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A B S T R A C T   

Pulses are staple protein-rich food for Indian vegetarians, and India is one of the largest producers in the world. 
The present investigation is an attempt to study the trend in the production of total pulses in India using the 
autoregressive integrated moving average (ARIMA) method. For stochastic trend estimation, yearly data were 
used for the period from 1961 to 2019. On the basis of the performance of several goodness of model fit criteria, 
the most suitable ARIMA model is chosen to capture the trend of pulse production. Forecasting for the 10 years 
from 2020 to 2029 is done, and it is observed that India has the highest forecast value (31.03302 million tonnes) 
in 2029. This study will play an important role in determining the gap between production of and demand for 
pulses in the future.   

1. Introduction 

Pulses are leguminous edible dry seeds rich in protein, minerals, and 
fibers. They play a diverse role in agriculture as a food crop, provender, 
cash crop, and rotation crop or intercrop. Many sustainable develop-
ment goals aiming to achieve sustainable development by 2030 cannot 
be met without inclusion of pulses in our consumption and production 
basket (Rawal and Navarro, 2019). Pulses as a commodity group fit in all 
the Feed the Future Initiative themes aiming toward sustainable poverty 
and hunger reduction and enhancement of nutrition and health condi-
tions alongside protection of the environment (Maredia, 2012). 

Total pulse production worldwide was recorded as 92.28 million 
tonnes in 2018 (FAO, 2018), of which the major pulses were dry beans 
(32.98%), chickpeas (18.63%), peas (13.53%), cowpeas (7.83%), lentils 
(6.86%), and pigeon peas (6.45%). India is the main producer of pulses 
for most nations, and accounts for 25% of worldwide production. It is 
also the leading consumer of pulses, with 27% of global consumption 
(Srivastava et al., 2010). Although India is the largest producer of pulses 
(23020tonnes in 2019), domestic production is not sufficient to meet 

internal demand, and the country has to import 3 million to 5 million 
tonnes (15% of global imports) of pulses every year, making it the top 
pulse importer worldwide (Suresh and Reddy, 2016). Despite the im-
ports, in 2019, the consumption of pulses in India amounted to 48 g per 
capita per day, slightly less than the50 g per capita per day recom-
mendation of the Indian Medical Research Council. One of the major 
hurdles in meeting self-sufficiency in pulses is policies that promote 
staple crop production, such as subsidies for fertilizers and credit and 
irrigation facilities that discourage the production of pulses and other 
legumes (FAO et al., 2020). 

In India, pulses are grown mostly under rain-fed conditions. Besides 
other external factors, erratic rainfall has a serious impact on the pro-
duction of pulses (Reddy, 2009). There is already a demand and supply 
gap for pulses in the country, and the uncertainty caused by vagaries in 
rainfall further widens the gap. Therefore, forecasting production, pro-
ductivity, and prices is important for effective planning and 
decision-making related to the production of pulses. The time-series 
approach of forecasting is the most reliable one. On the basis of the 
past pattern in data, a very common method applied for forecasting a 
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time series (Ray and Bhattacharyya, 2020) is the autoregressive inte-
grated moving average (ARIMA) method. In a study by Vishwajith et al. 
(2018) on forecasting mung production, ARIMA(4,1,4) was the 
best-fitting model over ARIMAX and generalized autoregressive condi-
tional heteroscedasticity (GARCH) models. Mishra et al. (2021) 
considered ARIMA models for forecasting of sugarcane production by 
major states for 2025. 

In contrast, Ray and Bhattacharyya (2020) found the ARIMAX(1,1,1) 
model for pulse production better suited than the ARIMA model. Price 
prediction is an important tool to forecast the market price, which is 
necessary for framing policies for sustained production and remunera-
tive prices (Darekar and Reddy, 2017). Savadatti (2017) applied the 
ARIMA model for projection purposes and observed stagnancy in the 
area of pulse production but a rise in pulse production and productivity. 
Many other studies have used the ARIMA model for forecasting; for 
example, for forecasting sugarcane production (Muhammad et al., 1992) 
and sugarcane and cotton crop production and yield (Ali et al., 2015) in 
Pakistan. In Tamil Nadu, ARIMA models were used for area, production, 
and productivity forecasting for various crops(Balanagammel et al., 
2000) and sugarcane yield (Suresh and Krishna Priya, 2011). Condi-
tional variances are taken into account by use of the GARCH model. 
Yaziz et al. (2011) used both the GARCH model and the ARIMA modelto 
predict crude oil prices, and they concluded that the GARCH model was 
superior to the ARIMA model. However, Vishwajith et al. (2014) could 
not establish the superiority of either the GARCH model or the ARIMA 
model in modeling data for pulses in India. 

2. Material and methods 

In the present investigation, the data relate to total pulse production 
for five major producing states and India from 1950 to 2019. To set 
model structure, 80% of the total data is selected for training and to 
approve the model, the remaining20% is chosen for the test. The sta-
tistical software package R was used for model building. 

2.1. ARIMAmodels 

Box and Jenkins (1976) introduced the ARIMA model, and thus it is 
also known as the Box-Jenkins method in the literature. ARMA model 
includes an autoregressive (AR) and a moving average (MA) model. 
While these models are suitable for stationary series, the ARIMA model 
is performed in nonstationary series (Tekindal et al., 2020). 

The easiest way to make a time series stationary is by taking the 
difference. The process of subtracting the values of a certain period from 
the last values of the time series is called the difference operation. 

In non-stationary data, ARMA(p, q) model is known as the ARIMA(p, 
d, q) models if the d-order difference operation is performed to make the 
data stationary. In the kind of equations in the ARIMA (p, d, q) models, p 
represents the degree of the AR model, q represents the degree of the MA 
model, and d represents the number of differences needed to stabilize 
the data (Yonar et al., 2020; Ray et al., 2021; Mishra et al., 2021). 

The equation for the ARIMA(p, d, q) model is as follows: 

Yt=φ1Yt− 1+φ2Yt− 2+…+φpYt− p+α1 − θ1αt− 1 − α2 − θ2αt− 2 − …− αq − θqαt− q,

(1)  

whereφprepresents the parameter values relating to the AR operator, 
αqis the error term coefficient, θq represents the parameter values 
relating to the MA operator, and Ytrepresents the data with dth differ-
ences of the original data(Brockwell et al., 2016; Gujarati and Porter, 
2012). 

The following steps can be applied for fitting time-series data to an 
ARIMA model(Hyndman and Khandakar, 2007). 

Step 1. Plot the data, detect any unusual observations, and transform 
the data to stabilize the variance if necessary. 

Step 2. Determine the values of p and q by analyzing the autocorre-
lation function (ACF) and the partial ACF (PACF), and from the selected 
model try to identify the best ARIMA model by using Akaike’s infor-
mation criterion (AIC) with correction (AICc). 

Step 3. From the best model, check the residuals by plotting the ACF 
and the PACF. Try to modify the model if the plotted ACF and PACF do 
not look like white noise. 

Step 4. If the residuals look like white noise, calculate the forecasts. 

For model selection, the mean squared error (MSE), root mean 
squared error(RMSE), mean absolute error (MAE), mean absolute per-
centage error (MAPE), AIC, AICc, and Bayesian information criterion 
(BIC) are statistical measures that evaluate the performance of the fit of 
the forecasting. The goodness-of-fit approach for a time series is based 
on the residuals. Therefore, the measure of forecast accuracy should be 
checked using many metrics together. The model with the best fore-
casting ability hasthe smallest error criterion value. 
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Whereetis the error term, yt is the observation, andỹtis the forecast; 
alsoet = yt − ỹt .

AIC = − 2LL + 2k  

AICc =AIC +
2(k2 + 1)
n − k − 1  

BIC = kln(n) − 2ln L̂ 

Here, k indicates the number of estimated parameters in the model 
and L stands the maximum value of the likelihood function for the 
model, n denotes sample sizes. 

.In this study, statistical analysis was performed with the statistical 

Table 1 
Descriptive statistics of total pulse production data.  

State or country Minimum Maximum Mean Standard deviation Skewness Kurtosis 

Karnataka 239.00 1951.21 697.94 421.19 1.54 1.78 
Madhya Pradesh 873.00 8111.58 2803.88 1509.61 1.82 3.72 
Maharashtra 451.00 3768.06 1470.84 723.27 1.13 0.84 
Rajasthan 227.00 3700.00 1509.11 773.86 0.97 0.87 
Uttar Pradesh 1212.00 3835.00 2535.55 576.71 − 0.01 0.21 
India 8347.00 25416.22 13110.88 3531.55 1.69 3.10  
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Fig. 1. Autocorrelation function (ACF) and partial ACF graphs of the first differences of the data in pulses production in Major states in India using ARIMA models.  
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software packageR. The auto. Arima() function in R was usedto deter-
mine the best ARIMA model. This function uses the Hyndman- 
Khandakar algorithm (Hyndman and Khandakar, 2007) to obtain an 
ARIMA model by combining the unit root test and minimization of the 
AICc. The Hyndman-Khandakar algorithm involves only Steps 2 and 3 
given above; therefore, we conducted the other steps ourselves. 
Furthermore, the Arima() function in R(Version 4.03,https://stat.ethz. 
ch/pipermail/r-announce/2020/000662.html) was used to test other 
models we thought may be suitable on the basis of ACF and PACF 
graphs. 

3. Results and discussion 

Descriptive statistics for total pulse production between 1950 and 
2019 are presented in Table 1for Karnataka, Madhya Pradesh, Maha-
rashtra, Rajasthan, Uttar Pradesh, and India. While the minimum value 
for total pulse production in India is 8347, the maximum value is 
25416.22 between 1950 and 2019. Thus, it can be said that there has 
been an increase of approximately 205% in total pulse production in 
India since 1950. Moreover, in Karnataka, Madhya Pradesh, Mahara-
shtra, Rajasthan, and Uttar Pradesh, production increased by approxi-
mately 716%, 830%, 735%, 1530%, and 230%, respectively. As a result, 
the mean total pulse production is 13110.88 for India. The state with the 
highest average pulse production is Madhya Pradesh, with 2803.88, and 
the lowest is Karnataka, with 697.94. When the standard deviations of 
pulse production are analyzed, the highest standard deviation is seen in 
India, with 3531.55 (Table 1). 

To test the normality of the data set, the descriptive statistics are 
calculated and then by dividing the skewness coefficient by the standard 
errors, the normality of the data is tested (Das et al., 2017). Skewness 
and kurtosis should be within the range from +2 to − 2(a few authors 
also use the more lenient +3 to − 3). With use of this rule of thumb and as 
the data size is large, it can be concluded that the data sets are normally 
distributed. The positively skewed and platykurtic nature of the data for 
the states of Karnataka, Maharashtra, and Rajasthan indicate that there 
wasa marginal change of the area in favor of pulse production during the 
early period and it remained almost the same in the study period 
(Vishwajit et al., 2018). The leptokurtic and positively skewed nature of 
the data for Madhya Pradesh and India indicates a very marginal change 
of the area during the early period. In Uttar Pradesh, the platykurtic and 
negatively skewed nature of the data indicates a marginal change of the 
area during the late period, and it remained almost the same during the 
of the study. 

ACF and PACF graphs of the first differences of the series are pre-
sented in Fig. 1. According to the goodness-of-fit parameter, especially 
the AICc, the best models given in Table 2 were selected for five major 
states and India, and the best model was used to determine the forecast 
value for the 10years from 2020 to 2029. It is clearly seen from Fig. 1 
and Table 2 that the data became stationary at first differences. As seen 
in Table 2, the goodness of fit of ARIMA models was also assessed by 

various information criteria, such as the mean error, RMSE, MAE, mean 
percentage error, MAPE, mean absolute scaled error, likelihood, AIC, 
BIC, and the AICc used in the Hyndman-Khandakar algorithm. 

The residuals from the fitted models were checked by means of 
graphs of the ACF and PACF concerning the residuals given in Fig. 2A 
corrected result is observed if all autocorrelations are within the 
threshold limits and the residuals look like white noise. 

To assess future quantity on the basis of recent information, the 
application mainly uses time series in forecasting models (Das et al., 
2019). The present investigation aimed to establish the importance of 
ARIMA models and attempted to make short-term predictions for pulses 
in India and Indian states. The forecast values were generated between 
the years 2020 and 2029. Tables 3–8 show point forecasts and 80% and 
95% prediction intervals obtained through the ARIMA models in Table 2 
for five major states and India, respectively. Lo80 and Hi80 are the lower 
and upper bounds of the prediction interval for significance level α =

0.20, and Lo95 and Hi95 are the lower and higher bounds of the pre-
diction interval for significance level α = 0.05. From these tables, it can 
be said that total pulse production will show a continuous increase in 
Karnataka, Madhya Pradesh, Rajasthan, and India and will decrease 
continuously in Uttar Pradesh(depicted in Fig. 1). 

Pulse production in Karnataka, Madhya Pradesh, Rajasthan, and 
India is expected to follow a rising trend in the next few years on the 
basis of the forecast. It was estimated that in 2029, pulse production will 
reach 2090.95 in Karnataka (Table 3), 8705.09 in Madhya Pradesh 
(Table 4), 3846.63 in Rajasthan (Table 6), and 31033.02 in India 
(Table 8). However in Maharashtra, the pulse production trend is highly 
fluctuating (Table 5), and this is also clearly visible from Fig. 3. In Uttar 
Pradesh (Table 7), the production trend is for a decrease, and this is also 
supported by Fig. 3. Agricultural funding, price support programs, better 
management practice, research workers, etc., for long-term production 
will be the major factors to sustain this trend. 

4. Conclusion 

Pulses are an important part of a healthy, well-balanced diet, and 
they are particularly prevalent in the Indian diet. Pulses are classified as 
both a mixed crop and an intercrop in the agricultural industry. Making 
predictions about pulse production would aid in determining whether or 
not demand would be met in the foreseeable future. It is indisputably 
established by the outcomes of this study that India would have the 
highest predicted value in the year 2029. Uttar Pradesh is experiencing a 
decline in overall pulse output, whilst Karnataka, Madhya Pradesh, and 
Rajasthan are experiencing an increase in production. Agriculture 
funding, price support programs, improved management practices, 
research employees, and other variables that will contribute to long- 
term output will be the most important factors in maintaining this 
trend. This type of project aids in the implementation of policy and the 
long-term planning for a particular crop. 

Table 2 
Model fitting for total pulse production data.  

State or country Model ME RMSE MAE MPE MAPE MASE LL AIC AICc BIC 

Karnataka ARIMA(0,1,1) − 0.77 153.22 111.28 − 7.04 17.94 0.87 − 445.80 897.59 897.69 904.29 
Madhya Pradesh ARIMA(1,1,0) − 0.18 590.21 378.94 − 6.85 16.95 0.85 − 538.79 1083.58 1083.95 1090.28 
Maharashtra ARIMA(2,1,1) − 0.50 340.47 254.81 − 6.55 19.28 0.77 − 501.66 1013.32 1014.27 1024.49 
Rajasthan ARIMA(0,1,1) 2.54 562.45 425.73 − 16.06 37.15 0.85 − 535.61 1077.21 1077.58 1083.91 
Uttar Pradesh ARIMA(0,1,1) 10.12 388.00 285.48 − 2.71 12.93 0.79 − 510.25 1026.50 1026.87 1033.20 
India ARIMA(1,1,2) − 42.17 1509.31 1148.00 − 1.73 9.17 0.79 − 604.27 1218.55 1219.50 1299.72 

AIC, Akaike’s information criterion; AICc, Akaike’s information criterion with correction; ARIMA, autoregressive integrated moving average; BIC, Bayesian infor-
mation criterion; LL, likelihood; MAE, mean absolute error; ME, mean error; MAPE, mean absolute percentage error; MASE, mean absolute scaled error; MPE, mean 
percentage error; RMSE, root mean squared error. 
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Fig. 2. Autocorrelation function (ACF) and partial ACF(PACF) of the residuals of the fitted models on pulses production in Major states in India using ARIMA models.  

P. Mishra et al.                                                                                                                                                                                                                                  



Current Research in Food Science 4 (2021) 800–806

805

Author statement 

All authors read and approved the final manuscript. Preparation of 
original manuscript: PM, AY, and HY. Data compilation: BK, MA, SSD, 
and SGP. Coding and analysis: BK, SSD, and SGP. Results and discussion: 
PM, AY, and HY. Finalization of the manuscript: PM, AY, HY, and MA. 

Credit authors statement 

All authors have read and approved the final manuscript. 

Preparation of original manuscript: PM, AY, and HY. Data compilation: 
BK, MA, SSD and SGP. Coding and analysis: BK SSD & SGP. Results and 
discussion: PM, AY, HY,. Finalization of the manuscript: PM, AY, HY, 
and MA. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Table 3 
Total pulse production forecasting for Karnataka(millions of kilograms).  

Year Forecast Lo80 Hi80 Lo95 Hi95 

2020 1886.47 1685.75 2087.18 1579.50 2193.43 
2021 1909.19 1690.25 2128.13 1574.35 2244.03 
2022 1931.91 1696.15 2167.67 1571.34 2292.47 
2023 1954.63 1703.17 2206.09 1570.05 2339.20 
2024 1977.35 1711.11 2243.58 1570.18 2384.52 
2025 2000.07 1719.84 2280.30 1571.49 2428.65 
2026 2022.79 1729.23 2316.35 1573.83 2471.75 
2027 2045.51 1739.20 2351.82 1577.05 2513.97 
2028 2068.23 1749.68 2386.78 1581.05 2555.41 
2029 2090.95 1760.61 2421.29 1585.74 2596.16 

Lo80, lower bound of the predictive interval for significance level α = 0.20; 
Hi80, upper bound of the predictive interval for significance level α = 0.20; 
Lo95, lower bound of the predictive interval for significance level α = 0.05; 
Hi95, higher bound of the predictive interval for significance level α = 0.05. 

Table 4 
Total pulse production forecasting for Madhya Pradesh(millions of kilograms).  

Year Forecast Lo80 Hi80 Lo95 Hi95 

2020 7888.21 7115.08 8661.35 6705.80 9070.63 
2021 7931.14 7061.58 8800.70 6601.26 9261.02 
2022 8050.87 7005.62 9096.13 6452.29 9649.45 
2023 8133.33 6978.21 9288.46 6366.72 9899.95 
2024 8233.88 6961.06 9506.70 6287.27 10180.49 
2025 8325.65 6953.06 9698.25 6226.45 10424.86 
2026 8421.68 6952.52 9890.84 6174.80 10668.57 
2027 8515.65 6957.53 10073.77 6132.71 10898.59 
2028 8610.61 6967.59 10253.64 6097.83 11123.40 
2029 8705.09 6981.69 10428.49 6069.38 11340.81 

Lo80, lower bound of the predictive interval for significance level α = 0.20; 
Hi80, upper bound of the predictive interval for significance level α = 0.20; 
Lo95, lower bound of the predictive interval for significance level α = 0.05; 
Hi95, higher bound of the predictive interval for significance level α = 0.05. 

Table 5 
Total pulse production forecasting for Maharashtra(millions of kilograms).  

Year Forecast Lo80 Hi80 Lo95 Hi95 

2020 3160.45 2707.65 3613.25 2467.95 3852.95 
2021 2991.43 2529.40 3453.45 2284.82 3698.04 
2022 2497.88 2023.12 2972.63 1771.81 3223.95 
2023 2738.69 2242.58 3234.80 1979.96 3497.42 
2024 3033.16 2492.23 3574.09 2205.88 3860.45 
2025 2880.08 2336.73 3423.43 2049.10 3711.07 
2026 2780.13 2235.32 3324.94 1946.91 3613.34 
2027 2936.62 2374.14 3499.10 2076.38 3796.86 
2028 3012.71 2435.93 3589.50 2130.60 3894.83 
2029 2951.37 2370.31 3532.43 2062.71 3840.02 

Lo80, lower bound of the predictive interval for significance level α = 0.20; 
Hi80, upper bound of the predictive interval for significance level α = 0.20; 
Lo95, lower bound of the predictive interval for significance level α = 0.05; 
Hi95, higher bound of the predictive interval for significance level α = 0.05. 

Table 6 
Total pulse production forecasting for Rajasthan(millions of kilograms).  

Year Forecast Lo80 Hi80 Lo95 Hi95 

2020 3454.25 2717.47 4191.02 2327.45 4581.04 
2021 3497.84 2717.11 4278.58 2303.81 4691.88 
2022 3541.44 2719.09 4363.79 2283.77 4799.12 
2023 3585.04 2723.08 4447.00 2266.79 4903.30 
2024 3628.64 2728.82 4528.47 2252.48 5004.81 
2025 3672.24 2736.08 4608.40 2240.50 5103.98 
2026 3715.84 2744.70 4686.98 2230.61 5201.07 
2027 3759.44 2754.54 4764.34 2222.57 5296.30 
2028 3803.04 2765.47 4840.60 2216.22 5389.85 
2029 3846.63 2777.41 4915.86 2211.39 5481.88 

Lo80, lower bound of the predictive interval for significance level α = 0.20; 
Hi80, upper bound of the predictive interval for significance level α = 0.20; 
Lo95, lower bound of the predictive interval for significance level α = 0.05; 
Hi95, higher bound of the predictive interval for significance level α = 0.05. 

Table 7 
Total pulse production forecasting for Uttar Pradesh(millions of kilograms).  

Year Forecast Lo80 Hi80 Lo95 Hi95 

2020 1621.39 1113.15 2129.64 844.10 2398.69 
2021 1599.40 1082.28 2116.51 808.54 2390.26 
2022 1577.41 1051.57 2103.24 773.21 2381.60 
2023 1555.41 1021.00 2089.82 738.10 2372.72 
2024 1533.42 990.57 2076.27 703.20 2363.64 
2025 1511.43 960.26 2062.59 668.50 2354.36 
2026 1489.43 930.08 2048.78 633.98 2344.89 
2027 1467.44 900.02 2034.86 599.64 2335.24 
2028 1445.45 870.07 2020.83 565.48 2325.41 
2029 1423.45 840.23 2006.68 531.49 2315.42 

Lo80, lower bound of the predictive interval for significance level α = 0.20; 
Hi80, upper bound of the predictive interval for significance level α = 0.20; 
Lo95, lower bound of the predictive interval for significance level α = 0.05; 
Hi95, higher bound of the predictive interval for significance level α = 0.05. 

Table 8 
Total pulse production forecasting for India(millions of kilograms).  

Year Forecast Lo80 Hi80 Lo95 Hi95 

2020 24989.44 22982.17 26996.71 21919.58 28059.29 
2021 25895.95 23837.77 27954.12 22748.24 29043.65 
2022 26722.13 24545.24 28899.02 23392.86 30051.39 
2023 27479.32 25113.14 29845.50 23860.56 31098.08 
2024 28177.26 25561.62 30792.91 24176.98 32177.55 
2025 28824.32 25914.12 31734.53 24373.55 33275.10 
2026 29427.68 26192.12 32663.25 24479.31 34376.06 
2027 29993.51 26413.22 33573.80 24517.93 35469.09 
2028 30527.11 26591.24 34462.98 24507.71 36546.50 
2029 31033.02 26736.77 35329.27 24462.48 37603.57 

Lo80, lower bound of the predictive interval for significance level α = 0.20; 
Hi80, upper bound of the predictive interval for significance level α = 0.20; 
Lo95, lower bound of the predictive interval for significance level α = 0.05; 
Hi95, higher bound of the predictive interval for significance level α = 0.05. 
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