a cluster was revealed by whole-brain statistics but
did not survive whole-brain corrections.

Between-condition analysis using delta score also revealed increased
low gamma power in the 10-Hz rTMS compared to the AiTBS-15 con-
dition. This significant cluster was observed in the time window of 50
ms–95 ms (Pcorrected ¼ 0.020), and distributed around the left central
regions (Fig. 6a–c). In addition, AiTBS-50 resulted in increased low
gamma power compared to the AiTBS-15 condition, with the cluster
distributing around the left frontocentral cortices and in the time window
of 128 ms–153 ms (Pcorrected ¼ 0.011) (Fig. 6d–f).

Further correlation analysis indicated that changes in low gamma
power induced by all three conditions (i.e. decrease and increase in low
gamma power) were negatively associated with changes in pain
perception (i.e. decrease and increase in pain) from Pre-to Post-stimu-
lation (P ¼ 0.008) (Fig. 6g). In addition, changes in low gamma power
induced by 10-Hz rTMS (i.e. increased) and AiTBS-15 (i.e. decreased)
were positively associated with changes in respective TEP amplitude (i.e.



Fig. 3. Baseline TEP waveform and voltage distribution. a) Butterfly plots of all electrodes with peaks of interest are highlighted. The waveform in red line indicates Cz
for illustration purposes. Data were combined across three active conditions. b) Topographical voltage distribution for the peaks of interest, indicating the spreading of
voltage distribution across time.
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N100 and P60 in each condition) from Pre-to Post-stimulation (P ¼
0.006) (Fig. 6h). AiTBS-50 did not induce significant TEP changes and
was not introduced to this correlation.

Supplementary results

Pre to Post analysis indicated that Sham stimulation had no signifi-
cant effect on pain perception, any TEPs or frequency data (Ps > 0.05)
(see Supplementary Materials Fig. 1).

Between-condition analysis on change score (Post-Pre) revealed that
Sham stimulation had no significant effect on pain (PBonferroni > 0.05) in
the subgroup of 12 participants. We then extracted significant features
from the TMS-EEG data and made comparisons between active and sham
conditions. Results indicated that change scores of the significant fea-
tures in TEP (i.e. N100, P60) were also significant in the comparisons of
active and sham conditions (see Supplementary Materials Fig. 2). In
addition, change scores of oscillations also revealed the same results as to
the Pre-to-Post analysis, except that the low gamma change in AiTBS-15
and AiTBS-50 did not reach statistical significance due to a small sample
of 12 but with a same pattern as to the main analyses (see Supplementary
Materials Fig. 2). Overall, the Sham stimulation further confirmed the
excitability changes in the active conditions.

Safety assessment

Two participants suffered a mild headache in the AiTBS conditions on
the first visit. Another two individuals experienced a slight scalp
discomfort each in the 10 Hz and AiTBS condition. However, all of these
sensations disappeared within minutes. Overall, the protocols were safe
and well-tolerated.

Discussion

Using concurrent TMS-EEG, this study systematically compared the
effects of two common forms of AiTBS and 10-Hz rTMS on cortical
excitability as well as analgesic efficacy [58,59]. AiTBS-50 and 10-Hz
rTMS were more effective in pain reduction compared to AiTBS-15.
Our data revealed low gamma oscillation as a shared excitability
change across all three active rTMS protocols but demonstrated
completely opposite directions. Moreover, changes in low gamma
oscillation were associated with changes in pain perception across these
three conditions. In contrast, three rTMS protocols induced distinct
changes in TEPs, whereby 10-Hz rTMS decreased inhibitory N100
amplitude and AiTBS-15 reduced excitatory P60 amplitude. Sham
stimulation revealed no significant effect on either cortical excitability
or pain perception.
5

It is acknowledged that only twelve participants were randomised to
receive sham stimulation. This was designed to reduce the testing burden
for participants [24]. Our data indicated that sham stimulation had no
significant effect on pain perception or cortical excitability. More
importantly, our data indicated that 10-Hz rTMS and AiTBS-50 were
equally effective in reducing pain perception compared to AiTBS-15
(Fig. 2). Previous studies have repetitively demonstrated an analgesic
effect following 10-Hz rTMS [60–62]. Our data provided novel findings
that AiTBS-50 was comparable with 10-Hz rTMS in analgesia. The
excellent antidepressant efficacy induced by AiTBS-50 protocol incor-
porated many more iTBS sessions per day [2,3]. Meanwhile, it is striking
to find that AiTBS-15 was more likely to increase pain experience in our
data. This is compatible with the inhibition of cortical excitability as
discussed in later sections.

Using TMS-EEG, we provided interesting findings that 10-Hz rTMS
resulted in a smaller N100 amplitude in the left motor cortex where single
pulses were applied. The N100 deflection is considered to be the most
robust TMS-EEG component [63], which is associated with GABAB-me-
diated postsynaptic inhibition [17,64,65]. Using inhibitory 1-Hz rTMS,
studies demonstrated a larger N100 amplitude in the motor cortex (i.e.
target), which suggested an increase in postsynaptic inhibition following
inhibitory rTMS [66,67]. Similarly, our group found a smaller N100
amplitude following excitatory 10-Hz rTMS over the prefrontal cortex
[68]. Therefore, decreased N100 amplitude in our data suggests a reduc-
tion in cortical inhibition induced by excitatory stimulation. More inter-
estingly, N100 changes were accompanied by increased low gamma
oscillation spreading over the bilateral motor cortex (Fig. 5a–c). An early
increase in gamma oscillation (~50 ms) was consistently induced by
single-pulse TMS over occipital, parietal, and frontal cortices [69]. Gamma
oscillation reflects coordinated neuronal activity and is implicated in
spike-timing dependent plasticity [70]. Together with a reduced N100
amplitude, these findings indicate reduced cortical inhibition and
increased cortical excitability induced by 10-Hz rTMS.

In line with a trend to increase pain perception, our neurophysio-
logical data revealed decreased cortical excitability following AiTBS-15.
AiTBS-15 reduced the P60 amplitude surrounding the target region
(Fig. 4c and d). A growing body of literature indicated this peak to reflect
cortical excitability [71,72]. We further provided evidence that AiTBS-15
inhibited theta and low gamma oscillation in the left central and cen-
troparietal regions (Fig. 5d–h). Theta oscillation following single pulses
was found to be increased by excitatory iTBS and decreased by inhibitory
cTBS respectively [13]. Moreover, our data revealed a significant cor-
relation between decreased P60 amplitude and theta power (Fig. 5i),
further confirming the inhibitory effects of AiTBS-15 on cortical excit-
ability. Our data extend the literature by presenting an inhibitory influ-
ence of AiTBS-15 on both cortical excitability and pain perception.



Fig. 4. TEP changes following stimulation. a-b) The
amplitude of N100 was significantly decreased from
Pre-to Post-10-Hz rTMS (Pcorrected ¼ 0.025). The
topography of this change was mainly distributed
around the left motor cortex where rTMS pulses were
delivered. c-d) AiTBS-15 decreased the amplitude of
P60 from Pre-to Post-stimulation in the left central
cortices (Pcorrected ¼ 0.021). e-f) There were no sig-
nificant changes in either peak of interest following
AiTBS-50. n.s denotes non-significant.
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Compared with 10-Hz or AiTBS-15, AiTBS-50 did not induce signif-
icant changes in TEPs from pre-to post-stimulation (Fig. 4e and f).
However, frequency data revealed a significant increase in low gamma
power in the left frontocentral regions (Fig. 6i–k). This finding suggests
increased cortical excitability following AiTBS-50 that is shared by 10-Hz
rTMS and inversely modulated by AiTBS-15. The literature has limited
evidence on the neurophysiological mechanisms of AiTBS-50 apparently
due to the novelty of this protocol. An animal study indicated that LTP
was only increased by multiple iTBS sessions spaced apart by 1 h or
longer [11]. This is consistent with the idea of ‘spaced learning’whereby
reinforcing trials or sessions should be spaced by long and/or irregular
intervals to achieve optimal efficacy [73]. In human study, a pioneering
study revealed that two iTBS sessions with a 54-min interval reduced
N100 amplitude in a course of 30 treatments in treatment-resistant
depression (TRD) [19]. However, this effect was not specific to
AiTBS-50 but was also evident in continuous AiTBS with no interval.
Building on these studies, we provided novel mechanistic data
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demonstrating increased low gamma oscillation as evidence of cortical
excitability in AiTBS-50.

Given the opposite effects on pain and oscillation, we further compared
EEG change scores between these three rTMS protocols. Both 10-Hz rTMS
and AiTBS-50 increased low gamma power compared to AiTBS-15
(Fig. 6a–f). More importantly, low gamma oscillation was entrained to
opposite directions by different rTMS protocols, and when combined
together, changes in low gamma power were negatively associated with
pain perception following stimulation (Fig. 6g). It is noted that gamma
oscillation overlapswithmuscle activity [74–76]. This oscillatory activity is
also associated with facial muscle tone [77,78]. Our results were identified
around a relatively narrow band around 40 Hz (30–45 Hz), which may not
fully represent the whole gamma range (30–100 Hz). Beyond this, low
gamma oscillation surrounding 40 Hz is closely involved in specific thala-
mocortical oscillations, such as sensory activation [79–82]and pain expe-
riences [83]. Our findings therefore demonstrate a critical role of ~40 Hz
gamma oscillation in the context of sensory/nociceptive neuromodulation.



Fig. 5. Single-pulse TMS-induced oscilla-
tions from Pre-to Post-stimulation. a-c) 10-
Hz rTMS increased lower gamma power in
the bilateral motor cortices (Pcorrected ¼
0.015). d-f) AiTBS-15 decreased low gamma
power around the left central regions (Pcor-
rected ¼ 0.020). d,g,h) AiTBS-15 also
decreased theta power in the left central re-
gions (Pcorrected ¼ 0.023). i) There was a sig-
nificant positive correlation between
decreased P60 amplitude and theta power
post AiTBS-15 (P ¼ 0.013). j-l) AiTBS-50 also
increased lower gamma power in the left
frontocentral regions (Pcorrected ¼ 0.018).
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To date, iTBS has been predominantly investigated to accelerate the
schedule of rTMS delivery. It is worth noting that cTBS is also able to
reduce experimental-induced pain [84,85] and depression symptoms
[86,87]. It remains to be established whether accelerated cTBS could be
used to improve rTMS efficacy and efficiency. Moreover, our findings
highlight the importance of pain models in rTMS studies. We applied
capsaicin to model neuropathic pain in this study. Other studies have
induced sustainedmuscle soreness and mechanical hyperalgesia to better
model other chronic pain conditions such as musculoskeletal pain [88,
89]. These data together highlight the importance of nociceptive fibres
(e.g. A δ and C fibres) that can be selectively targeted by different pain
protocols and their application to model different chronic pain conditions
[90]. In addition, it is important to distinguish rTMS-induced excitability
changes at the cortical (e.g. TEPs, oscillations) and corticospinal levels
(e.g. MEP, motor volume). Overall, future studies are warranted to
develop more efficient stimulation paradigms, along with a more inte-
grated assessment of excitability changes, and more accurate experi-
mental models of certain chronic conditions.

There were some limitations in this study. The main limitation of this
study is the fact that it was an acute modulation of experimental pain.
There are clear differences in the patterns and mechanisms of analgesia
7

produced by cortical stimulation between provoked pain in healthy
subjects and in patients with chronic pain [91,92]. Our results thus lack
of a predictive value for what might be obtained in the context of chronic
pain treatment. We designed a broad age range with the intention of
increasing the generalisability of our findings. However, it is noted that
age could impact the neurophysiological properties measured by con-
current TMS-EEG as well as on rTMS effects [93–96]. Future studies may
wish to clarify age effects in AiTBS and 10-Hz paradigms. Our results
were generated from a group of healthy participants that may not directly
translate to chronic pain patients. Chronic pain conditions demonstrate
alterations in cortical excitability [97], future studies may wish to vali-
date these findings in chronic pain conditions. Frequency-domain results
in the AiTBS-50 condition were revealed with local analyses. Although
these results were consistent across time and condition comparisons,
future studies need to be performed with larger sample and/or more iTBS
sessions. Changes in pain perception were small following stimulation as
pain perception is relatively stable in healthy controls. It is expected to
see increased analgesia in chronic pain patients induced by rTMS treat-
ments [60]. Although hotspot methodology is accurate in identifying the
motor cortex with the assistance of EMG response, it is not as accurate as
MRI-guided neuronavigation which was not feasible in the present study



Fig. 6. Between-condition comparisons of
single-pulse TMS-induced oscillations. a-c)
There was an increased low gamma power in
the 10-Hz rTMS compared to the AiTBS-15
condition in the left central regions (Pcor-
rected ¼ 0.020). d-f) AiTBS-50 resulted in
increased low gamma power compared to
the AiTBS-15 condition in the left fronto-
central regions (Pcorrected ¼ 0.011). g)
Changes in low gamma power induced by all
three conditions were negatively associated
with changes in pain perception from Pre-to
Post-stimulation (P ¼ 0.008). h) Changes in
low gamma power induced by 10-Hz rTMS
(i.e. increased) and AiTBS-15 (i.e. decreased)
were positively associated with changes in
respective TEP amplitude (i.e. N100 and P60
in each condition) from Pre-to Post-stimula-
tion (P ¼ 0.006).
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[98]. We used a multiple capsaicin paradigm to induce consistent tonic
pain for the purposes of the current study. A single capsaicin paradigm
could also be considered given a limited duration of study designs.

In conclusion, AiTBS-50 and 10-Hz rTMS are equally effective in pain
reduction compared to AiTBS-15. Low gamma oscillation is a shared
cortical excitability change across these rTMS protocols but in opposite
directions depending on the stimulation protocol.
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