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Long regarded as “junk DNA,” transposable elements (TEs) have recently garnered much
attention for their role in promoting genetic diversity and plasticity. While many processes
involved in mammalian development require TE activity, deleterious TE insertions are a
hallmark of several psychiatric disorders. Moreover, stressful events including exposure to
gestational infection and trauma, are major risk factors for developing psychiatric illnesses.
Here, we will provide evidence demonstrating the intersection of stressful events, atypical
TE expression, and their epigenetic regulation, which may explain how neuropsychiatric
phenotypes manifest. In this way, TEs may be the “bridge” between environmental
perturbations and psychopathology.
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TRANSPOSABLE ELEMENTS: AN OVERVIEW

Transposable elements (TEs) are “selfish” sequences of DNA that replicate themselves across the
genome. Barbara McClintock published the first account of TEs in 1950 after observing consistent
breakages at certain loci in maize which had the ability to “transpose” and insert themselves into
different positions along the genome. Interestingly, the loci also had a regulatory effect on the genes
surrounding the new position; the expression of the adjacent genes was often lowered or even
eliminated after these insertions. These were termed “mutable loci” or “controlling elements” are
now classified as DNA transposons, which are one of the two major types of TEs. DNA transposons
excise themselves from their position in the genome and mobilize to a different position via a “cut
and paste”mechanism (McClintock, 1950; Muñoz-López and García-Pérez, 2010; Fischer and Suttle,
2011; Kalendar et al., 2011). The other class of TEs, retrotransposons, are more active in the brain
than in any other human tissue (Reilly et al., 2013; Hunter, 2020). These elements mobilize around
the genome via a “copy and paste” mechanism duplicating in the genome through its transcription
into RNA, reverse transcription into cDNA, and insertion of the new DNA intermediate (Kalendar
et al., 2010; Alzohairy et al., 2014). While all TEs constitute at least 45% of the human genome
(Lander et al., 2001) DNA transposons are not active in humans (Pace and Feschotte, 2007), and will
not be discussed in this review.

Retrotransposons can be further classified as Long Interspersed Nuclear Elements (LINEs), Short
Interspersed Nuclear Elements (SINEs), andHuman Endogenous Retroviruses (HERVs). HERVs are
the remnants of ancient exogenous retroviral infections and make up roughly 8% of the human
genome (Bock and Stoye, 2000; International Human GenomeMapping Consortium, 2001). HERVs
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have a basic genetic structure of about 9.5 kb in length, 2 long
terminal repeats (LTRs), and four essential viral genes: gag, pro,
pol, and env (Shin et al., 2013). In this way, HERV structure
resembles that of modern endogenous retroviruses such as HIV
(Yang et al., 1999). Most HERVs have mostly been silenced by
mutations and deletions accumulated over millions of years,
preventing full length transcription (Lander et al., 2001).

Some families of HERVs however, remain transcriptionally
active in the human genome and may be involved in cellular
function and disease susceptibility (Boller et al., 1993; Andersson
et al., 2002) which will be discussed in later sections.

Despite McClintock’s discovery, TEs were long thought of as
“junk”DNA (Orgel and Crick, 1980). However, TEs can act as cis-
regulatory elements, such as transcription factor binding sites,
that serve as enhancers and promoters ultimately affecting the

transcription of eukaryotic genes (van de Lagemaat et al., 2003;
Trizzino et al., 2017; Pontis et al., 2019). In addition to behaving
as cis-regulatory elements, TE insertions can also promote
alternative splicing or exonization which leads to the changing
or prevention of transcription (Mersch et al., 2007; Abascal et al.,
2015). We have argued that TE’s represent a substantial source of
regulatory non-coding RNA, permitting greater adaptive capacity
both to individual organisms and to populations as the evolve
(Hunter et al., 2013; Hunter et al., 2015; Hunter, 2020). This
adaptive capacity can go wrong of course, contributing to risk for
a number of neurological and psychiatric disorders (See Table 1;
Reilly et al., 2013; Daskalakis et al., 2018).

LINEs and SINEs can be distinguished from HERVs based on
their lack of LTRs. LINEs in particular are the most prevalent in
humans and activity of LINE-1 constitutes most of the

TABLE 1 | Summary of TE effects organized by disorder.

Disorder Authors Model Role of TEs

Schizophrenia Basil et al. (2014) Mice ↓ methylation of LINE-1 and Mecp2 in hypothalamus after MIA
Bundo et al. (2014) Human, Primate,

Mice
↑ LINE-1 in prefrontal cortex of humans with schizophrenia, ↑ LINE-1 in macaque and mouse brain
after MIA

Guffanti et al. (2016) Human Non-reference TE insertions associated with pathogenesis of schizophrenia
Guffanti et al. (2018) Human, Primate, Rat Differential expression of TEs in the dorsolateral prefrontal cortex of patients with schizophrenia
Huang et al. (2006) Human ↑ HERV pol expression in blood of patients with recent-onset schizophrenia
Huang et al. (2011) Human ↑ BDNF by HERV-W env
Johansson et al. (2020) Rat HERV-W env interferes with glutamatergic synapse development in the hippocampus
Karlsson et al. (2001) Human ↑ HERV-W RNA homologs in frontal cortices of patients with schizophrenia
Karlsson et al. (2004) Human ↑ HERV-W gag sequences in plasma of patients with recent-onset schizophrenia
Melbourne et al. (2018) Human ↑ HERV-W env and gag after pro-inflammatory treatment in monocytes
Nellåker et al. (2006) Human ↑ HERV-W elements after viral infection
Núñez Estevez et al. (2020) Rat ↑ Mecp2 in placenta, ↓ Mecp2 in hypothalamus of females after MIA
Page et al. (2021) Primate ↓ TE regulators PIWIL2 and MGARP in DLPFC and ACC after MIA
Tamouza et al. (2021) Human ↑ HERV-W env in serum of patients with schizophrenia
Yolken et al. (2000) Human ↑ HERV-W expression in frontal cortex of patients with schizophrenia

ASD Balestrieri et al. (2012) Human ↑ HERV-H and ↓ HERV-W expression in peripheral blood mononuclear cells (PBMCs) of patients
with ASD

Balestrieri et al. (2016) Human ↑ HERV-H, ↓ HERV-W, and HERV-K expression in PBMCs of patients with ASD
Casanova et al. (2019) Human ↑ TE number/density associated with ASD-related genes
Cipriani et al. (2018) Mice ↑ ERV & proinflammatory cytokines in embryo, blood, and brain of BTBR mice
Matsumura et al. (2020) Mice POGZ mutation results in ASD-like phenotype
Muotri et al. (2010) Mice ↑ neuronal LINE-1 retrotransposition resulting from epigenetic MeCP2 mutations
Shpyleva et al. (2017) Human ↑ LINE-1 and ↓ H3K9me3 expression in cerebellum of individuals with ASD
Wen et al. (2017) Human MeCP2 mutations associated with ASD
Williams et al. (2013) Human ↑ TE association with ASD-related genes

PTSD Bartlett et al. (2021) Rat ↓ H3K9me3 at B2 SINE loci leads to ↑ B2 SINE mobilization in response to acute corticosterone
injection

Cecco et al. (2019) Mice ↑ inflammatory type-I interferon response as a result of ↑ LINE-1 expression due to senescence
Elenkov and Chrousos
(1999)

Human ↑ type 1 cytokine and ↓ type 2 cytokine secretion by glucocorticoids

Hunter et al. (2012) Rat ↑ H3K9me3 levels at ERV/LTR TE loci in hippocampus after stress
Jones et al. (2015) Rat Administration of IL-1 antagonist inhibited development of stress-enhanced fear learning
Lambert et al. (2020) Rat B2 SINE RNA levels in rat hippocampus correlate with stress coping strategies in a sex-specific

manner
Liu et al. (2016) Rat ↑ malondialdehyde, IL-6, NOX2, & 4-hydroxynonenal after single prolonged stress
Ponomarev et al. (2010) Rat ↑ LINE-1 expression in amygdala after stress-induced learning
Rusiecki et al. (2012) Human Individuals with PTSD had hypermethylated Alu before traumatic event and hypomethylated LINE-1

after
Shintani et al. (1995) Rat ↑ proinflammatory marker cytokine interleukin-1 after acute stress
Thomas et al. (2017) Human ↑ LINE-1 expression can lead to neuroinflammation

Mood Disorders Perron et al. (2012) Human ↑ HERV env present in peripheral blood of patients with BPD
Tamouza et al. (2021) Human ↑ HERV-W env present in serum of patients with BPD
Weis et al. (2007) Human ↓ HERV-W gag expression in patients with MDD and BPD
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retrotransposition in the human genome (Beck et al., 2011).
SINEs include the primate derivative Alu, rodent specific B1
and B2 elements, as well as a conglomerate of SINE-R VNTR and
Alu elements referred to as SINE-V A (SVA; Lapp and Hunter,
2019). Deleterious insertions of LINEs, SINEs, and SVAs have
been linked to a variety of neurological and psychiatric diseases
(Beauregard et al., 2008; Taniguchi-Ikeda et al., 2011; Guffanti
et al., 2018). Thus, TEs must be managed in order to prevent the
detrimental outcomes that can follow ungovernable TE
mobilization. TEs are mostly silenced in the somatic genome
by epigenetic regulations that prevent transcription. These
regulations include DNA methylation and histone
modifications (e.g., H3K9me3 and H3K7me3) which involve
adding methyl groups to chromatin in order to make DNA
less accessible for transcription (Hunter et al., 2012). TEs can
also be suppressed through the process of RNA interference
(RNAi). Small Interfering RNA (siRNA) is a form of non-
coding, double-stranded RNA that degrades specific RNAs,
often the RNA intermediates of retrotransposons (Tabara
et al., 1999; Buchon and Vaury, 2006). And yet, despite these
mechanisms, TEs insertions can still break through these
biological defenses and negatively impact hosts. The epigenetic
regulation of TEs can also be impacted by a number of
environmental factors, highlighting one mechanism by which
an organism’s environment directly impacts its DNA and even
that of its progeny (Peschke et al., 1987; Lapp and Hunter, 2016).
Interestingly, it has been hypothesized that epigenetic regulation
evolved as a method of TE suppression (Choi and Lee, 2020).

Roles of TE in Development and
Neurodevelopmental Disease
TEs are necessary for several aspects of mammalian development,
especially in the CNS. For example, TEs drive chromatin
rearrangement within the 2-cell stage mouse embryo (Kruse
et al., 2019), and LINE-1 RNA in particular promotes the self-
renewal of embryonic stem cells (Percharde et al., 2018). Krüppel-
associated box containing zinc finger proteins (KZFPs), which
recognize TEs in a sequencespecific manner and form a protein
complex (KAP-1) in embryonic stem cells (Matsui et al., 2010;
Yang et al., 2017), drive embryonic genome activation through
the suppression of SVA, HERV-K and HERV-W (Pontis et al.,
2019). Furthermore, HERV-W env protein (otherwise called
ERVWE1), encodes for the fusogenic protein syncytin-1
(Blond et al., 2000), which is expressed in high levels during
human placental development mediating the fusion and
proliferation of trophoblast cells (Kim et al., 1999; Mi et al.,
2000; Frendo et al., 2003). HERV-W env has also been shown to
regulate calcium influx via transient receptor potential cation
channel subfamily C member 3 (TRPC3) which modulates the
expression of the DISC1 gene (Chen et al., 2019). This process is
important to developmental processes including neurogenesis,
migration, and synaptogenesis (Brandon et al., 2009).

Early development is a time of heightened plasticity and TE
activity can be disrupted by environmental perturbations leading
to permanent physiological and behavioral changes. Stress-
associated alterations in TE expression and activity are often

studied using the maternal immune activation model (MIA). This
model involves injecting a viral mimetic into pregnant animals to
elicit an immune response and is used to assess offspring
outcomes following exposure to gestational infection (Brown
et al., 2009; Arsenault et al., 2014; Estes and McAllister, 2016;
Kentner et al., 2018). MIA is a major risk factor for developing
psychiatric disorders, mainly schizophrenia and autism spectrum
disorders (ASD) in humans (Brown et al., 2004; Zerbo et al.,
2013), respectively. Some animal models have also been able to
link MIA with other disorders such as depression and anxiety
(Estes and McAllister, 2016; Meyer, 2019), although more
epidemiological work is needed in this field to discern the role
of MIA these pathologies. The biological mechanisms that
promote the increased risk between MIA and disorders like
schizophrenia and ASD are not clear but may be a result of
altered TE activity following exposure to a viral infection. For
example, influenza A can increase HERV-W family placental
protein syncytin-1 expression and decrease H3K9me3 expression
on precipitated chromatin of CCF-STTG1 cells (Li et al., 2014).
This suggests that MIA-triggering infections may have the
capacity to increase the transcription of placental genes
directly though epigenetic modifications at HERV-W loci. This
involvement of TE activity in MIA is further supported by in vivo
models. For example, MIA was shown to modulate tRNA-derived
small fragment tRNA halves, which actively inhibit ERVs, within
the placenta and fetal brain of mice (Su et al., 2020). Although this
study did not assess how this affected the postnatal brain, other
studies utilizing MIA as models of schizophrenia and autism
demonstrate the pervasive effects of MIA on TE activity
throughout development and will be discussed further.

SCHIZOPHRENIA

Schizophrenia is a complex neurodevelopmental disorder that is
characterized by the presence of symptoms like delusions,
hallucinations, disorganized speech, and negative affect (James
et al., 2018; NIMH, 2020). While the mechanistic underpinnings
of schizophrenia can be genetically derived (He et al., 2021)
another risk factor is early life adversity, where certain
environmental stressors (e.g., physical or emotional abuse,
maternal infection) contribute to permeant changes in brain
physiology and behavior (Bennouna-Greene et al., 2011;
Kraan, et al., 2015; Rokita et al., 2020; Matheson et al., 2013).
Stress in the prenatal environment can increase one’s risk for
developing psychiatric disorders including schizophrenia. For
example, the probability of developing a schizophrenia
spectrum disorder was significantly greater in progeny from
mothers who reported greater levels of daily stress throughout
their pregnancy, although this was only true for males (Fineberg
et al., 2016). Compounded with the role of environmental
experiences, genetic heterogeneity in schizophrenia (Lee et al.,
2012; Schwab and Wildenauer, 2013) makes discerning the
etiology of this disorder extremely challenging at the
individual level. Given the role of TEs in the promotion of
genetic diversity, teasing apart the individual differences in
schizophrenia may be possible through targeting TE activity.
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Much of the research surrounding TEs and schizophrenia
illustrate a differential expression of HERVs. HERV-W in
particular is elevated in the blood of subjects with recent-onset
schizophrenia but not present in control individuals (Karlsson
et al., 2004; Huang et al., 2006, 2011; Perron et al., 2008, 2012;
Tamouza et al., 2021). There is also evidence supporting an
intersection between inflammatory genes and HERV-W with
schizophrenia. For example, the upregulation of inflammatory
cytokines such as IL-6, TNF-α, and IFN-γ yields persistent
subclinical inflammation and has been linked to schizophrenia
(Miller et al., 2011; Chase et al., 2015). While preliminary,
Melbourne et al. (2018) reported an association between long
non-coding RNA (lncRNA) and HERV-W expression with IL-6
and IFN- γmRNA expression in primary cells from humans with
schizophrenia (Melbourne et al., 2018). This is supported by
previous findings that there is altered HERV-W expression in
diseases with an inflammatory component, like schizophrenia (Li
and Karlsson, 2016). One possible explanation for this could be
cytokine stimulation that increases transcription factor binding to
HERV promoter elements which was demonstrated in HERV-K
(Manghera et al., 2016). More research is needed to determine if
inflammation is the cause of or consequence to HERV-W
expression. Recent evidence points to infection from
exogenous viruses like HSV-1 and influenza A/WSN/33 as
activators for HERV-W expression (Nellåker et al., 2006;
Huang et al., 2011). It has been proposed that this expression
of endogenous viral sequences by exogenous viral infection is a
protective defense mechanism employed by the cell to prevent
spread of the virus, which raises interesting questions about the
degree to which TE “self-interest” and host interests align
(Ponferrada et al., 2003; Nellåker et al., 2006).

Recently, Tamouza et al. (2021) explored the presence of
HERV-W in individuals with schizophrenia. They found ~41%
of patients with schizophrenia were positive for HERV-W env
protein in serum, whereas 96% of controls were negative
(Tamouza et al., 2021), and these findings replicated a
previous study (Perron et al., 2008). More importantly,
researchers found that HERV-W expression correlated with
increased serum levels of inflammatory cytokines, further
implicating the association between inflammation and HERV-
W in schizophrenia. There are remarkably few studies with
sufficient enough power to make a conclusion about HERV-W
expression in human brain tissue. However, there are some that
attempt to investigate this. One study investigated RNA
expression in the frontal cortex from four postmortem brains
from individuals with schizophrenia. HERV-W expression was
significantly elevated compared to the six control tissues (Yolken
et al., 2000). Additionally, in the frontal cortices of schizophrenic
patients, there were differentially upregulated transcription of
RNA homologous to HERV-W compared to control (Karlsson
et al., 2001). Finally, another study used a microarray-based
analysis of HERV transcriptional activity in human brains, the
authors could not report any abnormal expression of HERV-W
elements in patients of schizophrenia or bipolar disorder (Frank
et al., 2005). Until more conclusive evidence is found for
differential expression of HERV-W in human brain,
preclinical-models will continue to be important in answering

this question. In an effort to answer this, Johansson et al. (2020)
demonstrated a link between atypical expression of HERV-W env
in the developing hippocampus and future behavior alterations in
rats. Specifically, the induction of hippocampal HERV-W env in
on the day of birth using electroporation was associated with later
social and working memory impairments (Johansson et al., 2020).
While social and working memory impairments are seen in
individuals with schizophrenia (Lee and Park, 2005; Forbes
et al., 2009), these symptoms are not exclusive to schizophrenia.

In addition to HERVs, LINE-1 has also been frequently
implicated in schizophrenia. For example, increased LINE-1
has repeatedly been demonstrated in the prefrontal cortex of
subjects with schizophrenia compared to control subjects and
these insertions have been shown to be localized to genes that
govern (GO0045202; GO0030054; GO0045211; Bundo et al.,
2014; Doyle et al., 2017). Furthermore, Guffanti et al. (2018)
found 1,689 differently expressed TEs in the dorsolateral
prefrontal cortex (DLPFC) of patients with schizophrenia, and
this differential expression of LINE 1 in DLPFC, and in other
regions, has also been demonstrated in animal models of
schizophrenia. RNA-sequencing of primate brains revealed
dysregulated expression of LINE-1 silencers PIWIL2 and
MGARP in the DLPFC and anterior cingulate cortex of
primates exposed to MIA (Page et al., 2021). In another model
of MIA, LINE-1 and a regulator of LINE-1 methyl-CpG-binding
protein-2 Mecp2 were shown to be differentially expressed in
mice exposed to MIA. Specifically, LINE-1 and Mecp2 were
hypomethylated in the hypothalamus (Basil et al., 2014).
Similar results were also observed in the striatum, but these
did not reach levels of statistical significance (Basil et al.,
2014). In rats, MIA was associated with increased expression
of the transcriptional repressorMecp2 expression in the placenta,
and this was associated with a reduction of hypothalamic Mecp2
in female offspring on gestational day 15 (G15; Núñez Estevez
et al., 2020). Other epigenetic markers that work to reduce
retrotransposition, including DNA methyl transferases
(DNMTs) 1 and 3a, and O-GlcNAcylation (OGT), were also
reduced in the hypothalamus of MIA offspring at G15 (Núñez
Estevez et al., 2020). Fitzgerald et al. (2021) has since replicated
this reduced epigenetic TE repression in six day-old mouse
hypothalamus following a maternal separation model of early
life stress. In addition, this reduced hypothalamic methylation
was associated with hyperactivity as demonstrated by the open
field and elevated plus maze in adult mice (Fitzgerald et al., 2021).
Despite not being amodel of schizophrenia, together these studies
suggest that both prenatal and neonatal perturbations can have
lasting effects on offspring brain development and behavior
possibly through epigenetic unmasking. Although neither of
these studies assessed TE activity directly, the involvement of
epigenetic markers warrants future investigations. Overall, while
this evidence presents a clear involvement of TEs in both humans
and in animal models of schizophrenia, there is a general dearth
of literature that is dedicated to uncovering how these
differentially expressed TEs contribute to schizophrenia
pathogenesis. More basic research is needed to tie these large
effects in TE expression to more complex outcomes like
symptomology and behavior.
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AUTISM SPECTRUM DISORDERS

Autism Spectrum Disorders (ASD) refers to a wide spectrum of
neurodevelopmental disorders that are primarily characterized by
impairments in communication and social interaction (Lord
et al., 2001; NIMH, 2018). Similar to schizophrenia, ASD is
believed to arise from a combination of heritable and
environmental factors (Koufaris and Sismani, 2015; Andersson
et al., 2018).

Hundreds of gene have been implicated in ASD etiology
(Rylaarsdam and Guemez Gamboa, 2019). One risk factor for
ASD may be genomic instability due to increased TE activity, as
evidenced by more frequent TE localization to genes associated
with ASD compared to genes that are not associated with ASD
(Williams et al., 2013; Casanova et al., 2019).

Mutations inMecp2 lead to the development of Rett syndrome
(Amir et al., 1999), and have more recently been implicated in the
etiology of ASD (Wen et al., 2017). A neuronal knockout of
Mecp2 has been shown to increase LINE-1 retrotransposition
in vitro (Muotri et al., 2010). While completeMecp2 knockouts in
vivo are unattainable due to lethality, the use of conditional
Mecp2 knockouts could be an efficacious option to explore the
sufficiency of LINE-1 in models of Rett syndrome and ASD.
Mecp2 conditional knockouts are also used in establishing rescue
models (Li & Pozzo-Miller, 2012), and the future targeting of
LINE-1 in these rescue models could offer substantial insight into
the mechanisms by which LINE-1 is involved in these specific
neurodevelopmental disorders. In support of this, LINE-1
upregulation has been found in postmortem cerebellum in
individuals (ages 4–39) with ASD, and this was in tandem to
decreased expression of H3K9me3 at open reading frames
(ORFs) 1 and 2 (Shpyleva et al., 2018). This weakened
epigenetic repression may have contributed to the differences
in LINE-1 expression, although more work is needed to delineate
the details of the pathway proposed by this study. Nonetheless,
Individuals with ASD also exhibit mutations in the gene that
codes for Pogo transposable element with zinc finger domain
(POGZ). One recent study found mutations in POGZ to impair
cortical development which is also observed in patients with ASD
(Garcia-Forn et al., 2020; Matsumura et al., 2020). Researchers
also observed impaired prepulse inhibition and social behavior in
POGZ mutant mice, which is compatible with an ASD-like
phenotype (Matsumura et al., 2020).

In addition to LINE-1 and POGZ, upregulated HERV
expression has also been found in the blood mononuclear cells
in patients with ASD (Balestrieri et al., 2012; Balestrieri et al.,
2016). In a follow-up investigation to address these findings, 2
animal models of ASD were used: BTBR T + tf/J inbred mice,
which exhibit behavioral abnormalities congruent with ASD, and
CD-1 outbred mice treated in utero exposure to the histone
deacetylase (HDAC) inhibitor valproic acid (VPA). ASD
model mice demonstrated an upregulation in ERV expression
in whole brain from gestational day 10 to adulthood (Cipriani
et al., 2018). Furthermore, altered ERV expression correlated with
an upregulation in inflammatory cytokines, but only in the BTBR
model, indicating the importance of model specificity (Cipriani
et al., 2018).

STRESS AND NEUROPSYCHIATRIC
DISEASE

While the early developmental environment is a sensitive time for
TE activity, TEs are also highly active in the adult brain (Muotri
et al., 2005), especially in response to stress (Hunter et al., 2009;
Hunter et al., 2012). Here, we will highlight trauma- and stress-
mediated TE activity and how it contributes to the development
of PTSD and mood disorders in adulthood.

PTSD

Posttraumatic stress disorder (PTSD) is a severe pathological
condition that can develop after a major traumatic event
(Muotri et al., 2005). While approximately half of all US
adults will experience at least one traumatic event, most will
not develop this disorder. Only around 7% actually develop
PTSD (although rates could be higher in areas affected by
natural disaster or warfare (Yehuda et al., 2015; Shahmiri
Barzoki et al., 2021). Most of the research linking PTSD
and transposable elements has focused on the role of
LINEs, SINEs, ERV/LTRs and the epigenetic regulation of
these elements utilizing both humans and animal models. In
the rodent model, the molecular mechanisms of PTSD can be
investigated using stressenhanced fear learning (SEFL)
induced by repetitive foot shocks. In one particular study
(Ponomarev et al., 2010), used SEFL to explore the
transcriptional changes in the amygdala after these
repetitive foot shocks. They found an upregulation of LINE-
1 in the rat amygdala, supporting a potential role of this TE in
stress-induced learning. One pioneering human study also
found that LINE-1 to be hypomethylated in veterans with
PTSD after deployment, while Alu was hypermethylated
before deployment (Rusiecki et al., 2012). These results
suggest that TEs can be both a protective or risk factor for
getting PTSD after stressful events.

B2 SINE expression in the amygdala and hippocampus
appears to be regulated by stress, where levels of B2 RNA
have been shown to predict coping strategies in a sex specific
fashion (Hunter et al., 2012; Lambert et al., 2020). Furthermore,
glucocorticoids have been shown to promote B2 SINE
mobilization de novo in the hippocampus and in cell lines
(Bartlett et al., 2021), further underscoring the explicit
interactions that occur between stress and the deep genome.
These results support the notion that environmental stressors
mediate TE activity through the promotion of interactions with
the glucocorticoid receptor.

In addition to glucocorticoid receptor activation, several
studies have shown that high levels of stress also promote the
expression of pro-inflammatory markers such as cytokine
interleukin (IL-1β) (Shintani et al., 1995; Miller et al., 2002).

Additionally, administration of an IL-1 antagonist prevented
SEFL (Jones et al., 2015). Other pro-inflammatory markers
exhibit altered expression following exposure to stress such as
4-hydroxynonenal, IL-6, malondialdehyde, and NOX2 (Elenkov
and Chrousos, 1999; Jones et al., 2015; Liu et al., 2016).
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Upregulation of inflammatory cytokines is a common feature in a
panoply of psychiatric diseases, including PTSD (Bam et al., 2016;
Baumeister et al., 2016; Wang et al., 2019). Recently, it has been
shown that a lack of LINE-1 repression can act as a driver for
inflammation (Thomas et al., 2017) especially in aging cells (De
Cecco et al., 2019).

Whether or not stress can mediate inflammation
independently of LINE-1 however, remains to be elucidated.
Nonetheless, this evidence suggests deleterious TE activity that
intersects with region-specific glucocorticoid function and
inflammation could be a risk factor for developing PTSD
(Hori and Kim, 2019).

MOOD DISORDERS

Major depressive disorder (MDD) and bipolar disorder (BPD) are
complex multigenic diseases that can arise from interactions
between endogenous genetic risk factors, and exogenous risk
factors such as childhood adversity and substance abuse (Anda
et al., 2002; Hosang et al., 2017; Herzog and Schmahl, 2018; Misiak
et al., 2018; Zhao et al., 2018).MDDhas a lifetime risk of about 16%
in the US population and is marked by episodes of depressedmood
lasting for more than 2 weeks associated with other symptoms like
depressed appetite, reduced energy, slow movements and
sometimes suicidal thoughts (Murray and Lopez, 1997; Kessler
et al., 2003; Mill and Petronis, 2007) (BPD) is a serious mood
disorder that is marked by periods of both acute manic episodes
and periods of acute major depressive episodes (Ghaemi, 2007).
The prevalence of BPD ranges from 1–4% of the adult population
(Tohen and Angst, 2002; Judd and Akiskal, 2003).

Decreased expression of human endogenous retroviral protein
HERV-W gag is present in brain of patients with major
depression and BPD (Weis et al., 2007), although this
molecular mark is also present in patients with schizophrenia,
making it not exclusive to mood disorders. It is worth noting in
this context that genome wide association studies have shown
substantial genomic overlap between neuropsychiatric disorders,
and that many of the vulnerability loci reside in noncoding
regions of the genome (Anttila et al., 2018). Additionally,
HERV env sequences are associated with BPD as detected in
the peripheral bloodof patients compared with healthy controls
(Perron et al., 2012). Specifically, Tamouza et al. (2021) also
found ~28% of BPD patients were positive for HERV-W env
protein in serum. Importantly, although HERV env was also
found in peripheral blood of patients with schizophrenia, it was
higher in patients with BPD, indicating some exclusivity to BPD
(Perron et al., 2012).

Mood disorders are often interwoven with a dysregulated
inflammatory response (Miller and Raison, 2016; Chistyakov
et al., 2018; Jones et al., 2020). While HERV-W env has been
shown to elicit the production of inflammatory cytokines including
IL-6 and TNF-alpha, this was explored in models of multiple
sclerosis in vitro (Perron et al., 2001; Rolland et al., 2005).

Additionally, one recent study found simulation of
lymphocytes with a HERV-K env peptide significantly
upregulated expression of IL-6 in patients with amyotrophic

lateral sclerosis (ALS) but not in healthy controls (Arru et al.,
2021). It has been hypothesized that cytokines may be similiarly
elicited in the brain following aberrant HERV insertions within
certain regions, especially hippocampus and amygdala, after
exposure to stress or infection. These exogenous events can
lead to disruption of the blood brain barrier and the
subsequent development of psychiatric disease (Canli, 2019).
As previously discussed, inflammation and the subsequent
neurophysiological damage is also prevalent in disorders like
schizophrenia and autism.Whether or not TE activity contributes
to a unique inflammatory profile between these disorders still
needs to be elucidated.

SEX DIFFERENCES

Almost every psychiatric disease exhibits a sex difference in either
its prevalence or symptomology. For example, boys are at a higher
risk for disorders of development, such as autism, ADHD, or
early onset schizophrenia, whereas women are more commonly
diagnosed with stress related disorders like depression or

PSTD (Bangasser and Valentino, 2014; McCarthy et al., 2017;
McCarthy andWright, 2017). There is a rapidly growing literature
surrounding the critical involvement of TEs in male and female
specific development (for review, see Dechaud et al., 2019). For
example, sex differences in histone acetylation of estrogen receptor
alpha and aromatase promoters by HDAC2 and HDAC4 are
necessary during the critical period of sexual differentiation to
properlymasculinize the brain and behavior in rats (Matsuda et al.,
2011). However, studies assessing the role of TEs in sex-specific
disease susceptibility are almost absent. In one groundbreaking
study, hippocampal B2 SINE RNA expression was increased in
male rats and this correlated with sex-specific coping style in
response to stress (Lambert et al., 2020). These results shed
light on how TEs may mediate stress and susceptibility to stress
related disorders in males and females distinctly. The future
assessment of sex differences in TE expression and modulation
in both healthy and clinical populations is warranted.

CONCLUSION

Comprising almost half of the entire genome, TEs have garnered
substantial interest given their involvement in psychiatric disease.
Mounting evidence demonstrates interactions with the stress
system, in both early development and adulthood, leads to
deleterious TE activity that coincide with permanent changes
in brain physiology, especially inflammation, leading to
pathology. Inflammation may also be induced by the
activation of cellular innate immunity by ectopic expression of
TE RNAs in a number of tissues. Further, TEs contribute to
somatic mosaicism, making them an appealing avenue to explore
individual differences in both psychiatric diseases and in normal
variation of cognitive and behavioral traits. However, substantial
research needs to be done, as TEs have received a miniscule
fraction of the research attention that protein coding elements of
the genome have to date. If, as their evolutionary origins would
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suggest, TEs are acutely sensitive to host stress, then they
represent a means by which the environment can program the
genome across the lifespan, for both good and ill, a hypothesis
that deserves a much deeper analysis.
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