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g‐aminobutyric acidergic
synapse-associated signature
for lower-grade gliomas
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and Qianxue Chen1*

1Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,
2Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
Background: Synapse-associated proteins (SAPs) play important roles in

central nervous system (CNS) tumors. Recent studies have reported that g-
aminobutyric acidergic (GABAergic) synapses also play critical roles in the

development of gliomas. However, biomarkers of GABAergic synapses in

low-grade gliomas (LGGs) have not yet been reported.

Methods: mRNA data from normal brain tissue and gliomas were obtained

from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas

(TCGA) databases, respectively. A validation dataset was also obtained from the

Chinese Glioma Genome Atlas (CGGA) database. The expression patterns of

GABAergic synapse-related genes (GSRGs) were evaluated with difference

analysis in LGGs. Then, a GABAergic synapse-related risk signature (GSRS)

was constructed with least absolute shrinkage and selection operator (LASSO)

Cox regression analysis. According to the expression value and coefficients of

identified GSRGs, the risk scores of all LGG samples were calculated. Univariate

and multivariate Cox regression analyses were conducted to evaluate related

risk scores for prognostic ability. Correlations between characteristics of the

tumor microenvironment (TME) and risk scores were explored with single-

sample gene set enrichment analysis (ssGSEA) and immunity profiles in LGGs.

The GSRS-related pathways were investigated by gene set variation analysis

(GSVA). Real-time PCR and the Human Protein Atlas (HPA) database were

applied to explore related expression of hub genes selected in the GSRS.

Results: Compared with normal brain samples, 25 genes of 31 GSRGs were

differentially expressed in LGG samples. A constructed five-gene GSRS was

related to clinicopathological features and prognosis of LGGs by the LASSO

algorithm. It was shown that the risk score level was positively related to the

infiltrating level of native CD4 T cells and activated dendritic cells. GSVA

identified several cancer-related pathways associated with the GSRS, such as

P53 pathways and the JAK-STAT signaling pathway. Additionally, CA2, PTEN,

OXTR, and SLC6A1 (hub genes identified in the GSRS) were regarded as the

potential predictors in LGGs.
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Conclusion: A new five-gene GSRS was identified and verified by

bioinformatics methods. The GSRS provides a new perspective in LGG

that may contribute to more accurate prediction of prognosis of LGGs.
KEYWORDS

g-aminobutyric acidergic synapses, tumor immune microenvironment, risk
signature, prognostic factors, lower-grade glioma
Introduction

Gliomas are heterogeneous and invasive tumors of the

central nervous system (CNS) that are derived from glial cells.

Gliomas have poor prognosis (1). In 2016, gliomas were

categorized as classes I–IV by the World Health Organization

(WHO), and the use of the biomarkers isocitrate dehydrogenase

(IDH) mutations and 1p/19q co-deletion was introduced (2).

Among gliomas, diffuse low-grade (grade II) and intermediate-

grade (grade III) gliomas constitute low-grade gliomas (LGGs).

There are significant differences in clinical behavior and

prognosis among LGGs (3). LGG patients usually experience

seizures, but gliomas can also lead to neurological and

neurocognitive impairment and even premature death in the

course of the disease. Among LGGs, IDH has similar prognostic

utility (4). The molecular subtype of the tumor determines the

outcome of LGG surgical resection, which is positively correlated

with the degree of tumor malignancy (5).

In the past decade, our comprehension of the molecular

pathogenesis of gliomas has improved greatly. Unfortunately,

however, this comprehension has not translated into better

treatments for patients, which highlights the still existing gaps

in our knowledge. More research studies of LGG and its

biomarkers are needed to develop better treatments.

The microenvironment of gliomas contains non-neoplastic

cells such as neurons, glial cells, immune cells, and vascular cells.

All these cells can promote and support the growth of tumors
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(6). The CNS is also rich in neurotransmitters, which create a

unique microenvironment for brain tumors, where

neurotransmitter-mediated intracellular signaling pathways

can be transduced by cancer cells and induce cancer cell

growth, activation, and metastasis (7). With the progressive

discovery of glioma synapses and metastatic neuronal

synapses, it is believed that neurotransmitters may play crucial

roles in tumor growth, and the speculation that tumor cells may

stimulate their innervation has been confirmed (8, 9). It has been

suggested that microenvironment interaction, especially the

abnormal interaction between glial cells and synapses, is one

of the neuropathological mechanisms underlying Rett

syndrome, Down syndrome, spinal muscular atrophy, and

other diseases (10). More and more recent studies have found

that the communication between neurons and glial cells is

related to several neuropsychiatric and neurodegenerative

diseases, such as schizophrenia (11).

In high-grade gliomas (glioblastoma and grade III

astrocytoma), glioma cells are depolarized by excitation signals

from neuronal glioma synapses (NGSs), and these signals are

amplified through gap junctions to promote their proliferation

(12). In addition, targeting neuroligin-3, a key synaptogenic

factor, significantly reduced the growth of gliomas (13).

Although the role of synapse-associated proteins (SAPs) in

breast metastasis and the development of high-grade gliomas

has been recognized, their role in the development of LGGs is

still unclear. Hence, a more systematic study of SAPs from more

angles is needed to better understand their roles in LGGs.

For malignant glioma tissue with neuronal interaction, glioma

cell culture is conducive to the tumor microenvironment (TME)

to enhance self-proliferation and escape from immune response

(14). Relevant reports have demonstrated that gliomas could

control normal neuronal plasticity and developmental factors in

the TME, so the abnormal connections between neurons and

tumor cells could be established through glioma synapses (15). At

the same time, through neuronal glioma synapse (NGS)-mediated

depolarization of the calcium signaling network in glioma cells,

the electrical activity of neurons can increase tumor proliferation

and invasion and lead to the progression of glioma (6). Previous

reports have shown that glutamatergic synapses are considered to

be related to the progression of intracerebral gliomas (13).
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When exploring the abnormal glutamatergic synapses in the

glioma microenvironment, similar attention has also been paid

to the dysregulated g-aminobutyric acidergic (GABAergic)

signaling and its role in the progression of brain tumor-

associated glioma and epilepsy (16). Recently, it has been

reported that B cells can release g-aminobutyric acid (GABA),

a well-known neurotransmitter molecule, which could promote

the differentiation of monocytes into anti-inflammatory

macrophages, thus secreting interleukin-10 (IL-10), and

thereby inhibiting the anti-tumor CD8 T-cell response. The

GABA secreted by B cells may become a new direction of

tumor immunotherapy (17, 18). Nevertheless, GABAergic

signal transduction related to gliomas has not been reported.

The existing literature shows that the GABA A receptor

expressed by glioma cells is functional, and that endogenous

GABA A receptor activity inhibited the proliferation of glioma

cells (19). In addition, after adult glioblastoma stem cells lost

their tumorigenicity, the production and secretion of 4-

hydroxybutyric acid (a by-product of GABA catabolism)

increased, resulting in decreased cell invasiveness (20).

It can be inferred that the interaction between GABAergic

synapses and the immune state has a special role in the prognosis

of gliomas. To confirm this hypothesis, we developed and

verified a new GABAergic synapse-related risk signature

(GSRS), which may promote the understanding of glioma

progression and provide a novel idea for the study of

biomarkers for effective diagnosis and prognosis. Additionally,

we also studied the correlation between risk signals and immune

characteristics in LGG.
Materials and methods

Samples from public data

Genome-wide RNA-seq expression data as well as clinical

and molecular information were collected from the TCGA

database1 and used as a training dataset. WHO grade II–III

gliomas were included. Any cases that had inadequate clinical or

missing prognostic information were excluded.

LGG samples were selected from parts A and B of the CGGA

database2. They were then integrated, standardized, and utilized

as a validation dataset. Samples from patients with a 30-day

survival rate or no survival data were excluded from this study

because these patients were more likely to die from other life-

threatening conditions (e.g., stroke and heart failure) than from

the LGG.
1 http://cancergenome.nih.gov/

2 http://www.cgga.org.cn
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We selected 453 LGG specimens from TCGA (training

dataset) and 590 LGG specimens from CGGA (validation

dataset) for further analysis. The mRNA expression data of all

these LGG specimens were complete and clinical data were

attached. A control collection of 1,137 normal brain samples

(containing tissues from various areas of the brain such as

cortex, brainstem, and cerebellum) with full mRNA-seq data

was also employed. We utilized the “normalize Between Arrays”

function of the R software package “limma” to reduce various

batch effects when combining the mRNA-seq data of TCGA and

genotype-tissue expression (GTEx), as well as CGGA parts A

and B (21, 22).
Clinical tissue samples

All patients whose tissues were utilized gave their informed

consent. Between March 2020 and April 2022, we obtained 5

control samples from patients with intracerebral hemorrhage

and an additional 12 LGG samples. Before surgery, none of the

gliomas had been treated with chemoradiotherapy. Related

mRNA expression of GSRS hub genes in LGG was verified

using independent samples from our institution. This protocol

was authorized by the Ethics Committee of the Renmin Hospital

of Wuhan University (Wuhan, Hubei, China).
Obtaining GABAergic synapse-related
gene sets

A total of 31 GABAergic synapse-related gene (GSRG) sets, “

GOBP_NEGATIVE_REGULATION_OF_SYNAPTIC

_TRANSMISSION_GABAERGIC” and “GOBP_POSI

TIVE_REGULATION_OF_SYNAPTIC_TRANSMISSION_

GABAERGIC,” were obtained from the Molecular

Signatures Database3.
Differentially expressed genes between
normal tissues and LGGs

The GTEx and TCGA-LGG databases were applied for the

training dataset. The R software package “limma” (22) was used

for discovery of differentially expressed genes (DEGs) from

GSRGs. The criteria were a false discovery rate < 0.05 and an

absolute value of log fold change (logFC) > 1.
3 http://www.broad.mit.edu/gsea/msigdb/
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Protein–protein interaction network
analysis

A protein–protein interaction (PPI) network with 31 GSRGs

was created using the STRING database4. Nodes with interaction

connection confidences > 0.4 are shown.
Genomic alterations of 31 GSRGs

Copynumber variation (CNV)deepdeletion,CNVamplification,

missense mutations, truncating mutations, in-frame mutations, and

fusions of 31 GSRGs were explored using the cBioPortal dataset5.
Construction of GSRS

The “survival” R software program was used to analyze the

predictive value of GSRGs in LGG (p-value < 0.05 was the

threshold for further investigation). Survival status, survival

time, and expression levels of prognosis-related genes in LGG

patients were calculated by the least absolute shrinkage and

selection operator (LASSO) regression algorithm (23) (penalty

parameter l was selected based on 10-fold cross-validation).

Then, the gene and its regression coefficient were determined

based on the most suitable l value.

The risk scorewas calculated according to the following formula:

Risk score = exprgene (1) × coefficientgene (1) + exprgene

(2) × coefficientgene (2) + · · · + exprgene(n) × coefficientgene(n)

where n is the number of prognostic genes in the risk

signature, coefficientgene is the coefficient of the gene, and

exprgene is the expression value of the gene.
Principal components analysis

All LGG samples were categorized into low- and high-risk

groups by the estimated median risk score. Principal

components analysis (PCA) was performed on dimensionality

reduction of mRNA expression data in TCGA-LGG to confirm

between-group differences and CGGA.
Predictive role of GSRS

For both training and validation datasets, we assessed the

prognostic relevance of the GSRS in LGG by Cox regression

analysis and Kaplan–Meier survival curves. Furthermore, we
4 http://www.string-db.org/

5 http://www.cbioportal.org/
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computed not only the area under the receiver operating

characteristic curve (AUC-ROC) for GSRS, but also other

clinical risk variables for predicting the overall survival (OS) in

LGG patients. Three categories of AUC-ROC for measuring the

accuracy of a diagnostic technique were defined as follows: poor

accuracy (0.5 < AUC-ROC ≤ 0.7), moderate accuracy (0.7 <

AUC-ROC ≤ 0.9), and high accuracy (0.9 < AUC-ROC ≤ 1) (24).
Clinicopathological characteristics of GSRS

Patients enrolled in the study were classified into high- and

low-risk categories in the training and validation cohorts. The

chi-square test was used for difference analysis of the risk score

for clinicopathological parameters such as age, gender, histology,

WHO glioma grade, IDH mutational status, and 1p19q co-

deletion status. A p-value < 0.05 was deemed significant.
Profiles of tumor-infiltrating
immune cells

The CIBERSORT algorithm was applied to determine the

abundance profile of immune cells in the low- and high-risk

groups individually. The link between the proportion of tumor-

infiltrating immune cells (TIICs) and risk score in the training

and validation datasets was explored using Pearson correlation

analysis and the Wilcoxon test. The stromal score, immune

score, and tumor purity of each LGG sample were also

determined using the “estimate” package, based on the

ESTIMATE method (25).
Single-sample gene set
enrichment analysis

The critical genes of 29 immune-related pathways were

obtained from the related literature (26). According to

melanoma mRNA transcripts per million (TPM) data, the

single-sample gene set enrichment analysis (ssGSEA) was

applied to assess the level of TIICs (27). In addition, a

differential analysis of gene hallmark enrichment degree with

29 types of immune-related hallmarks was done between low-

and high-risk groups. We also explored the expression levels of

immune checkpoints (ICPs) and immunogenic cell death (ICD)

modulators in low- and high-risk groups, given their role in

cancer immunity.
Mutational status analysis

Somatic tumor mutational burden (TMB) was computed in

the TCGA-LGG dataset as the total number of mutations found
frontiersin.org
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in each sample. Additionally, the R software package “maftools”

was utilized to investigate the predictive usefulness of TMB in

LGG, comparing low- and high-risk groups and calculating

mutational status.
Gene set variation analysis

The Molecular Signatures Database was used to download

and choose sets of marker genes that summarize and reflect

unique, well-defined biological states or processes with

consistent expression. The R software package “GSVA” was

used to implement gene set variation analysis (GSVA) of

signature gene sets in TCGA-LGG for low- and high-risk

groups (28).
Verification of hub genes of GSRS

Kaplan–Meier survival curves were applied to identify the

prognosis-related genes of the GSRS. Furthermore, the Human

Protein Atlas (HPA) database6 was used to examine the protein

levels of genes identified in normal brain and LGG tissue.
RNA extraction and quantitative real-
time PCR

RNA extraction of prognosis-related genes from tissues and

cells was performed using TRIzol reagent (Invitrogen, Carlsbad,

CA, United States). The RNA was then tested for purity as well

as concentration. A reverse transcription kit was applied in the

conversion of whole samples to cDNA. Performing qRT-PCR by

employing the SYBR Green system. GraphPad 7 was used to

assess statistics. The results from the experimental and control

groups were compared using the relative Ct technique, with

GAPDH serving as an internal reference.
Results

Genetic differences of GSRGs in LGGs

Differential analysis of 31 GSRGs (Figure 1A) showed that 25

genes (Figure 1B) were differentially expressed between LGG and

normal samples in the training dataset. Supplementary Table 1

includes downregulated and upregulated GSRGs and the related

logFC values. Additionally, a strong correlation in expression
6 https://www.proteinatlas.org/
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among GSRGs was found by Spearman’s correlation analysis

(Figure 1C). Furthermore, the co-expression correlation among

GSRGs was confirmed by PPI network analysis (Figure 1D).

Subsequently, to further explore the genomic identities of GSRGs

in LGG, using mutational analysis the cBioPortal database was

applied to reveal the copy number polymorphisms and somatic

mutational status of GSRGs (Supplementary Figure 1).
Verification of GSRS

LASSO regression analysis was performed after first

identifying five prognosis-related genes from the 31 GSRGs

using univariate Cox analysis (Figure 2A). After validation

with LASSO analysis, the best-fitting model featured the

following five genes: OXTR, PTEN, SLC6A1, CA2, and

CNTNAP4. These five genes and their corresponding

coefficients are summarized in Supplementary Table 2.

According to the mRNA expression level of each risk gene and

these corresponding coefficients, the risk score for each patient

was calculated (Figures 2B–D).

As determined by PCA, the median of the GSRS sufficiently

distinguished low-risk and high-risk clusters. Additionally, the

prognoses between the low- and high-risk groups were also

shown distinctly by survival analysis performed on the training

and validation datasets (Figures 2E–H). Furthermore, the risk

score, survival time, and risk gene expression were plotted for

the GSRS of the TCGA-LGG and CGGA cohorts (Figures 2I, J).

Taken together, these data showed that GSRS-based risk scores

may be better predictors of prognosis in LGG patients compared

to other clinical factors.
Predicting prognosis of LGGs with new
risk scores

To further examine the potential role ofGSRS in independently

predicting prognosis, univariate and multivariate Cox analyses

were performed (Figures 3A, B). We found that the risk score

could be an independent predictor of OS for the TCGA-LGG

cohort (p < 0.001). The risk score had a greater AUC-ROC

compared to all clinical factors related to prognosis such as age,

gender, histology, WHO glioma grade, IDH mutational status, or

1p19q co-deletion status. The AUCs for risk score for 1, 3, and 5

years in the training dataset were 0.885, 0.753, and 0.754,

respectively (Figures 3C–E). The same conclusion was also

validated by the CGGA-LGG cohort, and the hazard ratio (HR)

of the risk score from multivariate Cox regression analysis was

1.056 (Figures 3F, G, p < 0.001). The AUCs for risk score for 1-, 3-,

and 5-year OS in CGGA-LGG were 0.771, 0.749, and 0.741,

respectively (Figures 3H–J).
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Correlations between clinicopathological
features and GSRS

For the training and validation datasets, respectively, 453

and 590 cases with valid data for age, gender, WHO glioma

grade, IDH mutational status, and 1p19q co-deletion status were

screened out. To explore the distribution of clinical factors

among the different risk groups, chi-square tests were

conducted using the R function “chisq.test”. Table 1 shows the

differences between the TCGA and CGGA cohorts. GSRS-based

risk scores were obtained and were significantly correlated with

WHO glioma grade, IDH mutational status, and 1p19q co-

deletion status in the datasets (Figures 4A, B). In particular, LGG

samples with higher WHO grade, IDH wild type, or 1p19q non-

co-deletion showed higher risk scores than the other samples;

differences were also seen among the LGG and other samples for

histology (Figures 4C–J). Therefore, the risk score values were

associated with the histology, WHO grade, IDH mutational

status, and 1p19q co-deletion status of LGG.
Frontiers in Immunology 06
Profiles of tumor-infiltrating immune cells

The relative proportions of 22 types of immune cells were

examined, based on calculations from the “CIBERSORT”

algorithm. The results of differences between the low-risk group

andhigh-risk groupwerepresented as boxplots (Figures 5A, B). The

low-risk group had significantly higher infiltration of native CD4 T

cells and activated dendritic cells than the high-risk group. In

addition, the stromal score recorded the presence of stromal cells

in the tumor tissue, and the immune score indicated the infiltration

of immune cells into the tumor area. The samples from thehigh-risk

group showedhigher glioma-associated immuneand stromal scores

than those from the low-risk group.High-risk LGGsamples showed

higher infiltration levels of stromal and immune cells. Furthermore,

we confirmed that native CD4 T cells and activated dendritic cells

were significantly negatively associatedwith risk scores, as shownby

correlation analysis (Figures 5C–F). It suggested that the risk scores

may be correlated with the prognosis of LGG patients in terms of

decreased native CD4 T cells and activated dendritic cells.
B

C D

A

FIGURE 1

The genomic characterization of GABAergic synapse-related genes (GSRGs). (A) Heatmap for differentially expressed GSRGs; genes with red
color are involved in positive regulation of GABAergic synaptic transmission, while genes with blue color mainly participate in negative
regulation of GABAergic synaptic transmission. (B) Boxplot for differentially expressed GSRGs. (C) Correlation plot for GSRGs; red squares
indicate positive correlation and blue squares indicate inverse correlation. (D) Protein–protein interaction network of GSRGs in the STRING
database. ***p < 0.001, *p < 0.05.
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Moreover, we quantitatively assessed the activities and

abundances of pathways, functions, or immunocytes according

to the ssGSEA scores. As expected, more infiltrating immune

cells and activity of immune-related pathways were seen in

samples with higher ssGSEA scores. As shown in the

heatmaps (Figures 6A, C) and boxplots (Figures 6B, D), high-

risk samples were correlated with higher ssGSEA scores for most

immune cell types. In general, high-risk LGG patients are more

likely to have a higher fraction of TIICs and more active

immune-related pathways than the others. In the high-risk
Frontiers in Immunology 07
group, the TIICs (native CD4 T cells and activated dendritic

cells) were much lower than the baseline levels.
Correlation between immune
modulators and risk score

Next, we explored gene expression levels in different risk

populations, taking into account the significance of ICP and ICD

regulators in anticancer immunity. There were 46 ICP-related
frontiersin.or
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FIGURE 2

Construction of five-gene GABAergic synapse-related risk signature (GSRS). (A) Forest plot for the survival analysis of LGG patients using a univariate Cox
model after adjustment for GSRGs; red color represents p < 0.05. (B) The craft plot for partial likelihood deviance in LASSO; different colors represent
different genes in GSRS. (C) Partial likelihood deviance as a function of regularization parameter l in the training dataset. Each red point marks a l value
along regularization paths, and gray error bars represent confidence intervals for the cross-validated error rate. The left vertical dotted linemarks the
minimum error, whereas the right vertical dotted linemarks the most significant l value, the error of which is within 1 SD of theminimum. The horizontal
row of numbers above the plot marks the gene number in each condition upon shrinkage and selection based on linear regression. (D) Radar diagram of
efficiency of the five genes in GSRS; the closer the red dot is to the outside, the greater the value it represents. (E) Principal components analysis (PCA) of
LGG samples in TCGA; dots in blue represent samples in high-risk groups and dots in yellow represent samples in low-risk groups. (F)Overall survival
analysis of risk score for LGG patients in TCGA. (G) PCA in CGGA-LGG. (H) Survival analysis in CGGA-LGG. According to training (I) and validation (J) sets,
the distribution of risk score, corresponding OS, and gene expression are listed in the picture from top to bottom.
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FIGURE 3

The prognostic value of GSRS. (A, B) In the training set, the forest plot on the left is for the univariate and multivariate Cox analysis evaluating
the association of the risk score and clinical factors with patient OS. The ROC curve of risk score and clinical factors for predicting 1-year (C), 3-
year (D), and 5-year (E) OS. (F, G) In the validation set, univariate and multivariate Cox analysis of risk score and clinical factors. ROC curve of
risk score compared with other clinical factors for predicting 1-year (H), 3-year (I), and 5-year (J) OS.
TABLE 1 Correlation between five GSRS genes’ risk scores and clinicopathological factors of glioma patients in the two cohorts.

Features Training set TCGA RNA-seq cohort (n = 453) Validation set CGGA RNA-seq cohort (n = 590)

Low-risk score
(n = 227)

High-risk score
(n = 226)

p Low-risk
(n = 246)

High-risk score
(n = 344)

p

Age 0.002 0.780

≤45 144 127 172 260

>45 83 99 74 84

Gender 0.913 0.025

Female 100 101 113 137

Male 127 125 133 207

Grade <0.001 <0.001

II 144 79 143 126

(Continued)
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genes identified in the training and validation datasets, and 42 of

these genes were found in the TCGA and CGGA cohorts

(Figures 7A, B), with different expressions in different risk

groups. Critically, key ICPs such as CTLA4, PDCD1

(programmed death receptor-1 [PD-1]), and CD274 (PD-L1)
Frontiers in Immunology 09
were highly upregulated in the high-risk group. Similarly, there

were 34DEGs for ICD in theTCGAgroup and 33DEGs for ICD in

theCGGAgroup (Figures 7C,D).Hence, the risk scorenotonly can

show the expression level of ICPs and ICDmodulators, but also can

serve as a potential immunotherapy biomarker.
B C D E F G H I JA

B

C D E F

G H I J

A

FIGURE 4

The association between risk score and clinicopathological factors. Heatmap of the correlations between risk score and clinicopathological
characteristics of LGG in TCGA (A) and CGGA (B) cohorts. Distribution of GABAergic synapses-related risk signature among LGG patients
stratified by WHO grade, histology, IDH status, 1p/19q co-deletion status, and gender in TCGA (C–F) and CGGA (G–J) cohorts.
TABLE 1 Continued

Features Training set TCGA RNA-seq cohort (n = 453) Validation set CGGA RNA-seq cohort (n = 590)

Low-risk score
(n = 227)

High-risk score
(n = 226)

p Low-risk
(n = 246)

High-risk score
(n = 344)

p

III 83 147 103 218

IDH status <0.001 <0.001

Wild type 10 71 36 102

Mutant 217 155 210 242

1p/19q Co-deletion <0.001 <0.001

Yes 125 31 124 96

No 102 195 122 248
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Correlation between risk score and
mutational status

Firstly, we determined the prognostic value of TMB in LGG. For

the survival analysis in TCGA-LGG, the patients who had higher

TMB were more likely to have a worse prognosis than those with

lowerTMB(Figure8A).At the sametime, theKaplan–Meiercurveof

risk score combinedwith TMB indicated that a higher risk score and

higher TMBhad the worst OS, while those with lower risk score and

lower TMB had the best prognosis (Figure 8B). Hence, we found an

association between risk score and TMB in LGG. The difference

analysis of TMB between low- and high-risk groups showed a

significant positive association for TMB and risk score (Figure 8C).

Subsequently, mutations were shown in low - and high-risk

populations. The mutation frequencies of IDH1, TP53, and ATRX

were the highest in 20 genes studied in each subtype (Figures 8D, E).

Thesefindings indicate thatGSRS-based risk scores could predict the

TMB and somatic mutation rates in LGGs, and the higher risk score

group may have a positive anticancer immune response.
Conducting GSVA between different groups

GSVA was applied to score differences in pathway activity in

different groups. The signaling pathways related to
Frontiers in Immunology 10
tumorigenesis and oncogenic transformation were mainly

enriched in high-risk populations (Figure 9), including the P53

pathways and JAK-STAT signaling pathway. These results

demonstrate that the GSRS-based risk score, as a new LGG

biomarker, may be associated with some important cancer-

related signaling pathways.
Validation of hub genes of GSRS

With the training and validation datasets, we explored the

prognostic value of the five-gene GSRS (Figures 10A–H)

(Table 2). Expression levels of PTEN and SLC6A1

(Figures 10C, D) were positively correlated with the OS in

LGGs, but the patients with higher CA2 and OXTR

(Figures 10A, B) tended to have a worse prognosis based on

Kaplan–Meier survival analysis. In addition, CA2, PTEN,

SLC6A1, and OXTR were identified as hub genes in the GSRS.

Then, the effect of expression of the hub genes on the protein

level was evaluated using the HPA database (Figures 10I–K). The

protein PTEN was upregulated and protein SLC6A1 was

downregulated in LGGs compared to normal brain tissue, but

the expression of protein CA2 was not detected in LGG.

Unfortunately, there were no relevant data about OXTR
B

C D E F

A

FIGURE 5

The correlation between tumor-infiltrating immune cells (TIICs) and GSRS. Difference analysis of 22 kinds of abundance of TIICs, immune score,
and stromal score in low- and high-risk groups in training (A) and validation sets (B). Spearman’s correlation analysis between risk score and M0
macrophages and CD4 memory resting T cells in TCGA (C, D) and CGGA cohorts (E, F); each dot plot represents a subject, and the correlation
is fitted into a straight blue line. R, rho; NS, Non Significance, ***p < 0.001, **p < 0.01, *p < 0.05.
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available in the HPA database. In addition, real-time PCR was

conducted for the clinical samples at our center (Figure 10L). We

found that mRNA expressions were upregulated for CA2 and

OXTR, but were downregulated for PTEN and SLC6A1 in LGG

compared to normal brain tissue. These findings are in accord

with those in the public database.
Discussion

Gliomas are a type of primary brain tumor with

heterogeneous traits. Our understanding of the influence of

tumor driver genes on malignant progression has improved as

a result of molecular pathology and epidemiological studies, but

the association between glioma and the TME remains unclear

(29). Preclinical evidence suggests that malignant brain tumor

cells could integrate into neural circuits via actual brain tumor

synapses, and that excitatory neuronal activity would promote

brain tumor growth and invasion (30). Moreover, a new study

confirmed that specific cell populations in glioblastoma support

synaptogenesis to varying degrees (23).
Frontiers in Immunology 11
Synapses also play vital roles in many ways associated with

the immune system including self-tolerance, adaptive

immunity , and prevent ion of autoimmunity (31) .

Furthermore, a remarkable feature of solid tumors is the

special immune microenvironment, one that might advance

the proliferation, invasion, and metastasis of tumor cells.

However, it has been suggested that GABAergic synapses

might suppress intestinal innate immunity via an insulin

signal in Caenorhabditis elegans, an organism in which a

completely unique mechanism by which GABAergic synapses

may regulate gut innate immune responses via muscle insulin-

like signal was discovered (32). Unfortunately, however, there

is no specific biomarker constructed primarily according to the

GSRGs and immune condition inside gliomas. Our study

aimed to construct a five-gene GSRS and evaluate its

prognostic role in LGGs.

We also explored the correlation between risk scores and

clinicopathological variables and immune profi les .

Additionally, the potential molecular mechanism that may be

regulated by GSRS was predicted by GSVA. Furthermore, we

verified the expression of hub genes in GSRS by real-time PCR
B

C D

A

FIGURE 6

Single-sample gene set enrichment analysis (ssGSEA) of immune hallmarks. Heatmap of ssGSEA scores among low- and high-risk groups in
training (A) and validation (C) sets. Boxplot of ssGSEA scores, stromal score, immune score, and tumor purity among low- and high-risk groups
in TCGA (B) and CGGA (D) cohorts. NS, Non Significance, ***p < 0.001, **p < 0.01, *p < 0.05.
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of glioma tissues as well as the expression of protein levels

in LGG.

We found that the majority of GSRGs were differentially

expressed between normal and malignant tissues. Interestingly,

the risk score was significantly correlated with the WHO glioma

grade, which indicated that it has a high predictive power of
Frontiers in Immunology 12
malignant degree (33). The five-gene GSRS was developed and

verified in our research. A few single-nucleotide polymorphisms

(SNPs) and CNVs of GSRGs in LGG indicated that these genes

might be associated with glioma progression, and that genome

stability was also important in preventing malignant growth. In

LGG patients, the risk signature provided a more convenient and
B

C

D

A

FIGURE 7

Association between risk subtypes and ICPs and ICD modulators. Differential expression of ICP genes among the risk subtypes in (A) TCGA and
(B) CGGA cohorts. Differential expression of ICD modulator genes among the risk subtypes in (C) TCGA and (D) CGGA cohorts. NS, Non
Significance, ***p < 0.001, **p < 0.01, *p < 0.05.
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exact predictive power than standard clinical prognostic variables.

Furthermore, the most common application in clinical practice is

the molecular pathologic detection of 1p/19q co-deletion and IDH

type, which also could be distinguished with the risk scores. The
Frontiers in Immunology 13
1p/19q non-co-deletion and IDH wild-type gliomas predicted a

less responsive response to conventional chemoradiotherapy (34).

As a result, chemotherapy or radiation may provide less

therapeutic benefit for LGGs with higher risk scores.
B C

D E

A

FIGURE 8

Association between risk subtypes and TMB and mutation. (A) Survival analysis of TMB and OS of the patients with LGG in TCGA. (B) K–M curves
of TMB combined with risk score in TCGA-LGG. (C) Difference analysis of TMB among low- and high-risk subtypes in LGG patients. (D) Top 20
highly mutated genes in the LGG low-risk group. (E) Top 20 highly mutated genes in the LGG high-risk group. ***p < 0.0001.
FIGURE 9

Heatmap for the contribution of gene set variation analysis (GSVA) scores of KEGG in low- and high-risk groups.
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Tumor-induced dysregulation of immune status may be

associated with glioma progression, and the immune

components in the immune microenvironment have

important functions in glioma progression and prognosis (35,
Frontiers in Immunology 14
36). Tumor evolution tends to escape from immune surveillance,

especially the tumor-specific immunity that could be affected by

the regulation of the immune-related synapse between effector T

cells and antigen-presenting cells (37). In our study, M0
B C D

E F G H
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A

FIGURE 10

Verification of the prognostic value and expression of hub genes of GSRS. Survival analysis of CA2, OXTR, PTEN, and SLC6A1 for gliomas in
TCGA (A–D) and CGGA (E–H) cohorts. The protein expression level of CA2 (I), PETN (J), and SLC6A1 (K) in normal and LGG tissues according
to the HPA database. (L) The relative mRNA expression levels of CA2, PTEN, SLC6A1, and OXTR are compared among LGG and non-tumor
tissues based on real-time PCR results. ***p < 0.001, **p < 0.01.
TABLE 2 K–M survival analysis of five GSRS genes in TCGA and CGGA.

Gene TCGA CGGA

HR (high) Log-rank p HR (high) Log-rank p

CA2 1.232 p < 0.001 1.105 p < 0.001

CNTNAP4 0.864 p < 0.05 0.893 p > 0.05

SLC6A1 0.683 p < 0.001 0.763 p < 0.001

PTEN 0.637 p < 0.001 0.796 p < 0.05

OXTR 1.175 p < 0.001 1.268 p < 0.001
f

Factors with p-values more than 0.05 in TCGA and CGGA cohorts are marked in bold.
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macrophages and CD4 memory resting T cells were significantly

enriched in LGG. Although gliomas were defined as “cold

tumors” with fewer infiltrating immune cells, the proportion

of macrophages in the immune microenvironment of gliomas is

still as high as 30% to 50% (38). It has been reported that high

levels of M2 macrophages (39), neutrophils, and Treg cells in the

TME were closely related to poor prognosis in gliomas.

Conversely, high levels of M1 macrophages and CD8+ T cells

were considered positive factors for gliomas (40). Interestingly,

the Tregs and infiltration of M2 macrophages were associated

with decreased tumor survival (41). These findings indicated

that the patients with high risk were more likely to experience

higher M2 and Treg infiltration resulting in poor outcomes.

Similarly, the infiltrating level, including immune and stromal

scores, was positively associated with the risk score in LGGs.

This association demonstrated that a higher fraction of immune-

inflammatory tumor-infiltrating cells could establish an

immunosuppressive TME in high-risk groups. Hence, to some

degree, consuming the number and activity of infiltrating Tregs

and the repolarization of M2 into M1 macrophages could be the

potential treatments for the LGGs with higher risk scores.

ICPs may inhibit the over-activation of the immune system

and prevent the occurrence of allergic reactions and

autoimmune diseases (42). In gliomas, common ICPs include

PD-1 (43) and PD-L1 (44). Immune checkpoint blockade (ICB)

therapy may block the function of checkpoints and reactivate the

over-suppressed immune system (45).

It has been reported that ICD could stimulate the immune

microenvironment to go from “cold” to “hot” (46). The

expression of ICPs is crucial for ICB therapy and immune

escape (47). Thus, to some extent, the immune checkpoint

inhibitors have become the hotpots of immunotherapy for

tumors (48). Hence, targeting immune checkpoint molecules

(e.g., CTLA-4, PD-L1, and CD47) that provide inhibitory signals

to T cells could significantly improve the survival of patients

with refractory tumors. According to our constructed GSRS, the

expression of vital ICPs (PD-L1, PD-1, and CTLA4) and TMB

was significantly correlated with a risk score, and these indicated

that high-risk gliomas were more likely to be sensitive to ICB

therapy. For the expression level of ICD, there was no significant

difference between the high- and low-risk groups. It is possible

that immune infiltration and ICPs could represent a new

research direction for predicting the effectiveness of ICB

therapy in solid tumors.

When looking for putative mechanisms connected to the

GSRS, we also discovered that the highly enriched terms in high-

risk samples were primarily cancer-associated pathways. It was

found that presynaptic neurons and postsynaptic glioma cells

communicate electrochemically through AMPA receptor-

dependent synapses (12). It was reported that glutamate may

alter glioblastoma malignant progression by stimulating the

epidermal growth factor receptor signaling pathway (49).

There is relatively little literature detailing the implications of
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GABAergic signaling in glioma cells in particular. One available

report suggests that glioma cells express functional GABA A

receptors and that endogenous GABA A receptor activity

reduces glioma proliferation ability (19). Apart from the

aberrant GABAergic and glutamatergic activity in the glioma

microenvironment, the possibilities of inhibiting malignant

progression and moderating cognitive damage from radiation

treatment by targeting myeloid cells have been reported (50, 51).

In summary, in our study, we constructed a novel prognostic

biomarker to predict the role of ICB therapy for LGGs,which could

definitely distinguish the immune status and even the malignant

degree of glioma.However, the fact cannot be ignored that there are

some limitations to applying just a single DEG to predict glioma

prognosis, due to the heterogeneous character of this tumor type

(49). Similarly, there are still difficulties in distinguishing subtypes

of glioma by molecular schedules and classical biotyping methods

(52). Additionally, glioma-related electrophysiological research is

in the early stages, and more multicenter, prospective, and well-

designed trials are greatly needed.
Conclusions

We constructed and validated a GSRS that included five

GSRGs for predicting the prognosis of LGGs. Moreover, by

combining immune profiles with genetic multi-omics assays, the

GSRS displayed its special abilities for clarifying the mechanisms

of the prognosis in LGGs.
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