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Abstract

Background: The alcohol dehydrogenases (ADH) are widely studied enzymes and the evolution of the mammalian gene
cluster encoding these enzymes is also well studied. Previous studies have shown that the ADH1B*47His allele at one of the
seven genes in humans is associated with a decrease in the risk of alcoholism and the core molecular region with this allele
has been selected for in some East Asian populations. As the frequency of ADH1B*47His is highest in East Asia, and very low
in most of the rest of the world, we have undertaken more detailed investigation in this geographic region.

Methodology/Principal Findings: Here we report new data on 30 SNPs in the ADH7 and Class I ADH region in samples of 24
populations from China and Laos. These populations cover a wide geographic region and diverse ethnicities. Combined
with our previously published East Asian data for these SNPs in 8 populations, we have typed populations from all of the 6
major linguistic phyla (Altaic including Korean-Japanese and inland Altaic, Sino-Tibetan, Hmong-Mien, Austro-Asiatic, Daic,
and Austronesian). The ADH1B genotyping data are strongly related to ethnicity. Only some eastern ethnic phyla or
subphyla (Korean-Japanese, Han Chinese, Hmong-Mien, Daic, and Austronesian) have a high frequency of ADH1B*47His.
ADH1B haplotype data clustered the populations into linguistic subphyla, and divided the subphyla into eastern and
western parts. In the Hmong-Mien and Altaic populations, the extended haplotype homozygosity (EHH) and relative EHH
(REHH) tests for the ADH1B core were consistent with selection for the haplotype with derived SNP alleles. In the other
ethnic phyla, the core showed only a weak signal of selection at best.

Conclusions/Significance: The selection distribution is more significantly correlated with the frequency of the derived
ADH1B regulatory region polymorphism than the derived amino-acid altering allele ADH1B*47His. Thus, the real focus of
selection may be the regulatory region. The obvious ethnicity-related distributions of ADH1B diversities suggest the
existence of some culture-related selective forces that have acted on the ADH1B region.
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Introduction

Historically, the alcohol dehydrogenases (ADH) have been

among the most widely studied sets of enzymes along with their

genes. Alcoholism, a complex genetic disorder that affects a large

proportion of people, has been known for some time to be strongly

associated with variants of alcohol dehydrogenase [1–3]. Alcohol

dehydrogenase plays a role not only in alcohol metabolism but also

in many other metabolic pathways, and thus forms of the enzyme

exist in many organs [4–8]. The human ADH gene cluster is

located on chromosome 4q23-24, and the several genes are clearly

related evolutionarily. Sequentially this ADH cluster contains

ADH7, Class I ADH (1C, 1B, 1A), ADH6, ADH4, ADH5 [9,10].

Hundreds of polymorphic sites have already been studied within

the ADH cluster [11,12]. Some polymorphic sites alter amino acids

or lie in other functional regions; these can cause functional

changes in the enzyme and result in different phenotypes [11,13–

20]. The Arg47His (rs1229984) polymorphism at ADH1B

(previously ADH2) is a typical function-related polymorphism

[21,22]. The derived allele, coding for histidine, provides a well

confirmed protection against alcoholism [23–29].

Global investigation of ADH1B diversity shows a strong

geographic distribution [10,30]. Some variants of ADH1B appear

specifically in some geographic regions [10,24,31–33]. For

instance, ADH1B*47His reaches very high frequencies almost

exclusively in East Asian populations [10,12,34] while fairly high

frequencies occur in West Asia and North Africa; in contrast the

allele is rare to absent in the rest of the world [30]. This quite

unusual geographic pattern argues for more detailed research.

Linkage disequilibrium (LD) studies revealed evidence that the

upstream region of ADH1B has been under positive selection in

several East Asian populations such as Chinese, Koreans and

Japanese, but the selective force remains unknown [12]. There are

still unsolved issues in relating the high frequency of the functional
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variant to positive selection in East Asian populations. For

example, in some Austronesian (AU) populations, the derived

allele frequency of the functional polymorphism is very high, but

there is no evidence by the REHH test showing that the functional

allele ADH1B*47His underwent selection [12]. Thus, not only is

the selective force unknown, but selection cannot explain the

frequency of ADH1B*47His in all populations in which it is high.

While absence of evidence in some populations may have been a

power issue, further investigation is clearly needed.

Our previously studied populations belong to several ethnic

phyla (same as linguistic phyla): the Korean-Japanese (KJ)

subphylum of the Altaic phylum (Japanese, Koreans), the Chinese

(also called Sinitic Han: SN) subphylum of the Sino-Tibetan

phylum (Cantonese, Hakka and Minnam Taiwanese), the Taiwan

subphylum of the AU phylum (Atayal, Amis), and the East Mon-

Khmer subphylum of the Austro-Asiatic (AA) phylum (a small

sample of Cambodians) [12]. These eight populations are all

located in the coastal region. According to the complicated

landforms, climates, ethnic distributions, and population histories

in East Asia, this set of population samples is not sufficiently

representative of East Asia, especially not for the populations in

the western region of East Asia such as the Tibetan, Uigur,

Mongol, etc., populations. Based on the geographic distribution of

the ADH1B*47His allele [30], we do not believe that selection

happened everywhere in East Asia, certainly not to the same effect.

Therefore, we are working to improve coverage of other East

Asian ethnic groups and geographic regions to reveal the true

histories of ADH genes [30]. More detailed distributions of allele

and haplotype frequencies will be essential for attempting to

address the questions of when, where, and even how selection

occurred, although the distributions alone will not allow definitive

answers.

The cultural and ethnic diversity in East Asia is noticeable. For

example, Daic (also called Tai-Kadai: TK) is the major phylum in

the peninsula of Southeast Asia and southern East Asia. In

northern East Asia, Altaic is the major phylum, but the KJ

subphylum is an atypical branch. Inland Altaic (AT) subphyla such

as Mongolian and Turkic are much more representative of Altaic.

In the western side of East Asia, the Tibeto-Burman (TB)

subphylum and the Hmong-Mien (HM) phylum are both

dominant [35,36]. Different ethnic phyla not only have different

languages and religions but also completely different life styles

[36,37]. Almost all of those AT populations are nomandic tribes

except Uigur, which switched to farming 1000 years ago [38,39].

The northern tribes of TB are all mainly pastoralists. TK, HM,

SN, KJ, and AU populations have very long histories of farming

[40–42]. Most of the AA (mainly Mon-Khmer) groups were

hunter-gatherers historically, and began farming very recently

[43]. Different life styles might have led to differences in the

impacts of any selective forces, and might have influenced the

distribution of ADH allele and haplotype frequencies.

To determine the allele frequency distributions with greater

geographic and ethnic precision, we have studied 24 more

populations from different geographic areas of East Asia. These

populations belong to different ethnic phyla and their major

subphyla. The most important populations of TK, AT, HM, TB,

and AA phyla are included (Figure 1A, 1B and Table 1). This type

of sampling can minimize the bias of the geographic and ethnic

distribution of the samples and the possible misreading of the

results. With such data we may be able to identify selection on the

relevant allele and to find relationships between haplotype pattern

and selection, as much more genetic diversity may be found during

this more comprehensive investigation in the focused East Asia

region.

Results

Distribution of ADH1B variants
We obtained the allele frequencies of 30 single nucleotide

polymorphisms (SNPs) on the 24 new populations. The haplotype

frequencies for all the 30 SNPs are given in Table S1 and allele

frequencies are in ALFRED under the UIDs in Figure 2. The

frequencies of the ADH1B functional variant, ADH1B*47His, and

the variant at the ADH1B regulatory polymorphism rs3811801

(SNPs 9 and 11) were transformed into contour maps in Figure 1.

The sharp borders across which the frequencies changed quickly

are marked by bold lines in the map. The distributions of both

variants show very clear clinal geographic patterns of east-west

division. The sharp border for ADH1B*47His lies between the

eastern part and western part of both the continental East and

Southeast Asia, from the south end in Cambodia to the north

end in Inner Mongol. The frequencies of ADH1B*47His are quite

high to the east of this border. The rs3811801 derived allele shows

a somewhat different distribution within the range of AD-

H1B*47His with a less sharp border and a similar higher

frequency to the east.

Ethnically, the distributions of these two variants are also quite

regular. The populations with high frequency of ADH1B*47His

belong to TK, AU, SN, KJ, and HM. Those subphyla all have a

long history of agriculture [40–42], while those populations with a

low frequency of ADH1B*47His are all pastoral or hunting

populations or began to farm recently. The TK and AU

populations are excluded from among the populations with a

high frequency of the rs3811801 (SNP 11) derived allele.

This non-synonymous SNP and the ADH1B promoter [44]

polymorphism (SNP 11) have very high Fst values on a global scale

[12]. The fixation index Fst, originally designed as the most

inclusive measure of population substructure, is used here as a

measure of allelic difference among the populations [10]. As the

populations in East Asia are fairly similar to each other [45–47],

the Fst values within the region are expected to be lower than those

of the same SNPs globally. Using data on the East Asian

populations listed in Table 1, we calculated the Fst values of all the

SNPs as follows, numbered as in Figure 2: 1(.056), 2(.196), 3(.185),

4(.153), 5(.182), 6(.177), 7(.182), 8(.051), 9(.240), 10(.098),

11(.218), 12(.145), 13(.145), 14(.198), 15(.236), 16(.145),

17(.166), 18(.166), 19(.166), 20(.094), 21(.203), 22(.168), 23(.084),

24(.101), 25(.089), 26(.101), 27(.057), 28(.053), 29(.154), 30(.225).

The Fst values among East Asian populations are much lower than

the global values of the same SNPs, though the Fst of our focused

SNPs 9 and 11 are still much higher than the global Fst mean of

general SNPs (0.14). The Fst values of the Arg47His variant and

the promoter variant of ADH1B are among the highest values, but

we also see high values in the upstream region at ADH1C and even

upstream of ADH1C.

Haplotypes and regions of high LD
Six-SNP haplotypes of the ADH1B upstream region (SNPs 6–

11) were estimated and the haplotype frequencies of the Asian

populations are displayed in Figure 3. The patterns of the East

Asian populations are obviously different from the non-East Asian

populations (Uralic and Afro-Asiatic). Haplotypes 1 and 2 have

high frequencies in most of the East Asian populations, while they

occurred at much lower frequency in ASH (Jews). The populations

in the most southwest region of East Asia (WBM: Ava, KHG:

Tibetan, and PHO: Phunoi Lolo) have the lowest frequencies of

these two haplotypes.

Among the East Asian populations, there are four types of

haplotype patterns, and the classification shows an obvious ethnic

ADH Diversities in East Asia
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correlation. The first group (Southeast) contains AU and TK,

and haplotype 2 is the major haplotype of this group. The

second group (Southwest) contains AA and TB, with the

characteristic haplotype 3. Haplotype 1 has a frequency greater

than 50% in the third group (Northeast) that contains HM, SN,

and KJ. AT populations form the fourth group (Northwest). The

haplotypes in group 4 are most diverse. Only haplotype 7 is a little

richer than it is in the other groups. For those non-East Asian

populations, the patterns also seem regular. Haplotypes 5 and 8

are frequent in Afro-Asiatic populations but absent in Uralic

populations.

Regions of high LD across the whole region were displayed in

Figure 2. The patterns of the ADH7 region and the region between

Class I ADH and ADH7 (SNPs 17–30) are quite similar among the

populations in East Asia, except for TB (BQH, QMR, KHG) with

fewer regions of high LD and AU (ATL, AMI) with larger high LD

regions. In contrast, the LD patterns of Class I ADH (SNPs 1–16)

are quite different among the populations. It is interesting that

only the Mongol (MVF) and Hmong (HMQ, MWW) have high

LD extending to the region upstream of ADH1B (SNPs 9–11). In

the two AU populations from Taiwan, high levels of LD

encompass more SNPs than seen for the other populations; this

pattern suggests they are quite young and/or have undergone

considerable random genetic drift recently.

Population Comparison
A principal component analysis based on the ADH1B haplotype

frequencies in Figure 3 was used to examine the data distribution

among populations (Figure 4A). The first plot was constructed by

principal components (PC) 1 and 2. In this plot, PC1 divides East

Asian populations from non-East Asian populations. This confirms

the overall genetic unity and distinctiveness of East Asia. In the

second map PC2 divides the western part of East Asia from the

eastern part with a sharp border. The distribution of PC2 is very

similar to the distribution of ADH1B*47His, with the TK, HM, SN

and KJ phyla in the east and the others in the west. The

correlation between PC2 value and ADH1B*47His frequency is

20.971 (P,0.001), while the correlation between PC2 and

longitude is 20.491 (P = 0.005). The distribution of PC3 is also

quite geography-related. It divides southern phyla (TK, AA, AU)

from the northern phyla. The correlation coefficient between PC3

and the latitude is 20.808 (P,0.001). Though PC2 and PC3 are

significantly correlated with geography, they are more ethnic-

related, as is shown in the second plot of Figure 4A. It is noticeable

that those eastern populations such as LAO and MWW that have

moved into the western area are still clustered with the eastern

phyla. That suggests the distribution of this ADH1B haplotype

(encompassing the 59 half of the gene and the 59 flanking region)

must be related to the history of the ethnic phyla.

Figure 1. Locations of the populations and distributions of the ADH1B rs1229984 and rs3811801 derived allele frequencies. Note:
The map of part A showed the ethnic phyla in East Asia, and part B displayed the locations of the populations. Populations marked with stars were
cited from literature [31,34]. The codes of the star-marked populations are ISO639-3 codes. Populations shown by gray spots are previously published
by our team [12]. The colorful spots are the populations collected in this study. Part C is the distribution of the derived allele frequency of rs1229984
(ADH1B*47His). Part D is the distribution of the regulatory region polymorphism rs3811801 derived allele frequency.
doi:10.1371/journal.pone.0001881.g001

ADH Diversities in East Asia
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To test if the ethnic-related distribution of ADH1B is common

in the human genome, we applied principal component

analysis (PCA) to the haplotype frequency data of the whole

ADH region we typed. Results are shown in Figure 4B. The

distribution of the PCs is much closer to the general genetic

relationship (a supposed genetic relationship measured by the

whole genome diversity) among populations than the ADH1B

distribution. PC1 still divides East Asia from the rest of the

world. Neither PC2 nor PC3 is related to ethnicities. The PCA

result of the whole region is very different from that of the

smaller ADH1B region. Therefore the ethnic-related distribution of

the first PCA of ADH1B is uncommon. The distribution of the

ADH1B upstream region diversity is related to ethnicity, but

different from the distribution of the whole Class I ADH and ADH7

region diversity.

Positive Selection Test of ADH1B Core Haplotypes
As SNPs 9 to 11 are candidates for being related to function or

having been positively selected, we chose this short region as the

core for a test for selection. The allele frequencies of the core

haplotypes are shown graphically in Figure 5A. The four-group

classification of Figure 2 can still be observed in Figure 5A. There

are eight haplotypes but only four are common in East Asia.

Haplotype (2) is most common in the AU-TK group. Haplotype

(3) reaches highest frequency in the HM-SN-KJ group. Uralic and

Afro-Asiatic are obviously different. Though AT and Uralic phyla

Table 1. General Information for the East Asian populations included in the analyses

Ethnic Phylum Subphylum Code Population name
sample
size Country Province County Long.(E) Lat.(N)

Altaic Turkic KAZ* Khazaks 48 China Xinjiang Balikun 93.01 43.59

Altaic Turkic YAK Yakut 51 Russia Saha 124.20 62.07

Altaic Turkic UIG* Uigur 48 China Xinjiang Turpan 88.66 42.79

Altaic Mongolian MVF* Mongols 75 China Inner Mongol Shilingol 116.07 43.95

Altaic Korean-Japanese KOR Koreans 54 S.Korea 126.57 37.32

Altaic Korean-Japanese JPN Japanese 47 Japan 139.49 35.38

Sino-Tibetan Tibeto-Burman BQH* BaimaDee 42 China Sichuan Pingwu 104.53 32.41

Sino-Tibetan Tibeto-Burman QMR* Qiang 40 China Sichuan Mao 103.85 31.69

Sino-Tibetan Tibeto-Burman KHG* Khamba Tibetan 36 China Sichuan Kangding 101.96 30.05

Sino-Tibetan Tibeto-Burman PHO* Phunoi 43 Laos Louang-Namtha Louang-Namtha 101.05 21.13

Sino-Tibetan Sinitic(Han Chinese) WUU* Wu Chinese 53 China Shanghai 121.37 31.11

Sino-Tibetan Sinitic HKA Hakka Chinese 41 China Taiwan 121.05 24.20

Sino-Tibetan Sinitic CHT Minnam Chinese 50 China Taiwan 120.31 23.31

Sino-Tibetan Sinitic CHS Canton Chinese 57 USA CA San Francisco 113.04 22.35

Hmong-Mien Hmongic HMQ* Black Hmong 60 China Guizhou Mashan 109.80 27.88

Hmong-Mien Hmongic MWW* White Hmong 60 Laos Huapuan XamTai 103.54 19.57

Daic Kam-Sui KMC* Kam 74 China Guangxi Sanjiang 109.60 25.79

Daic Kam-Sui LBC* Laka 98 China Guangxi Jinxiu 110.18 24.13

Daic Tai-Sek CCX* North Zhuang 40 China Guangxi Wuming 108.28 23.17

Daic Tai-Sek CCY* South Zhuang 30 China Guangxi Chongzuo 107.36 22.42

Daic Hlai LIC* Hlai 59 China Hainan Tongzha 109.52 18.77

Daic Tai-Sek LAO* Lao 117 Laos Cap.Vientiane Sisattanak 102.37 17.57

Daic Tai-Sek SKB* Saek 57 Laos Khammouan Boualapha 104.55 17.28

Austro-Asiatic North Mon-Khmer WBM* Ava 59 China Yunnan Ximeng 99.46 22.74

Austro-Asiatic North Mon-Khmer KJG* Khmu 51 Laos LouangPrabang Nambak 102.33 20.27

Austro-Asiatic North Mon-Khmer LBN* Lamet 42 Laos Louang-Namtha Nale 101.35 20.50

Austro-Asiatic Viet-Muong BGL* Bo 52 Laos Bolikhamxai Khamkheut 105.09 18.08

Austro-Asiatic East Mon-Khmer KUF* Katu 50 Laos Xekong Thateng 106.39 15.36

Austro-Asiatic East Mon-Khmer LBO* Laven 47 Laos Xekong Thateng 106.35 15.34

Austro-Asiatic East Mon-Khmer CBD Cambodians 25 Cambodia 104.55 11.33

Austronesian Malayo-Polynesian HUQ* Tsat 52 China Hainan Sanya 109.27 18.17

Austronesian Atayalic ATL Atayal 42 China Taiwan Yilan 121.74 24.76

Austronesian Paiwanic AMI Amis 40 China Taiwan Hualien 121.60 23.98

Austronesian Malayo-Polynesian MCR Micronesians 37 Micronesia 158.12 6.57

Note: *Those populations marked with stars are newly collected, and the triliteral codes are ISO639-3 codes [35]. Others are previously published populations with
previously used codes [12]. San Francisco Chinese originally came from Jiangmen County, Guangdong, China; therefore, the location of CHS in the table is that of
Jiangmen County.
doi:10.1371/journal.pone.0001881.t001
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are neighbors and share much of their culture and customs, their

haplotype patterns are quite different.

In Figure 5B, the relationships among the haplotypes are plotted

in a network. Haplotype (1) is the ancestral haplotype based on

sequence comparison with four other ape species. The functional

mutation ADH1B*47His occurred in the step from (1) to (2). The

promoter mutation occurred in the step from (2) to (3). The sizes of

the circles in Figure 5B are roughly proportional to the haplotype

frequencies in the different ethnic phyla. In the network, the

frequencies of the younger haplotypes are expected to be lower.

Actually, young haplotypes (5) to (8) are obviously less frequent

than those old ones (1), (2) and (4). The only exception is haplotype

(3) which is young but still reaches very high frequency in East

Asia. Outside of East Asia, this haplotype is very rare. This

Figure 2. Pattern of regions of high LD using HAPLOT and the default r2 algorithm. Note: The codes of the non-East Asian populations are
shown as NAS(Nasioi), KTY(Khanty), KMZ(Komi), FIN(Finns), SAM(Samaritans), DRU(Druze), ASH(Ashkenazi Jews). CN: New collected samples from
China. LA: Newly collected samples from Laos. Both dbSNP numbers and ALFRED UID numbers are presented for the SNPs in the ADH region we
typed.
doi:10.1371/journal.pone.0001881.g002

Figure 3. Haplotype frequencies of the ADH1B gene region including the regulatory region. Note: the SNPs in the haplotypes are
rs2066701-rs2075633-rs4147536-rs1229984-6810842-rs3811801, corresponding to SNPs 6–11 in Figure 2. Phyla, PN: Papuan-New Guinean, AU:
Austronesian, TK: Daic, AA: Austro-Asiatic, TB: Tibeto-Burman, HM: Hmong-Mien, SN: Sinitic Han, KJ: Korean-Japanese, AT: Altaic (inland), UR: Uralic,
AF: Afro-Asiatic. The patterns of the non-East Asian phyla (UR, AF, PN) are quite different from those of East Asian phyla. The patterns of the phyla in
East Asia can be classified into four groups as the colors shown in the left side bar. The frequency data for all haplotypes are in Table S1.
doi:10.1371/journal.pone.0001881.g003

ADH Diversities in East Asia
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indicates this haplotype has undergone strong genetic drift or

positive selection in East Asia. This also focuses attention on the

derived allele in the promoter region.

To test whether the high frequency of the young haplotype was

caused by positive selection, we applied the EHH and REHH

tests. The results are presented in Figure 6 and Figure S1 to scale

along the chromosomal segment studied. If the EHH value

decayed quickly or the REHH value did not rise to high levels with

increasing distance from the core, there would be no evidence for

selection. The EHH values of core haplotype (3), AGA, decayed

more slowly than the other core haplotypes, indicating haplotype

(3) may have been under positive selection. The REHH values of

haplotype (3) also increased in the upstream direction. The REHH

values of the Altaic populations including KJ were the highest

among the ethnic phyla. The REHH values of two HM

populations, BQH, CBD and SKB also rose to fairly high values.

The high REHH values suggest the possible existence of positive

selection; however, because of limitations of our sample sizes (,50

individuals per population) only those core haplotypes of moderate

frequency convey meaningful results. Some populations with high

REHH values failed to have moderate haplotype frequencies, such

as YAK, KAZ, CBD and SKB. Thus, we cannot draw a definite

conclusion for these populations.

We plotted all the REHH values for all core haplotypes at SNP

26 (around 90 kb from the core) in Figure 7A. In Altaic and some

other populations, the REHH values of haplotype (3), AGA, were

much higher than those of the other haplotypes. To test whether

this haplotype might have been under positive selection in these

populations, we simulated the population demography (Figure 7B).

The population history model used in the simulation was based on

the migration history reconstructed by other genetic studies

(mtDNA [46] and Y-chromosome [47]) and the tremendous

changes of the environment or the society in East Asia. The

population size was at its lowest level at the peak of the ice age

[48], and increased quickly when agriculture started. Archaeolog-

ical evidence [41] confirms that agriculture started more than

8000 years ago in East Asia. If we assume a generation is about

20 years, agriculture started 400 generations ago. With this model,

10,000 populations were simulated, and the results of simulated

REHH values were shown in Figure 7C together with the

observed REHH values of haplotype AGA. Four lines (50, 75, 95

and 99 percentile) were drawn for visual comparison. All of the

Altaic and HM populations are above the 95 percentile line. We

also calculated the significance by a t-test after transforming our

original result to achieve normality. The P values were

transformed into the contour map in Figure 8A. There are 15

populations with a P value less than 0.05. The regions covered by

these populations are marked in Figure 8B by a purple

background. All of the Altaic populations and HM populations

are included. Among four SN populations only HKA (Hakka) is

excluded. BQH, SKB, CBD and KUF are also included. The

sample size of CBD is rather small (25), and the core haplotype

Figure 4. Principal Component Analysis plots. Notes: The plots show the relationships among populations estimated by PCA. Plots in part A were
based on the ADH1B haplotypes frequency data in Figure 3. Plots in part B used the haplotype frequency data of the whole ADH region in Figure 2. In
part A, an ethnic related distribution is obvious, while in part B the distribution shows no strong distinct clusters corresponding to ethnicity.
doi:10.1371/journal.pone.0001881.g004

ADH Diversities in East Asia
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Figure 5. Frequencies and network of the core haplotypes (rs1229984-rs6810842-rs3811801). Notes: Haplotype codes (1) to (8) are in
the same system for both part A and part B of the figure. The sizes of the balls in the network of part B represent the rough relative frequencies of the
haplotypes. The arrows are the most likely mutational relationships. The broken lines indicate possible historical recombinations. Haplotype (3) is
more derived and presumably younger than haplotypes (1), (2), (4), and (6). Its high frequency in some populations suggests selection may have
operated.
doi:10.1371/journal.pone.0001881.g005

Figure 6. Extended Haplotype Homozygosity (EHH) and Relative Extended Haplotype Homozygosity(REHH) of Altaic, Han and
Hmong populations. Note: Colorful lines are data of core haplotype (3)AGA, and gray lines are data of other haplotypes. The data following the
population codes are frequencies of the core haplotype in the populations. EHH and REHH of the other populations are in Figure S1.
doi:10.1371/journal.pone.0001881.g006

ADH Diversities in East Asia

PLoS ONE | www.plosone.org 7 April 2008 | Volume 3 | Issue 4 | e1881



AGA frequency is low; therefore the REHH of CBD is not

reliable. Fisher’s Exact Test [49] on haplotype composition shows

CBD can be combined with LBO, a nearby and similar population

(P = 0.492). REHH of the combined population is 4.467, which

suggests that the combined population shows no evidence of

selection. Therefore the populations with significant evidence of

selection are ethnic-specific with only four exceptions. The

conclusion is that strong evidence of selection on the core

haplotype AGA was found in Altaic and HM populations, and

weak evidence of selection in SN.

In the map of Figure 8, we can see that the geographic area with

evidence of selection is quite different from the ADH1B*47His high

frequency area. Correlation analyses were computed between the P

values of the selection significance test and the derived allele

frequencies of the SNPs in the core region. The results were SNP 9

(r = 0.100, P = 0.581), SNP 10 (r = 0.097, P = 0.590), SNP 11
(r = 0.522, P = 0.002). Only SNP 11 has significant P values for

selection. SNP 11 (rs3811801) is located at 21761 bp, the promoter

region of ADH1B [44]. Therefore the promoter region may be the

actual region that has undergone selection. The alleles at this SNP

may quantitatively alter ADH1B expression. However, since the

derived allele at SNP 11 (rs3811801) occurs only on chromosomes

with the ADH1B*47His allele, the cis-acting combination of the two

alleles may have been the focus of selection.

Discussion

Population History and Ethnic-related Distribution of ADH1B
In all of the analyses based on the ADH1B region in this study,

we saw ethnic relationships with allele and haplotype frequencies.

Figure 7. REHH of observed and simulated populations. Note: The colored dots are observed REHH data of core haplotype AGA both in chart
A and C. In chart A, the observed REHH data shows that most of the REHH values of haplotype AGA are higher than those of the other haplotypes.
Part B is the East Asian population history model determined by complicated factors. Six phases were defined with the effective population numbers
and the generation numbers to present. Chart C indicates the REHH data simulated by the model in part B along with the data in Chart A. The lines in
chart C are comparison borders of the simulated data. The observed REHH of haplotype AGA of all the Altaic and Hmong populations are above the
95% border, which is the evidence of positive selection.
doi:10.1371/journal.pone.0001881.g007
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Especially in Figure 4A of the PCA analysis, genetic clustering of

populations matched very well with the ethnic phyla or subphyla.

That is rather unusual, as we rarely see the distribution of alleles at

a single autosomal locus matching finer structure of ethnic

classification. There are many papers describing ethnic differences

for certain loci, but those ethnic differences are among populations

from different geographic regions of the world [50–52]. In our

study on ADH1B, the eight ethnic phyla or subphyla included are

all in East Asia. In the PCA, these eight groups can be

distinguished very well by ADH1B data, but not by the whole

Class I ADH and ADH7 region data. The ethnic-related patterns

are only seen for the ADH1B region.

In East Asia, one hypothesis argues that most of the homologous

populations in one ethnic phylum share a distinct common

ancestor, which has some evidence from Y chromosome DNA

[53–55]. As the paternal societies have lasted for a very long time

in most of the East Asian populations, the Y chromosome had less

chance to flow among populations than other chromosomes.

Therefore the distribution of Y chromosome diversity can

represent the original relationships among the ethnic phyla to a

certain extent. On the other hand, two factors can change the

ethnic-related genetic structure. Interactions among different

ethnic phyla in East Asia have frequently occurred. Historical

facts of interactions were often used to explain the different genetic

structures revealed by autosomal [56] and mitochondrial [46]

DNA diversity. At the same time, random genetic drift will change

the frequency of a single locus in a certain population. Therefore

most of the distributions of any single locus are not as ethnically

related as the Y chromosome is. The ethnically related distribution

of ADH1B cannot be explained only by random genetic drift.

There can be two possible explanations. One is that some culture

related incidence has maintained the special distribution. Another

possible explanation is that different ADH1B haplotype patterns

occurred at the founding of the different ethnic phyla and

remained largely unchanged during population expansions and

interactions.

A number of Y chromosome diversity studies showed that TB,

SN, TK and AU phyla could be recognized by some ethnicity-

specific haplogroups [53,54,57]. TB and SN subphyla belong to

Sino-Tibetan phyla, and they both originated from the upper

Yellow River area and shared a common ancestor [53]. TK and

AU are two different ethnic phyla, but a great deal of evidence

showed that they are very similar to each other [58]. Y-

chromosome data also supports a common origin of TK and

AU [57]. In our ADH1B data, TB and SN departed from each

other, while TK and AU clustered closely. ADH1B data do not

always match the hypothesized original relationships. Therefore

the ethnic-related structure of ADH1B might not always be caused

by the original differentiations of the ethnic phyla. Some cultural

factors such as life styles may have influenced the special

distribution of ADH1B, especially in the Sino-Tibetan phylum.

Weak evidence of selection was seen in the SN subphylum. That

implies the ADH1B haplotype pattern in SN may be due to

selection, and the selective forces on ADH1B may be something

like ethnic culture. Therefore, the high frequency of AD-

H1B*47His in TK and AU may have resulted from the original

population differentiation, while that in SN may have resulted

from the positive selection.

Cultural or Natural Force in the Selection of ADH1B
Region

The frequencies of ADH1B*47His are high in AU, TK, HM,

SN, and KJ, but ADH1B haplotype patterns of the AU-TK group

are different from those of the other three subphyla. According to

Figure 5, the haplotype AGG is responsible for the high frequency

of ADH1B*47His in AU-TK group, while it was haplotype AGA in

HM-SN-KJ group. And from the selection analyses only AGA

showed evidence of having been selected. Therefore, we conclude

that the high frequency of haplotype AGG in the AU-TK group

most probably did not result from positive selection, but from the

random drift that occurred in their common ancestral population.

Figure 8. Significance P values of the positive selection on the ADH1B gene in East Asia. Note: The map of part A displayed the distribution
of the significance P value of the positive selection on the ADH1B gene. Populations from most areas of East Asia have been significantly selected for
except those in the southwest. In part B, the selection area was compared with the high frequency areas of two ADH1B SNPs. The dotted line encloses
the region in which the ADH1B*47His frequency is .40%, and the broken line encloses the region in which the ADH1B rs3811801 frequency is .40%.
The distributions of ADH1B*47His and selection area differ from each other, which indicates that they are unrelated. The high frequency area of
rs3811801 derived allele is included in the selection area, indicating the possible effect of this allele in the selection on the ADH1B gene.
doi:10.1371/journal.pone.0001881.g008
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The populations in AU-TK group may have maintained the high

frequency of haplotype AGG of their common ancestor since they

diverged.

If we check the haplotype patterns of TB and SN, two members

of the Sino-Tibetan phylum, in Figure 5, some similarities between

them can be found. The AGA haplotype frequency with respect to

the AGG haplotype frequency is high in each population.

According to the history of Han Chinese, they derived from

ancient Qiang population several thousand years ago [59]. QMR

(modern Qiang) may be a very old population. There are even

several individuals in QMR with the ATA haplotype that would

need a quite long time to appear by rare recombination events.

Therefore the haplotype pattern of QMR may be most similar to

that of the Sino-Tibetan ancestor. The lower haplotype frequen-

cies of AGG and AGA in the other TB populations might result

from genetic drift, and the increase in SN might result from

positive selection for which we found weak evidence. The TB and

SN diverged more than 5000 years ago [53]. The SN populations

moved to the east and started agriculture on the plain. Both the

culture and environment changed. It is not easy to determine what

might have been the selective force on the Sino-Tibetan

populations.

Weakly or strongly, all of the Altaic (including AT and KJ)

populations show evidence of selection. The ratio of the haplotype

AGA frequency with respect to AGG in Altaic is highest among

the ethnic phyla. This might be a characteristic of the original

Altaic population. The highest significance level for the selection

significance tests appeared in three eastern populations, MVF,

KOR and JPN, but we are unaware of any social or

environmental similarities among these populations. KOR and

JPN are agriculture populations living by the sea, while MVF is a

pastoral population on the highlands. As for the other populations

with evidence of positive selection, HM phylum, KUF and SKB in

the Southeast Asia, the environments and cultures are even more

different from the Altaic phylum. Judging from the distribution of

the ‘‘selected’’ populations, it is clear that climate and other

environmental aspects differ. Therefore it is difficult to determine

how nature has influenced the allele frequency. As the distribution

is ethnic-related in some extent, some cultural force of selection is

understandable, though we cannot determine the common

cultural factors among the populations showing the strong

evidence of selection. Perhaps cultural anthropologists will shed

light on this problem.

The Selective Region and Allele
The distribution of populations showing evidence of selection at

ADH1B is quite different from the high frequency distribution of

the ADH1B*47His allele. The high significance levels for selection

are only correlated with allele frequencies of the promoter SNP

rs3811801, indicating that the ADH1B*47His allele has not been

selected for in the absence of the derived promoter allele.

Evolutionarily, the derived promoter allele at SNP 11,

rs3811801, occurred on a chromosome with the ADH1B*47His

allele; thus, the derived promoter allele appears together with the

ADH1B*47His allele in most cases. Because the selected core

haplotype AGA includes two SNPs with derived alleles, both with

likely functional consequences, we cannot be sure if ADH1B*47His

has been important in the positive selection on the ADH1B region.

The core haplotypes with the promoter derived allele but without

ADH1B*47His are very rare; therefore the sample is too small to

test for positive selection. We can speculate that it is the combined

effect of an increased activity of the enzyme caused by the

ADH1B*47His allele and an increased quantity of the enzyme

caused by the derived promoter allele. However, it is possible that

the promoter region variant has no effect but is simply associated

by chance with that chromosome that underwent selection in

specific ethnic populations.

In previous case-control studies, it was found that the

ADH1B*47His allele decreased the risk for alcoholism both in

Asian and European populations. In the Asian populations [21–

25] included in the alcoholism correlation studies, both derived

allele frequencies of ADH1B*47His and the promoter polymor-

phism are high. But in the European populations [26,27,29], the

promoter derived allele does not appear together with AD-

H1B*47His, implying that ADH1B*47His is solely responsible for

the decrease in the risk for alcoholism. Others report that

ADH1B*47His was not always related to alcoholism, especially in

Taiwanese populations [32,33], in which the frequency of the

ADH1B promoter derived allele is very low as we revealed in our

study. Some papers [28] also doubted the significance of the

association between ADH1B*47His and alcoholism in European

populations as the frequency of the ADH1B*47His is also low.

Therefore the ADH1B*47His allele alone may not be important in

changing the genetic structure of the populations.

However the decrease in the risk for alcoholism has not been

argued to be the selective force, and our results argue that selection

is not solely related to ADH1B*47His. The derived promoter allele

may have led to the increase of the ADH enzyme expression, and

then enhance the protection against some deleterious effects. The

ADH variants are also related to some types of cancers and other

serious diseases [4,60–66]. Infectious disease is one of the plausible

selective forces suggested by Goldman & Enoch [67]. Other

diseases such as food poisoning can also have similar effects, and

the populations will be susceptible if they happen to be partial to

certain foods. This kind of pathology was reported in some

populations in China [68]. In the case of ADH selection, Altaic and

Hmong populations may have special food or other customs that

increase the risk of a certain disease. The enhancement of the

ADH enzyme caused by the ADH1B*47His may not be enough to

protect the individuals from that disease, and an increased enzyme

activity caused by the derived allele of the promoter variant would

then be helpful. Our hypothesis is that ADH1B*47His can enhance

the activity of ADH enzyme and the derived allele of the promoter

variant of ADH1B can increase the quantity of the enzyme in the

body; thus the protection against some related diseases will be

stronger and the ADH1B haplotype will be selected. However,

more case-control studies including both of the derived alleles are

required. And we suggest these studies be conducted in the Daic or

Austronesian populations, because there are more types of ADH1B

core haplotypes and the linkage disequilibrium is weaker.

Therefore, a false signal caused by the strong linkage disequilib-

rium can be avoided.

Materials and Methods

Populations
We collected samples of 24 populations (populations with stars

behind their code in Table 1 and marked by colorful icons in

Figure 1B) from six ethnic phyla. Among these populations, nine

were collected from Laos, and 15 were from China. This is the first

population genetics study in Laos. Laos is an inland country

surrounded by all the other nations in the Peninsula. All types of

populations in Peninsular Southeast Asia can be found in Laos. All

individuals we collected are healthy adults without alcoholism or

related disorders. Everyone signed the informed consent. Our

study was approved by the Ethics Committee of the Chinese

National Human Genome Center at Shanghai and the Human

Investigations Committee at Yale University School of Medicine,

ADH Diversities in East Asia
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and approved by the Laos government. The sample sizes are all

large enough for meaningful frequency and haplotype estimates

[69]. The population locations are also indicated in Table 1 by

both county names and geographic coordinates, and also shown in

the map of Figure 1B.

Table 1 also lists the information of populations previously

studied [12] to give an overview of the ADH study in East Asia.

These population samples are categorized both ethnically and

geographically. Each phylum contains 2,7 populations. HM is

the smallest phylum, represented in our data by only two

populations.

Sample Preparation
For the new populations blood samples were collected from

finger tips of participants and kept dry on filter paper. A whole

genome amplification (WGA) [70] was applied for each sample. A

3 mm2 piece of paper with blood was cut off and dipped into 5 ml

water, lysed with 5 ml of alkaline lysis solution (400 mM KOH,

100 mM DTT, 10 mM EDTA) and incubated for 10 min on ice.

The lysed liquid was neutralized with 5 ml neutralization

solution(1 M HCl:1 M Tris-HCl = 2:3, pH 0.6). The neutralized

mixture was used directly as template in WGA. The WGA cocktail

is water 31.5 ml, 106MDA buffer [Tris-HCl pH7.5 375 mM, KCl

500 mM, MgCl2 100 mM, (NH4)2SO4 50 mM] 5 ml, 10 mM

dNTP 5 ml, 2 mM thiophosphate-modified random hexamer

(NNNN*N*N, where* denotes a phosphorothioate) 1.25 ml,

2 mg/ml Rnase A 0.25 ml, template mixture 5 ml, 200 ng/ml

w29 polymerase 2 ml. Cocktail was mixed well and incubated at

31uC for 15 hours. After the reaction, the polymerase activity was

inactivated at 75uC for 5 min. The product was spun down to get

rid of the sediment, and the produced DNA was purified by

alcohol precipitation before TaqMan reactions.

Markers
We chose 30 SNPs from the ADH cluster, covering Class I ADH

(encompassing the ADH1B Arg47His polymorphism) and ADH7.

These 30 SNPs have high heterozygosity in East Asia [71]. The

dbSNP and ALFRED numbers of each SNP from the ADH

clusters are listed in Figure 2. All SNPs were genotyped by the

TaqMan method [72] using commercial assays and reagents

(http://products.appliedbiosystems.com) except for the assay for

ADH1B Arg47His, which we designed [30].

Analysis Methods
Allele frequencies were calculated directly by gene counting

assuming two-allele codominant inheritance. Fst values [73] are

calculated as s2

p
{

q
{. Our Fst values were calculated across all 32 East

Asian populations. Haplotypes of the 30 SNPs in ADH genes were

estimated by PHASE2.1 [74,75]. The population-specific patterns of

regions of high LD were calculated and graphed (Figure 2) using

HAPLOT [76] and the default Kidd r2 partition algorithm. The

PCA [77] was initially applied based on the ADH1B haplotype

frequency of 6 SNPs (rs2066701-rs2075633-rs4147536-rs1229984-

rs6810842-rs3811801) centered on ADH1B Arg47His by SPSS13.0.

Another PCA was based on frequencies of all available haplotypes of

all the 30 SNPs we typed. The second PCA was expected to show the

general population relationships with less functional effects, while the

first one was supposed to be affected by the functional variant. SNP

allele frequency and PCA maps were presented by Surfer8.0 .

Analyses of empirical data suggest positive selection has

operated on the ADH Class I cluster in East Asian populations

[12] . Therefore, the Long Range Haplotype analysis [78] has

been applied to test for a potential positive selection effect on these

new populations. Pilot studies suggested that SNPs (9,11:

rs1229984-rs6810842-rs3811801) showed a signature of positive

selection and therefore these three SNPs were selected as the core

region. We used two values of Long Range Haplotype analysis to

measure the selection, EHH and REHH [79].

EHH is defined as the probability that two randomly chosen

chromosomes carrying a tested core haplotype are homozygous at

all SNPs for the entire interval from the core region to the distance

x. REHH is defined as the ratio of the EHH of the tested core

haplotype to the EHH of the grouped set of core haplotypes at the

region not including the tested core haplotype. In implementation,

EHH is calculated as

EHH~

S
G

i~l

ni

2

� �

N

2

� � ,

where N is the total number of chromosomes/haplotype

sequences, and G is the number of homozygous groups, with

each group i having ni elements. If there are M chromosome

groups, each with Ci chromosomes and an EHH value of EHHi,

REHH is calculated as

REHHi~EHHi=

PM
j~l
j=i

C j

2

� �
|EHH j

PM
j~l
j=i

C j

2

� �

2
6666664

3
7777775
:

Generally speaking, if a certain core haplotype with moderate to

high frequency shows high EHH and REHH over a long distance,

it will be considered as an effect of positive selection [78–80]. The

REHH value of this core haplotype was further compared with

numerous data points generated by simulation that assumes

neutral evolution [81]. A pilot and cursory population history

mode in our simulation was designed according to the migration

history (out of Africa around 50,000 years ago and arrived in East

Asia around 20,000 years ago), archaeological discoveries (agri-

culture stared in East Asia around 8,000 ago, and iron tools were

used around 2,500 years ago) and the environmental changes (the

Last Ice Age ended around 12,000 years ago) in East Asia [41,52].

The simulated data were logarithmicly transformed to achieve

normality for a T-test with REHH values of our core haplotype.

The network of the core region haplotypes was drawn by

NETWORK4.201 [82]. The evolutionary relationships among

the haplotypes were determined from the network given the

identity of the ancestral allele.

Supporting Information

Table S1 Haplotype frequencies of the ADH region in Asian

populations

Found at: doi:10.1371/journal.pone.0001881.s001 (0.73 MB XLS)

Figure S1 Extended Haplotype Homozygosity (EHH) and

Relative Extended Haplotype Homozygosity(REHH) of southwest

populations in East Asia. Note: Colorful lines are data of core

haplotype (3)AGA, and gray lines are data of other haplotypes.

The data following the population codes are frequencies of the

core haplotype in the populations.

Found at: doi:10.1371/journal.pone.0001881.s002 (0.31 MB TIF)
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