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Abstract 

Tumor cells often switch from mitochondrial oxidative metabolism to glycolytic metabolism even under aerobic conditions. Tumor 
cell glycolysis is accompanied by several nonenzymatic activities among which induction of drug resistance has important therapeutic 
implications. In this article, we review the main aspects of glycolysis-induced drug resistance. We discuss the classes of antitumor drugs 
that are affected and the components of the glycolytic pathway (transporters, enzymes, metabolites) that are involved in the induction 

of drug resistance. Glycolysis-associated drug resistance occurs in response to stimuli, either cell-autonomous (e.g., oncoproteins) or 
deriving from the tumor microenvironment (e.g., hypoxia or pseudohypoxia, mechanical cues, etc.). Several mechanisms mediate 
the induction of drug resistance in response to glycolytic metabolism: inhibition of apoptosis, induction of epithelial-mesenchymal 
transition, induction of autophagy, inhibition of drug influx and increase of drug efflux. We suggest that drug resistance in response 
to glycolysis comes into play in presence of qualitative (e.g., expression of embryonic enzyme isoforms, post-translational enzyme 
modifications) or quantitative (e.g., overexpression of enzymes or overproduction of metabolites) alterations of glycolytic metabolism. 
We also discern similarities between changes occurring in tumor cells in response to stimuli inducing glycolysis-associated drug 
resistance and those occurring in cells of the innate immune system in response to danger signals and that have been referred to 

as danger-associated metabolic modifications. Eventually, we briefly address that also mitochondrial oxidative metabolism may induce 
drug resistance and discuss the therapeutic implications deriving from the fact that the main energy-generating metabolic pathways 
may be both at the origin of antitumor drug resistance. 
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Reprogramming of metabolism is now considered one of the hallmarks 
f cancer [1] . While most normal cells rely mainly on mitochondrial 
xidative metabolism for energy generation under the form of adenosine 
riphosphate (ATP), tumor cells often switch to the much less efficient 
lycolytic metabolism ( Fig. 1 ), even under oxygen-sufficient conditions, a 
henomenon referred to as aerobic glycolysis or the Warburg effect [2 , 3] .
n fact, the end product of glycolysis under anaerobic conditions is lactate. 
nder aerobic conditions, the penultimate metabolite, pyruvate, is normally 

edirected towards the citric acid cycle and oxidative metabolism upon 
ransformation into acetyl-CoA. Alternatively, pyruvate is metabolized to 
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Fig. 1. Glycolytic metabolism . Enzymes and metabolites are depicted as well as some of the pathways that branch off from glycolysis and are discussed in the 
text. ENO, enolase; FBPA, fructose-biphosphate aldolase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GPI, glucose 6-phosphate isomerase; HK, 
hexokinase; LDH, lactate dehydrogenase; NADPH, nicotinamide adenine dinucleotide phosphate reduced; PDH, pyruvate dehydrogenase; PDK, pyruvate 
dehydrogenase kinase; PFK, phosphofructo-2-kinase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate mutase; PK, pyruvate kinase; PPP, pentose 
phosphate pathway; TPI, triosephosphate isomerase. 
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lactate also under aerobic conditions, thereby conforming to the Warburg
effect. 

The switch from oxidative metabolism toward glycolysis, however, does
not occur necessarily in the entire tumor cell population but, rather, it
may be about a fraction of tumor cells [4] . In fact, lactate-producing
tumor cells relying on aerobic glycolysis for energy generation may coexist
with nonlactate producing tumor cells relying on oxidative metabolism
[5] . Moreover, the latter cells can internalize and utilize lactate and fuel
it into the citric acid cycle and oxidative phosphorylation (OXPHOS)
[6] . Vice versa, tumor cells can also switch back from aerobic glycolysis
to mitochondrial oxidative metabolism at low glucose concentrations, as
has been demonstrated with some glycolytic glioblastoma cell lines [7] .
Eventually, it has also been proposed that individual tumor cells can exist
in a hybrid metabolic state in which both aerobic glycolysis and OXPHOS
are used [8] . 

As to why tumor cells use glycolysis for energy generation even under
oxygen-sufficient conditions, 3 main reasons have been identified. First, to
facilitate the generation and incorporation of biomass precursors through the
fueling of glycolytic intermediates into the pentose phosphate pathway (PPP).
These precursors are required for rapidly proliferating tumor cells [9] . Second,
the rate of glycolysis is much faster than that of OXPHOS [10 , 11] . This may
be particularly advantageous in situations where a sudden increase of energy
demand occurs, like in tumor cells undergoing an epithelial-mesenchymal
transition (EMT) [12 , 13] . Third, using glycolytic metabolism tumor cells are
passively and actively protected against oxidative stress. Passively, because this
allows to avoid OXPHOS, a major cellular source of reactive oxygen species
ROS) [9] . Actively, because fueling of intermediates into the PPP leads
o the generation of nicotinamide adenine dinucleotide phosphate reduced 
NADPH) which gives rise to the reduced form of glutathione, a compound
hat protects cells from ROS-induced damage [14] . 

To the extent that our understanding of the role of glycolysis in tumor
ell biology and metabolism increased, it was realized that glycolysis was
ssociated with drug resistance in tumor cells, and that there was even a
ausal relationship between glycolysis and drug resistance. In this review, we
ummarize current knowledge in this field. We will first address the classes
f antitumor drugs that are involved in glycolysis-induced drug resistance,
hen we will discuss the components (transporters, enzymes, or metabolites)
f glycolytic metabolism that induce drug resistance, the mechanisms that
ave been found to underlie such resistance and, eventually, we will try to
ut forward some possible reasons as to how and why an energy-generating
etabolic pathway may induce drug resistance. 

lasses of antitumor drugs that are associated 

ith glycolysis-induced resistance 

Strikingly, many different classes of antitumor drugs have been found
eing associated with glycolysis-induced resistance: a large number of 
ifferent chemotherapeutics [15–23] , large molecule therapeutics like 
onoclonal antibodies (mAb) targeting a variety of different antigens, 

ncluding immune checkpoint inhibitors [1 , 24–31] , hormone antagonists
1 , 32] , targeted, small molecule therapeutics like tyrosine kinase inhibitors
TKI) [1 , 33–36] , glucocorticoids [1 , 37] , and ionizing radiation [1 , 38] .
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While the mechanisms underlying glycolysis-induced drug resistance will
be discussed in a later section, it can be anticipated that the broad range
of therapeutic agents associated with glycolysis-induced resistance, spanning
from small molecule drugs to large-sized molecules like mAbs, likely involves
different mechanisms that may vary according to the different classes of
molecules. 

Glycolysis-induced drug resistance has been investigated by a variety of
different approaches. Thus, glycolysis and glycolytic enzymes or metabolites
have been studied in isogenic, drug-sensitive and drug resistant cell lines
[15 , 17 , 22 , 23 , 33 , 36] . Alternatively, cell lines with intrinsic or acquired drug
resistance have been used [34 , 35 , 37 , 38] , as well as cell lines before or
after overexpression or down-regulation of a glycolytic enzyme [15 , 16 , 20] .
Also in vivo experiments in mice have been performed for this purpose
as, for example, with immune checkpoint inhibitors in mice lacking or
overexpressing a glycolytic enzyme [27] , or with an inhibitor of a glycolytic
enzyme or metabolite in order to resensitize mice to a given drug [29 , 31] . In
several cases these observations were accompanied by the demonstration of
overexpression of the investigated enzyme or metabolite in patient-derived,
drug-resistant tumor tissues [16 , 17] . 

Elements of glycolytic metabolism involved in the
induction of drug resistance 

Glycolysis is a complex chain of enzymatic reactions that encompasses
transporters that internalize glucose into cells as well as several enzymes
and metabolites, and many of these players have been shown being
involved in the induction of drug resistance. As regards glucose transporters,
glucose transporter (GLUT) 1, GLUT3, GLUT4, and GLUT5 have been
reported to induce antitumor drug resistance [39–43] . As to glycolytic
enzymes, hexokinase (HK) [23 , 44–46] , 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase (PFKFB) [34 , 47–50] , fructose biphosphate aldolase
(ALDO) [51 , 52] , glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
[1 , 37] , phosphoglycerate kinase (PGK) [53 , 54] , enolase (ENO) [1 , 20 , 55–
57] , pyruvate kinase (PK) [4 , 15 , 58–62] , and lactate dehydrogenase (LDH)
[1 , 22 , 27 , 29 , 31 , 63–67] , have all been shown being involved in the induction
of antitumor drug resistance. 

An important question that arises at this point is whether drug resistance
is induced either directly by one of these elements, whether transporters,
enzymes or metabolites, or indirectly, through an overall enhancement of
the glycolytic metabolism in tumor cells induced, for example, by the
upregulation of one of the enzymes listed above. In fact, both situations
can occur. First, the upregulation of an individual enzyme has been shown
to induce an overall elevation of the glycolytic metabolism and it is this
elevation that is at the origin of the drug resistance through mechanisms that
will be discussed later [16 , 33 , 45 , 49] . Second, it is an individual element of
the metabolic pathway that is directly responsible for the induction of drug
resistance, whether or not this may be accompanied by an overall elevation of
glycolytic metabolism [44 , 46 , 48 , 51 , 54] . The latter situation occurs because
glycolytic enzymes are also endowed with nonenzymatic activities and these
nonenzymatic activities are actually those responsible for the induction of
drug resistance [44 , 51 , 54 , 55] . The direct involvement of such nonenzymatic
activities has been documented in different ways. Thus, the post-translational
modification of a glycolytic enzyme was shown to be directly responsible for
the induction of different nonenzymatic activities, including chemoresistance
[44] and inhibition of such a post-translational modification abrogated the
induction of drug resistance [46] , induction of drug resistance depended
on the noncytoplasmic (nuclear) localization of a glycolytic enzyme [48] ,
mutant forms of a glycolytic enzyme that had lost their enzymatic activity
still induced drug resistance [51] , and a glycolytic enzyme interacted with
proteins unrelated to glycolytic metabolism in order to induce drug resistance
[54 , 55] . 
Another important point regarding glycolysis-induced drug resistance in 
umor cells is that several of the glycolytic enzymes expressed in tumor cells
nd involved in the induction of drug resistance are particular isoforms 
e.g., HK isoform 2 [HK2], PFKFB isoform 3 [PFKFB], ALDO isoform A 

ALDOA], PGK isoform 1 [PGK1], ENO isoform 1 [ENO1], LDH isoform 

 [LDHA]) [44 , 47 , 51 , 53 , 56 , 63] and some of these isoforms are expressed
n normal cells only during embryonic development [9] . In some cases, 
unctional differences between isoforms expressed preferentially by normal 
dult cells and those expressed by tumor cells have been described. A very
nteresting case is the PK isoform M2 (PKM2). PKM2 is normally expressed 
nly in embryonic cells and becomes re-expressed and overexpressed in tumor 
ells [68] . PKM2 exists in a tetrameric form that has high enzymatic activity
nd a low-activity dimeric form [68] , which is the prevalent form in tumor
ells. The switch between the tetrameric and dimeric form is promoted 
y phosphorylation at Tyr 105 [69] . Due to its low enzymatic activity, 
imeric PKM2 promotes the shunt of upstream accumulating glucose 6- 
hosphate into the PPP, thereby favoring generation of biomass precursors 
nd antioxidant molecules over ATP. In addition, PKM2 has other activities 
nrelated to its role in glycolytic metabolism, such as serving as a cytosolic
eceptor for thyroid hormone and activities that are the consequence of its 
ntrance into the nucleus, where it acts as a protein kinase and is involved in
he epigenetic regulation of gene transcription [70] . 

In addition to enzymes that are directly involved in glycolytic metabolism, 
ome other enzymes that have indirect effects on glycolysis have also 
een associated with drug resistance. Thus, the pyruvate dehydrogenase 
PDH) complex decarboxylates pyruvate to acetyl-CoA, which enters the 
itric acid cycle in mitochondria and eventually fuels OXPHOS. Pyruvate 
ehydrogenase kinase (PDK) phosphorylates one of the subunits of PDH 

nd inactivates it. Consequently, inhibition of PDH or overexpression of 
DK are expected to promote glycolysis and, in accordance with what has 
een observed with enzymes directly involved in glycolysis, to induce drug 
esistance. In fact, PDH inhibition [71 , 72] as well as PDK overexpression
73–77] have been found to induce antitumor drug resistance. 

As regards glycolytic metabolites, pyruvate [1 , 32 , 78 , 79] and lactate
1 , 27 , 80–84] , and ATP itself [85] have been associated with drug resistance.
hese are other examples of elements of the glycolytic metabolism that 

re directly involved in drug resistance beyond their role in the metabolic 
athway. Moreover, extracellularly released lactate leads to acidification of 
he tumor microenvironment (TME) because of the contemporary release 
f stoichiometric amounts of H 

+ ions [86] . Acidosis of the TME is also
esponsible for the induction of resistance to antitumor drugs [87 , 88] . 

While most of the evidence brought so far bears on tumor cell- 
utonomous forms of glycolysis-associated drug resistance, some work 
uggests also that aerobic glycolysis may occur in tumor accessory cells and 
he end-product, lactate, may then induce drug resistance in tumor cells. In 
his form of symbiotic relationship aerobic glycolysis is induced in cancer- 
ssociated fibroblasts (CAF). Lactate then feeds mitochondrial oxidative 
etabolism in tumor cells, thereby conferring drug resistance [1 , 25 , 32 , 89] .
his effect is commonly referred to as the “reverse Warburg effect” [90] . 

mportantly, in this setting, it is actually the mitochondrial activity which 
tilizes lactate as fuel for ATP generation and induction of drug resistance. In
act, as we will see in the final part of this article, also mitochondrial oxidative
etabolism can be involved in the induction of drug resistance and we will

iscuss possible commonalities between glycolysis- and oxidative metabolism- 
ssociated drug resistance. 

timuli promoting glycolysis-induced drug 

esistance 

Glycolysis-induced drug resistance in tumor cells has been reported 
o occur either in response to stimuli from the TME or to tumor cell-
utonomous stimuli ( Fig. 2 ). As regards stimuli deriving from the TME,
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Fig. 2. Stimuli promoting glycolysis-induced drug resistance. Cell-autonomous stimuli or stimuli from the TME induce tumor cells to undergo a 
switch from mitochondrial oxidative metabolism towards glycolytic metabolism. When this switch is accompanied by «qualitative» (e.g., expression of 
embryonic isoforms, post-translational modifications) or «quantitative» (overexpression of enzymes or overproduction of metabolites) changes, drug resistance 
and, possibly, other nonenzymatic activities are induced in the affected cell(s). LncmRNA, long noncoding RNA; miRNA, microRNA; TME, tumor 
microenvironment. 
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one class is represented by antitumor drugs such as chemotherapeutics
[18 , 49 , 73 , 91] , TKIs [47 , 82 , 92] , or ionizing radiation [59] . In other words,
the same drugs that induce tumor cell glycolysis are also victims of glycolysis-
induced drug resistance. Similarly, also mechanical cues [93] and hypoxia
or pseudohypoxia [56 , 94] can promote glycolysis-induced drug resistance.
As regards cell-autonomous stimuli, oncoproteins, whether mutated
or overexpressed [39 , 47 , 95–102] , tumor-associated immune checkpoint
molecules [45] and long noncoding (lnc) RNAs/micro (mi) RNAs [16] are
examples of stimuli that induce glycolysis-associated drug resistance. 

Many of these stimuli lead, directly or indirectly, to the activation of
transcription factors that induce the expression of genes encoding glycolytic
enzymes. In this regard, the phosphoinositide 3-kinase (PI3K)-AKT-
mechanistic target of rapamycin (mTOR) signaling pathway [98 , 103 , 104]
as well as the transcription factors hypoxia-inducible factor (HIF)-1 α and
c-Myc [67 , 94 , 96 , 105] play a prominent, but not exclusive [106] role. 

Glycolysis-induced drug resistance and EMT: A 

close relationship 

In the previous sections, we have addressed the association of glycolysis
and its individual components with the induction of resistance towards
different drug classes. At this point, one is led to ask whether a
predominantly glycolytic metabolism is associated with other changes
in tumor cells. The answer is yes and, in general, the changes that
occur are characteristic of increased tumor aggressiveness. Thus, glycolytic
metabolism in general [107 , 108] as well as individual glycolytic enzymes
or metabolites are associated with increased tumor cell proliferation
and tumor growth [9 , 19 , 50 , 54 , 55 , 87 , 97 , 109] , invasion and metastasis
[19 , 39 , 54 , 55 , 72 , 74 , 97 , 109 , 110] and generation of cancer stem-like cells
[4 , 44 , 59 , 74 , 111 , 112] . Of note, these biological effects as well as the
induction of drug resistance are hallmarks of tumor cells undergoing an
EMT [9 , 113–115] . Moreover, tumor cell EMT is induced, by and large,
by stimuli similar to those previously discussed that induce upregulation of
glycolysis and glycolysis-associated drug resistance [12] . On these bases, it is
not surprising to note that glycolysis is now recognized as a hallmark of tumor
cell EMT [116 , 117] . 
Whether glycolysis and glycolysis-associated drug resistance can occur in 
he absence of other traits characteristic of tumor cell EMT is a difficult
uestion to answer. In fact, to the best of our knowledge, no dedicated
tudies have been published on this issue. Moreover, tumor cell EMT
s a heterogeneous process that can encompass different stages, from a
ully epithelial to a fully mesenchymal phenotype [9 , 113–115 , 118–120] .
herefore, even the observation of glycolysis-associated drug resistance of 

umor cells in the absence of other EMT markers may reflect a “partial” EMT.

echanisms underlying glycolysis-induced drug 

esistance 

Given that glucose transporters, glycolytic enzymes and metabolites can 
nduce resistance toward a large number of antitumor drugs, one wants to
now which are the mechanism(s) that underlie such resistance. On the basis
f the studies that have been published on this issue, the following can be
dentified ( Fig. 3 ). 

First, and not surprisingly, antiapoptotic effects. In fact, apoptosis is
he main mechanism for tumor cell death in response to antitumor drugs
nd, therefore, a molecule that induces drug resistance is expected to
ave antiapoptotic effects. Antiapoptotic effects have been demonstrated for 
lycolytic metabolism in general [49 , 98 , 112] and for individual components
f it: enzymes like HK2 [16] , PFKFB3 [49] , PFK platelet type P (PFKP)
121] , ENO1 [56 , 95] , PKM2 [18 , 59 , 94 , 109 , 122] , LDHA [123] , PDK
soform 1 (PDK1) [73 , 124] , metabolites like pyruvate [78] , lactate and
actate-induced acidosis [87] . Antiapoptotic effects are achieved in several
ays. The first is DNA damage repair (DDR) [125] . DDR allows cells to

void accumulation of DNA damages to a point that may lead to activation
f mechanisms promoting the demise of the cell(s) [126] . Induction of
DR has been demonstrated for PGK1 [54] , PFKFB3 [48] , GLUT1 [41] ,

nd lactate [83] . The molecular mechanisms whereby DDR is promoted,
owever, may not be the same for all of these molecules. Thus, PGK1
as been shown to promote DDR through upregulation of DDR-related
roteins and methylation-related enzymes [54] . PFKFB3, on the other hand,
romotes localization of DNA damage and homologous recombination 
roteins to nuclear foci induced by ionizing radiation [48] . GLUT1 induces
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Fig. 3. Mechanisms underlying glycolysis-induced drug resistance. Four basic mechanisms underlying glycolysis-induced drug resistance are depicted: 
inhibition of apoptosis, induction of EMT, induction of autophagy, inhibition of drug influx and enhancement of drug efflux. Apoptosis can be inhibited 
through different mechanisms: repair of DNA damage, prevention of DNA damage, inhibition of components of the apoptotic machinery. EMT, epithelial- 
mesenchymal transition. 
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DDR indirectly, through chromatin remodeling [41] . Similarly, lactate
induces a transcriptionally permissive chromatin conformational state leading
to overexpression of proteins involved in the repair of DNA double-
strand breaks [83] . Elevated glycolysis following ionizing radiation promotes
DDR by activating both non-homologous end joining and homologous
recombination pathways of repair leading to reduced cytogenetic damage
[38] . Elevation of ALDOA upregulates glycolysis and the PPP and this
leads to increased nucleotide metabolism which protects breast cancer cells
from chemotherapeutic-induced DNA damage [52] . Avoidance of the DNA
damaging effects of free radicals is another way glycolysis inhibits apoptosis
and promotes drug resistance [56 , 73] . In fact, the prevalence of glycolysis
over OXPHOS entails, per se, an antiapoptotic effect. This is because, as
already mentioned, OXPHOS is accompanied by substantial generation of
ROS which may lead to DNA damage and, eventually, when exceeding
a certain threshold, induce cell death [127] . Moreover, when glycolytic
intermediates enter the PPP, NAPDH is generated which, in turn, promotes
the generation of the reduced form of glutathione and thioredoxin, both
of which can scavenge ROS [108] . A related, but different mechanism has
been demonstrated for pyruvate. Its antiapoptotic effect is due to its ability
to directly scavenge free radicals [78 , 128] . A ROS-scavenging activity has
also been reported for PGK1 and shown to promote drug resistance [129] .
Glycolysis may inhibit apoptosis also by directly impacting on individual
components of the apoptotic machinery. Thus, glycolysis was found to cause
overexpression of the antiapoptotic molecule myeloid cell leukemia-1 (Mcl-
1) [130] , while PKM2 causes overexpression of B-cell lymphoma 2 (Bcl-2)
[59] and of B-cell lymphoma extra large (Bcl-xL) [131] . Eventually, HK2 can
inhibit mitochondrial apoptosis by direct insertion in the outer mitochondrial
membrane and inhibition of cytochrome c release upon interaction with the
voltage-dependent anion channel [132] . 

A second mechanism underlying glycolysis-induced drug resistance is
through the induction of EMT. We have already addressed the close
relationship between glycolysis and glycolysis-induced drug resistance on
one hand, and EMT on the other hand [116 , 117] . Important, in the
present context, is the finding showing that glycolysis can induce EMT and,
consequently, a drug-resistant phenotype [133] . 
Autophagy induction is still another mechanism whereby glycolysis can 
romote drug resistance. Autophagy is a catabolic process of self-digestion 
hat provides nutrients to the cell in order to maintain vital cellular functions
uring fasting and other forms of stress, including that induced by antitumor 
rugs [134] . Autophagy confers tumor cell resistance toward different classes 
f antitumor drugs [135–139] . Glycolytic metabolism can induce autophagy 
nd, consequently, autophagy-associated drug resistance, in different ways. 
K2, for example, was shown to interact with mTOR and inhibit its 

ctivity in breast cancer MCF-7 cells [140] . mTOR is a negative regulator
f autophagy [134] and lowering its activity by HK2 augments autophagy, 
hereby conferring resistance to the estrogen receptor antagonist tamoxifen. 
DHA promotes autophagy by interacting with and activating Beclin-1, a key 
rotein involved in autophagosome formation, thereby leading to resistance 
owards tamoxifen in breast cancer cells [63] . GAPDH elevates glycolysis 
nd enhances mitophagy (mitochondrial autophagy) in a manner dependent 
n autophagy related (ATG) 5 and these 2 effects cooperate to protect 
ells from caspase-independent cell death [141] . PGK1 induces autophagy 
nd chemoresistance by promoting the formation of the autophagy initiator 
TG5-ATG12 conjugate [142] . 

Eventually, glycolysis-induced drug resistance can also be due to inhibition 
f drug influx or increase of drug efflux. As regards inhibition of drug influx,
he inversed pH gradient that is induced on each side of the plasma membrane
f tumor cells reduces the penetration of weakly basic antitumor drugs (e.g., 
oxorubicin or mitoxantrone) into tumor cells [143] . Acidification of the 
xtracellular milieu may also lower the cytotoxicity of these drugs [144 , 145] .
rug efflux is controlled by the activity of plasma membrane transporter 

roteins. In particular, the ATP-binding cassette (ABC) transporter family of 
ransmembrane proteins promotes the efflux of many structurally unrelated 
hemotherapeutic agents. Out of the 49 members of this protein family, the 
ost intensively investigated are multidrug resistance protein 1 (MDR1, also 

nown as P-glycoprotein and ABCB1), MDR-associated protein 1 (MRP1, 
lso known as ABCC1) and breast cancer resistance protein (BCRP; also 
nown as ABCG2) [146] . Efflux activity of ABC transporters is highly 
ependent on cellular ATP levels [147] . Consequently, the ATP generated 

n tumor cells due to glycolytic metabolism activates ABC transporters and 
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induces drug resistance and, vice versa, glycolysis inhibition inactivates them
and restores drug sensitivity [148 , 149] . Another way whereby glycolysis leads
to enhanced ABC transporter activity is through pyruvate-induced increase
of the expression of MDR1 which was paralleled by an increased efflux
of doxorubicin [79] or oxaliplatin [122] . Eventually, acidification of the
extracellular tumor milieu may increase the activity of efflux pumps with the
consequent ejection of drugs out of the tumor cells [150] . 

We have previously discussed that glycolysis-associated drug resistance
may be induced, either directly by one of the elements of the glycolytic
metabolism or, indirectly, through an overall enhancement of glycolysis. In
this section, we have discussed several cases which fit to one or the other
of the 2 possibilities. Thus, for example, protection from DNA damage
may be the result of a direct, nonenzymatic activity of several glycolytic
enzymes [38 , 41 , 48 , 54] , but also the consequence of an overall enhancement
of glycolysis and PPP leading to increased synthesis of nucleotides that
prevent chemotherapy-induced damage [52] , of reduced generation of ROS
because of the avoidance of OXPHOS or increased scavenging of ROS
through increased generation of NADPH [108] or through a direct ROS-
scavenging activity of glycolytic metabolites [78 , 128] , or of elevated lactate
levels leading to overexpression of proteins involved in DDR [83] . Vice
versa, some glycolytic elements can directly induce the expression of some
antiapoptotic proteins or inhibit apoptosis [131 , 132] , while drug resistance
due to inhibition of drug influx or increased drug efflux is, in most cases, a
consequence of an overall elevation of glycolysis [143–145 , 148–150] . 

When do these mechanisms come into play? 

In the previous section, we have addressed the molecular mechanisms that
are conducive to glycolysis-induced drug resistance. Even more importantly,
however, is to know whether such drug resistance does inevitably occur
whenever glycolytic metabolism is active. We suggest that this is not the case
and that glycolysis-associated drug resistance occurs in tumor cells when one
of the 2 following, nonmutually exclusive conditions are satisfied. 

First, drug resistance may be due to “qualitative” differences between
glycolytic enzymes that are normally expressed and those that are expressed
upon a metabolic switch in tumor cells. Thus, in some experimental systems,
some (e.g., HK2, PKM2, PFKFB3), but not other isoforms of glycolytic
enzymes were able to induce drug resistance [46 , 49 , 60 , 151] . In other
instances, drug resistance was induced upon post-translational modifications
of glycolytic enzymes [46 , 49] . In one case, the post-translational modification
(phosphorylation) resulted in higher glycolytic rates in the absence of any
overexpression of enzymes [35] . Here, we may include also glycolysis-induced
drug resistance resulting from an interaction between a glycolytic enzyme
and another protein involved in oncogenesis. Thus, Yang et al [152] showed
that a glycolytic enzyme (dimeric PKM2) directly interacted with a mutant
epidermal growth factor receptor (EGFR) protein and heat shock protein
90 (HSP90), and by so doing stabilized mutant EGFR by maintaining
its binding with HSP90 and co-chaperones. Mutant EGFR stabilization
promoted resistance toward TKIs. On the other hand, PKM2 silencing
led to reduced mutant EGFR expression and inhibition of tumor growth.
Along similar lines, it was shown that Src inactivated PDH through direct
phosphorylation of Tyr 289 of the PDH E1 α subunit thereby promoting
aerobic glycolysis and therapy resistance on one hand, and inhibition of
mitochondrial respiration and oxidative stress on the other hand [72] . 

Second, although there are exceptions (see [35] ), in many instances,
glycolysis-induced drug resistance occurs upon overexpression of one or
more glucose transporters or glycolytic enzymes [16 , 24 , 51 , 97 , 153] leading
to an overall enhancement of glycolytic metabolism in affected tumor cells.
This suggests that the degree of enhancement of glycolytic metabolism
in a given population of tumor cells may dictate whether glycolysis is
accompanied by drug resistance or not. Thus, only above a certain threshold
concentration, glycolytic enzymes, and/or metabolites would be able to
ctivate the molecular mechanisms leading to drug resistance that have been
escribed in the previous section. 

Overall and on the basis of what we have discussed so far, we suggest
he following model ( Fig. 4 ), which may accommodate most, if not all
vailable data on glycolysis-induced resistance. At the 2 extremes, we find
ituations where quantitative (i.e., overexpression above a certain threshold 
oncentration) or qualitative factors (e.g., expression of an embryonic 
nzyme isoform or a posttranslational modification of a glycolytic enzyme),
espectively, may induce drug resistance in their own right. In most cases,
owever, the 2 variables may contribute each, to a variable degree, to drug
esistance [15 , 51 , 53 , 56 , 97] . In fact, the expression of a particular isoform
f a glycolytic enzyme may be linked to the tumorigenic process per se and
ts overexpression may be the result of intracellular or extracellular stimuli
93–106] . Such overexpression would then represent a sufficient condition
or setting in motion the molecular mechanisms that ultimately lead to drug
esistance. 

re stimuli that induce glycolysis-associated 

rug resistance danger signals? 

In previous sections, we have discussed that glycolysis and glycolysis-
ssociated drug resistance are induced by intracellular (mutated or 
verexpressed proteins) or extracellular stimuli (antitumor drugs, hypoxia, 
echanical cues, etc.). We have also discussed the mechanisms that are

ctivated by glycolytic enzymes or metabolites in order to induce drug
esistance. Antiapoptotic effects, induction of autophagy, induction of EMT, 
nd inhibition of drug influx or enhancement of drug efflux were identified
s the main mechanisms. 

The signals that induce glycolytic metabolism in tumor cells, whether
ntracellular or extracellular, can be considered danger signals that induce
ellular modifications allowing to avoid harmful consequences like those 
nduced by antitumor drugs. The concept of danger signals inducing
ellular responses was introduced in order to explain stimulus-induced 
hanges observed in cells of the innate immune system [154] . Innate
mmune responses against pathogens are initiated upon recognition of specific
omponents of microorganisms by pattern-recognition receptors (PRR). 
ecognition and binding then trigger responses aimed at eliminating the

nvading pathogens [155] . Moreover, an increasing number of endogenous
olecules, termed damage-associated molecular patterns are now recognized 

eing able to interact with PRRs and other, non-PRRs [156] , thereby causing
 sterile inflammatory response aimed at repairing and regenerating damaged 
issues [156] . While damage-associated molecular patterns are involved in
he recognition of molecules which, typically, are released from damaged 
ells, the more inclusive term danger-associated molecular pattern has been
oined to include also signals which, while not necessarily being released
rom damaged cells, alert cells in view of harmful consequences of these
ignals [156] . Importantly, it has also been proposed that metabolic changes
n macrophages might function as mediators of danger signals leading to
he activation of inflammasomes, a class of PRR, in response to invading
acteria. These modifications have been called danger-associated metabolic 
odifications [157] . We propose that a similar situation may exist in

umor cells, that is, intracellular or extracellular stimuli/danger signals induce
anger-associated metabolic modifications in tumor cells such as an altered
lycolytic metabolism displaying qualitative (e.g., expression of embryonic 
nzyme isoforms or posttranslational modifications) [35 , 46 , 49 , 60 , 151 , 152]
r quantitative changes (overexpression of enzymes or overproduction 
f metabolites) [16 , 24 , 51 , 97 , 153] that activate molecular mechanisms
discussed under section "Mechanisms underlying glycolysis-induced drug 
esistance") which eventually lead to drug resistance. While such a model
ests on an apparent symmetry between tumor cells and innate immune cells,
nown target molecules of glycolytic enzymes or metabolites that are involved
n the induction drug resistance in tumor cells cannot be classified as PRR or
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Fig. 4. Model to explain the occurrence of glycolysis-induced drug resistance. Qualitative changes (e.g., expression of an embryonic enzyme isoform or a 
post-translational modification of a glycolytic enzyme) or quantitative changes (i.e., overexpression of an enzyme or overproduction of a metabolite above a 
certain threshold concentration) in glycolytic metabolism may induce drug resistance in their own right (extreme left or extreme right of the image) but, in 
most cases, the 2 variables may contribute each, to a variable degree, to drug resistance. 
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non-PRR, as currently defined [156] . However, it is interesting to note that
some products of glycolytic metabolism, like lactate and acidosis [158 , 159] ,
and ATP itself [160] have been shown to interact with a classical PRR like the
NLRP3 inflammasome [160] . These observations suggest the possibility that
these interactions might be involved in changes related to drug resistance. 

Finally, as already mentioned in this article, drug resistance is but
one of the numerous nonenzymatic activities induced by glycolysis (for a
review, see [161] ). The relationship of these activities with the induction
of drug resistance is unclear. Nevertheless, it is reasonable to assume that
the molecular mechanisms that have been discussed inducing glycolysis-
associated drug resistance may be involved in at least part of the other
nonenzymatic activities of glycolytic metabolism. For this reason, the model
that we have just proposed leading to glycolysis-associated drug resistance
may apply also to other, nonmetabolic effects associated with glycolysis. 

Conclusions and perspectives—From glycolysis- 
to OXPHOS-associated drug resistance: Are there 

commonalities? 

In this article, we have reviewed the basic issues of glycolysis-induced drug
resistance. We have also proposed a model whereby glycolysis-associated drug
resistance is induced in response to an altered glycolytic metabolism. 

An important aspect that remains to be addressed in future work is the
relationship between glycolysis- and mitochondrial oxidative metabolism-
associated drug resistance. In fact, over the years, the view that aerobic
glycolysis is the main energy source for tumor cells has been considerably
mitigated. We have already mentioned in the initial section of this article
that glycolytic and oxidative metabolism can prevail over the other between
tumors and within tumors and they can even coexist in a symbiotic
relationship between tumor cells and accessory cells or between different
tumor cells [4–8] . Similarly, also drug resistance has been found being
associated not only with glycolytic metabolism, but also with oxidative
metabolism (reviewed in [108] ). 

Thus, for example, cisplatin-resistant lung cancer and ovarian cells have
been shown to rely on increased OXPHOS for energy generation, and
such increase was accompanied by decreased glycolytic activity, and higher
dependence on glutamine and fatty acid oxidation for feeding the citric acid
ycle in these cells [162 , 163] . The causal relationship between enhanced
XPHOS and cisplatin resistance was inferred from the observation that 

nhibition of glutaminase and fatty acid synthase allowed to recover sensitivity 
o cisplatin by ovarian cancer cells in which glutamine and β-oxidation fuel 
he citric acid cycle and OXPHOS [164 , 165] . A similar situation has been
escribed for melanoma cells expressing mutant BRAF and which became 
esistant toward BRAF inhibitors. These cells showed increased OXPHOS 
nd, not surprisingly, higher levels of ROS [166 , 167] . Inhibiting OXPHOS
irectly or indirectly by inhibiting glutaminase enhanced the antitumor 
ctivity of the BRAF inhibitor, again suggesting a causal role of OXPHOS 
n the induction of drug resistance [166 , 168] . Mechanistically, it has been
roposed that glutamine-fueled OXPHOS represents an essential source of 
nergy for the proliferation of drug-resistant tumor cells and, accordingly, 
lockade of OXPHOS with an inhibitor of complex I of the electron transport
hain overcame the drug resistance [169] . Very recently, it has been shown
hat OXPHOS blockade through complex I inhibition leads to inhibition of 
he autophagic process that was induced by drug treatment and led to tumor
ell survival and drug resistance [170] . 

For the future, it will be of obvious interest to know whether the
onditions leading to OXPHOS-associated drug resistance are similar 
r dissimilar to those that underlie glycolysis-associated drug resistance. 
 quantitatively or qualitatively dysregulated mitochondrial oxidative 
etabolism as precondition for the induction of drug resistance would appear 

ven more important than for glycolysis because of its almost ubiquitous 
unctioning throughout organs and tissues under normal circumstances. 
ence, if oxidative metabolism would be always accompanied by drug 

esistance, then most living cells should be, ab initio, drug resistant. 
This knowledge is of considerable interest also as regards therapeutic 

mplications. In fact, the coexistence of glycolysis- and oxidative metabolism- 
nduced drug resistance suggests that it may not be sufficient to block one of
he 2 in order to circumvent metabolically induced drug resistance. Arguably, 
ne should act on both of these 2 main branches of the metabolism with
he obvious possibility that such a regimen may be accompanied by an 
nacceptable side effect profile. For this reason, a more detailed knowledge 
f the stimuli, conditions, and mechanisms that underlie these 2 forms of 
rug resistance is required in order to tailor therapeutic interventions that are 
fficacious while not being burdened by unacceptable toxicity. 
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