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Abstract 

Objectives:  Automated detection and quantification of plant diseases would enable more rapid gains in plant 
breeding and faster scouting of farmers’ fields. However, it is difficult for a simple algorithm to distinguish between the 
target disease and other sources of dead plant tissue in a typical field, especially given the many variations in lighting 
and orientation. Training a machine learning algorithm to accurately detect a given disease from images taken in the 
field requires a massive amount of human-generated training data.

Data description:  This data set contains images of maize (Zea mays L.) leaves taken in three ways: by a hand-held 
camera, with a camera mounted on a boom, and with a camera mounted on a small unmanned aircraft system (sUAS, 
commonly known as a drone). Lesions of northern leaf blight (NLB), a common foliar disease of maize, were anno‑
tated in each image by one of two human experts. The three data sets together contain 18,222 images annotated 
with 105,705 NLB lesions, making this the largest publicly available image set annotated for a single plant disease.
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Objective
Globally, plant diseases are an enormous burden to farm-
ers. Northern leaf blight (NLB), a foliar disease of maize, 
has become increasingly severe in the US [1]. Screen-
ing a large area for early symptoms is time-consuming, 
and there is high intra- and inter-rater variation in NLB 
severity estimates [2].

Automated, field-based detection of plant disease 
symptoms would be valuable for plant breeders and 
growers. However, this is complicated by the “noisy” 
nature of field imagery. There may be many sources of 
dead tissue, along with obscured symptoms. This requires 
a computer vision approach that is specific to the target 
disease and insensitive to such variations.

Convolutional neural networks (CNNs) are a class 
of machine learning models that can be trained to 
accurately detect objects in images, making them the 

current standard for object recognition [3]. CNNs must 
be trained on a large number of classified or annotated 
images, but unlike recognizable everyday objects, plant 
disease symptoms require expertise and experience to 
identify.

Very few large, expert-curated image sets of plant dis-
ease exist [4]. PlantVillage contains over 50,000 images 
of numerous crops and diseases [5]. However, these were 
taken with detached leaves on a plain background, and 
CNNs trained on these did not perform well on field 
images [6]. Other image sets are much smaller [7], or not 
curated by experts [8].

We collected image data from several platforms and 
angles to help develop a system for real-time monitor-
ing and phenotyping of NLB in maize fields using drones 
equipped with CNNs. The resulting data set exceeds 
18,000 maize plant images annotated with more than 
100,000 NLB lesions, which is the largest collection of 
images for any one plant disease. These annotated images 
are expected to be valuable for furthering the devel-
opment of novel computer vision and deep learning 
approaches in agriculture.
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Data description
The data consists of three image sets and their accom-
panying annotations. All images were taken in field tri-
als of maize that had been inoculated with Setosphaeria 
turcica, the causal agent of NLB. All trials were planted at 
Cornell University’s Musgrave Research Farm in Aurora, 
NY (https​://cuaes​.cals.corne​ll.edu/farms​/musgr​ave-resea​
rch-farm/). The trials consisted of maize hybrids from 
The Genomes to Fields Initiative (https​://www.genom​
es2fi​elds.org/resou​rces/), arranged in two-row plots 
with a length of 5.64 m and inter-row spacing of 0.76 m. 
There was a 0.76 m alley at the end of each plot. The trials 
were rainfed and managed with conventional maize cul-
tivation practices. Plants were inoculated at the V5–V6 
stage with both a liquid suspension of S. turcica (isolate 
NY001) spores and sorghum grains colonized by the fun-
gus as previously described [9]. The first image set, the 
“handheld set,” was taken by hand in summer 2015. This 
image set was described and analyzed previously [9], but 
is included here to make all images available in a single 
repository. The second, the “boom set,” was taken by 
mounting the camera on a 5  m boom in summer 2015. 
This boom held the remotely triggered camera above 
the canopy with nadir view. The third, the “drone set,” 
was taken by mounting the camera on a DJI Matrice 600 
sUAS in summer 2017. The drone was flown at an alti-
tude of 6 m and a velocity of 1 m/s, and images were cap-
tured with nadir view every 2 s.

For the handheld and boom sets, images were checked 
manually to ensure the image was in focus and oth-
erwise adequate. For the drone set, images with a low 
total length of edges (as reported by canny edge detec-
tion) were filtered out, in order to remove blurry images. 
Images were then discarded during annotation if they 
were out of focus or otherwise unacceptable.

In each image, lesions were annotated by one of two 
human experts, as denoted in the annotation files. Anno-
tators drew a line down the main axis of each lesion vis-
ible in the image, stretching down the entire length of 
the lesion. If a lesion appeared bent or curved from the 

camera’s perspective, two or more intersecting annota-
tion lines were drawn to form an angle or arc as needed. 
In the handheld set, this was done with the markup tools 
in Bisque [9]. In the boom and drone sets, these steps 
were done using a custom ImageJ macro (Table 1, lesion-
Count_v2.1_dataNote.txt). Endpoint coordinates of each 
annotation line are recorded in the three.csv data files, 
each corresponding to a single data set (Table 1). Images 
with 0 values for all four endpoint coordinates had no 
visible lesions.

The number of images and annotation lines are as 
follows:

• • Handheld: 1787 images, 7669 annotations.
• • Boom: 8766 images, 55,919 annotations.
• • Drone: 7669 images, 42,117 annotations.

Some boom images are 1/4 slices of larger images, as a 
wider field of view made it difficult to annotate the entire 
image at once. These are denoted with suffixes, e.g., 
‘img01_00.jpg’, ‘img01_01.jpg.’

Limitations
• • Lesion axis annotations do not indicate width or 

margins.
• • There is no way to indicate confidence of annota-

tions. Some lesions are easily visible, while others 
are partially occluded, out of the main focal plane, in 
heavy shade, or washed out by bright sunlight.

• • Even experts may have a hard time distinguishing 
between NLB and similar-looking diseases, such as 
Stewart’s wilt or anthracnose leaf blight, from a dis-
tance. While no similar-looking diseases were noted 
as we phenotyped fields on foot, this does not pre-
clude the possibility of such false positives.

• • All photographs were taken in a single field in cen-
tral New York State. This limits the generalizability of 
the data, as symptoms of the same disease in other 
regions may present or develop differently.

Table 1  Overview of data files/data sets

Label Name of data file/set File type (extension) Data repository and identifier

Images images_handheld .tar.gz (folder with.jpg files) https​://osf.io/arwmy​/

images_boom .tar.gz (folder with.jpg files) https​://osf.io/er3zb​/

images_drone .tar.gz (folder with.jpg files) https​://osf.io/vfawp​/

Annotations annotations_handheld .csv https​://osf.io/7ue84​/

annotations_boom .csv https​://osf.io/u6mfb​/

annotations_drone .csv https​://osf.io/25agh​/

ImageJ macro lesionCount_v2.1_dataNote .txt https​://osf.io/av7dj​/

https://cuaes.cals.cornell.edu/farms/musgrave-research-farm/
https://cuaes.cals.cornell.edu/farms/musgrave-research-farm/
https://www.genomes2fields.org/resources/
https://www.genomes2fields.org/resources/
https://osf.io/arwmy/
https://osf.io/er3zb/
https://osf.io/vfawp/
https://osf.io/7ue84/
https://osf.io/u6mfb/
https://osf.io/25agh/
https://osf.io/av7dj/
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