
Defining and assessing immediacy in single-case experimental
designs

Rumen Manolov1 and Patrick Onghena2

1Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, University of Barcelona
2Faculty of Psychology and Educational Sciences, Methodology of Educational Sciences Research Group,

KU Leuven – University of Leuven, Leuven, Belgium

Immediacy is one of six data aspects (alongside level, trend, variability, overlap, and consistency) that
has to be accounted for when visually analyzing single-case data. Given that it is one of the aspects that
has received considerably less attention than other data aspects, the current text offers a review of the
proposed conceptual definitions of immediacy (i.e., what it refers to) and also of the suggested opera-
tional definitions (i.e., how exactly is it assessed and/or quantified). Provided that a variety of concep-
tual and operational definitions is identified, we propose following a sensitivity analysis using a
randomization test for assessing immediate effects in single-case experimental designs, by identifying
when changes were most clear. In such a sensitivity analysis, the immediate effects are tested for multi-
ple possible intervention points and for different possible operational definitions. Robust immediate
effects can be detected if the results for the different operational definitions converge.
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When performing a visual analysis of single-
case experimental designs (SCED) data, six
data aspects are usually assessed: level, trend,
variability, immediacy, overlap, and consis-
tency (Kratochwill et al., 2013; What Works
Clearinghouse, 2017). This recommendation
is strongly based on the work by Horner et al.
(2005) and has been echoed several times
across multiple publications presenting
SCEDs across a variety of fields such as health
psychology (Epstein et al., 2021), special edu-
cation (Ledford et al., 2019; Maggin et al.,
2018), rehabilitation (Graham et al., 2012),
neurology (Lobo et al., 2017), and behavior
modification (Ninci, 2019).
Some of these six data aspects have

received greater attention in the scientific lit-
erature than others. Specifically, the data
aspect “overlap” has received a great deal of
attention, with the Percentage of

Nonoverlapping Data (Scruggs et al., 1987) as
one of the first and most widely adopted quanti-
fication of effect size in SCEDs, and with other
more recent nonoverlap indices as the most fre-
quently used alternatives for the quantification
of SCED effects (Jamshidi et al., 2022; Maggin,
O’Keefe, & Johnson, 2011; Radley et al., 2020).
The different nonoverlap indices have also
been compared multiple times (e.g., Lenz, 2013;
Parker, Vannest, & Davis, 2011; Rakap, 2015),
and included in studies both with real data
(e.g., M. Chen et al., 2016; Wolery et al., 2010)
and with generated data (e.g., Giannakakos &
Lanovaz, 2019; Tarlow, 2017).
Another set of common quantifications focuses

on level, such as the within-case standardized
mean difference (Busk & Serlin, 1992), or the
between-case standardized mean difference
(Hedges et al., 2012, 2013). There is evidence
that level is the most commonly quantified data
aspect (Tanious & Onghena, 2021), with the
within-case standardized mean difference as a
common measure at least in some contexts
(Radley et al., 2020). Regarding the between-case
standardized mean difference, it has been an
object of both technical reports (Shadish
et al., 2015), a recommendation in Version 4.1
of the What Works Clearinghouse (2020) stan-
dards, and several illustrations (e.g., Barton
et al., 2017; Maggin et al., 2017). Beyond
expressing the mean difference in standard
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deviation units, a comparison in terms of level is
also performed via the log-response ratio,
which can be expressed as percentage change
(Pustejovsky, 2018), or via the mean baseline
reduction (Olive & Smith, 2005).
The possibilities for assessing trends have also

been discussed in several articles, including a
focus on the split-middle technique (Fisher
et al., 2003; Miller, 1985), the trisplit technique
(Parker et al., 2014) or Tukey’s resistant trend
line (Franklin, Gorman, et al., 1996), the Mann-
Kendall test (Hamed & Rao, 1998), ordinary least
squares estimation (Moeyaert, Ugille, et al., 2014;
Parker et al., 2006) or generalized least squares
estimation (Swaminathan et al., 2014), Theil-Sen
resistant trend (Tarlow & Brossart, 2018; Vannest
et al., 2012), monotonic trend (Parker, Vannest,
Davis, & Sauber, 2011), and generalized additive
models (Sullivan et al., 2015). There have also
been texts dedicated to discussing several
approaches for fitting trend lines (L.-T. Chen
et al., 2019; Manolov, 2018).
Another aspect that recently received attention is

the assessment of consistency, focusing on the con-
sistency of data patterns in similar phases and also
on the consistency of effects (Tanious, De, Michiels,
et al., 2019; Tanious et al., 2020, 2021). Other pro-
posals for assessing consistency have focused on
specific designs (see Manolov et al., 2021, dealing
with alternation designs), or specific graphical rep-
resentations (Manolov & Tanious, 2022). More-
over, there have been proposals for assessing
consistency of effects in the context of multilevel
models (Manolov & Ferron, 2020).
The remaining two data aspects, variability

and immediacy, have received less attention in
terms of specific quantifications for making
their assessment more objective. Most pro-
posals referring to variability are based on or
understood as visual aids. Moreover, most pro-
posals also refer to the stability of the baseline.
On the one hand, the stability envelope
focuses on the within-phase data pattern with
respect to variability and trend stability
(Lane & Gast, 2014, see also Swan et al., 2020,
for other operational definitions). On the
other hand, there have been proposals for
extending the baseline level with a variability
band as in statistical process control (Callahan
& Barisa, 2005; Pfadt & Wheeler, 1995) or for
extending the baseline trend with a variability
band (Manolov & Vannest, 2019). In both of
these latter proposals, the focus is placed on the
comparison between the projected baseline and

the actual intervention phase data, rather than
variability per se. Similarly, variability has been
discussed in the context of standardized mean
differences, for which variability is relevant for
standardizing the difference; a distinction between
within-subject and between-subject variability is
crucial for the interpretation of standardized
mean differences (Beretvas & Chung, 2008;
Odom et al., 2018). In that sense, the importance
of variability in these latter quantifications stems
from the fact that differences in level cannot be
assessed without taking variability within phases
into account. Finally, “changes in variability
between phases” (as a research question, as a pre-
diction or effect size measure) is very uncommon.

Finally, the assessment of immediacy has not
seen many specific developments or any broad
reviews. As later sections will show, the two
exceptions are a recommendation from the
What Works Clearinghouse (2017) and a pro-
posal based on Bayesian analysis (Natesan &
Hedges, 2017; Natesan Batley, Minka, &
Hedges, 2020; Natesan Batley et al., 2021).
There are also several questions remaining to
be answered, related to the exact number of
measurements that have to be included when
assessing immediacy, the data features that are
object of this assessment, or even in terms of
how best to translate the conceptual definitions
of immediacy into operational definitions.

Aim and Organization of the Text

Considering the interest of single-case
researchers in verifying a functional relation
between variables and the potential relevance of
immediacy for verification of such a functional
relation, defining “immediacy” is an important
endeavor. Thus, the initial aim of the current text
is to review some conceptual and operational defi-
nitions that we could find in the SCED literature
for what an immediate effect is and how it should
be assessed. In order to meet this aim, an initial
section presents several conceptual definitions
found in textbooks and articles, while also dis-
cussing the importance of immediacy for the
assessment of experimental control, for choosing
a specific design, and for quantitative data analysis.
Afterwards, we review the way in which immediate
effects have been recommended to be assessed, in
terms of how many data points need to be taken
in consideration and which data features
(e.g., level, trend, overlap) are the object of the
assessment.

463Immediacy In Single-Case Data



Given the vagueness and ambiguity in con-
ceptual and operational definitions that we
could identify in the literature, we focus on a
proposal for an operational definition that
could answer a twofold question: (a) for which
potential moment of change in phase is the
difference largest (i.e., the evidence for a
behavioral change strongest); and (b) is this
evidence well-aligned with the concept of an
“immediate effect” or with the kind of effect
expected. This proposal entails a combination
of randomization test logic (Edgington, 1967,
1996) and a sensitivity analysis (which could be
understood as a way of following the multiverse
approach advocated by Steegen et al., 2016).
The proposal is illustrated with real data

exhibiting different data patterns, but because of
the limited number of examples (and the multi-
tude of possible designs and data patterns) the
current study is best viewed as a proof-of-concept,
rather than full-scale empirical validation.

Immediacy: Conceptual Definitions and
Importance

Search Procedure
In order to identify conceptual and opera-

tional definitions of immediacy, the search
process included the following steps. First, we
searched peer-reviewed articles in the Web of
Science and PsycINFO databases with the
terms (“single-case” OR “single-subject”) AND
“immedia*”. Second, we read the key articles
that prompted us to study immediacy (i.e.,
Horner & Kratochwill, 2012; Natesan &
Hedges, 2017; Swan & Pustejovsky, 2018;
Verboon & Peters, 2020) for further references
cited in them or for other articles citing them.
Third, we checked all textbooks on SCED meth-
odology that we know of (i.e., Barker et al., 2011;
Barlow et al., 2009; Franklin, Allison, &
Gorman, 1996; Janosky et al., 2009; Kazdin, 2020;
Kennedy, 2005; Kratochwill & Levin, 2014;
Ledford & Gast, 2018; Morgan & Morgan, 2009;
Morley, 2018; Poling & Fuqua, 1986; Riley-
Tillman et al., 2020; Sidman, 1960; Tate &
Perdices, 2019; van de Schoot & Miočevi�c, 2020)
for text on immediacy.

Conceptual Definitions
What is Immediacy?
The concept of immediacy appears inher-

ently connected to the concept of latency,

especially if we are looking for a definition of
“immediacy” that is not tautological. Specifi-
cally, “latency of change refers to the amount
of time for the intervention to have an impact
on the behavior. Intervention effects can be
immediate or delayed” (Riley-Tillman et al.,
2020, p. 80). Analogously, Kazdin (2020)
defines latency as the period between the
onset of one condition and the change in per-
formance, with brief, rapid or short latency
referring to an immediate effect. Another
term used to refer to immediate effects is
“abrupt” (Parsonson & Baer, 1978). Using this
term, Maggin et al. (2018) offer one of their
definitions of immediate effect: “large and
abrupt change in the data corresponding to
researchers introducing or withdrawing the
intervention” (p.188). These authors also include
another definition: “magnitude and quickness of
change in the data corresponding to change
in the intervention” (Maggin et al., 2018,
p. 189). Several other definitions also reflect
the idea of a degree to which the effect is
immediate. For instance, Ledford et al. (2018,
p. 10) refer to the “extent to which data
change simultaneously with a condition
change (Ledford et al., 2018, p.10).” Barton
et al. (2018, p. 191) state that the immediacy
of change is “the degree to which behavior
change occurs as soon as the intervention is
introduced”. Similarly, Kennedy (2005, p. 203)
states that the immediacy of effect or rapid-
ity of change refers to “how quickly a change
in the data pattern is produced after the
phase change.” Equivalently, Horner and
Odom (2014, p. 34) refer to “how quickly is
change demonstrated.” Thus, these latter
definitions refer to degrees and not to a
dichotomous decision regarding whether the
effect is immediate or not. Finally, Mor-
ley (2018, p. 115) refers to “point of change”
when assessing the moment in which the
behavior change occurs and whether the
intervention acts rapidly.

What is the Focus of the Assessment of Immediacy?
According to one of the definitions pres-

ented in Version 4.0 of the Standards, “imme-
diacy of the effect refers to the change in level
between the last three data points in one
phase and the first three data points of
the next” (What Works Clearinghouse, 2017,
p. A-7). Similarly, an emphasis on the change
in level is present in other sources (Kilgus
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et al., 2016; Ledford et al., 2019; Ninci, 2019;
Tate & Perdices, 2019; Wolfe et al., 2019).
Kazdin (2020, p. 357) also refers to “shift in
level when a phase is changed” when referring
to what happened immediately after the inter-
vention was introduced or withdrawn.
In contrast, later in the text of Version 4.0

of the Standards, “immediacy of the effect
compares the extent to which the level, trend,
and variability of the last three data points in
one phase are distinguishably different from
the first three data points in the next” (What
Works Clearinghouse, 2017, p. A-11). Similar
to this broader definition, several authors
(Barton et al., 2019; Gage & Lewis, 2013;
Haegele & Hodge, 2015; Horner & Odom,
2014; Kennedy, 2005; Spear et al., 2013) men-
tion all three data aspects: level, trend, vari-
ability when referring to immediacy. In
contrast, Lane et al. (2021) only mention level
and trend. Similarly, Levin et al. (2021) refer
to two kinds of immediate effects: an immedi-
ate abrupt effect (change in level) and an
immediate gradual effect (change in trend).
Finally, Tate et al. (2014) also include overlap,
apart from level, trend, and variability when
defining the immediate effect. Similar to Tate
et al., Morley (2018) mentions specifically
overlap when assessing the point of change.
The apparent lack of consistency in the litera-

ture in relation to the focus of the assessment of
immediacy suggests that dealing with how imme-
diate effects are defined is a relevant topic.

What Is the Opposite of Immediacy?
The previously mentioned distinction

between an immediate abrupt and an immedi-
ate gradual effect (Levin et al., 2021) is rele-
vant for defining the opposite of an
immediate effect. Specifically, Levin et al.
(2021) refer to delayed effects, as effects for
which the change in level or in trend starts later
in the intervention phase. Similarly, Houle
(2009) illustrates both abrupt and gradual
effects taking place immediately with the change
in phase. This also agrees with Tate and Per-
dices (2019) and Riley-Tillman et al. (2020),
who oppose immediate to delayed effects.
A somewhat less clear distinction is present

in Natesan and Hedges (2017) and Natesan
Batley, Minka, & Hedges (2020), who refer to
situations in which an immediate effect is not
likely, by using several terms such as latency,
gradual effects, and delayed effects. In another

text by these authors (Natesan Batley et al., 2021),
they do stress delay as an opposite term of imme-
diacy, and refer to the need to model slopes when
working with gradual effects. Another apparent
mixing of terms is present in Swan and Pustejovsky
(2018) who present a “gradual effects model”,
which incorporates in this formulaic expres-
sion a parameter that determines the delay in
reaching the full effect of the treatment. How-
ever, this model refers to the delay in reaching
the asymptote, not the delay in onset of the
treatment effect, as all effects depicted in Swan
and Pustejovsky start immediately.

In summary, it can be concluded that when
the effect (abrupt or gradual) is not immedi-
ate, this entails a delay or latency. Therefore,
“immediate effects” can be expressed in terms
of the remaining data aspects (level, trend,
variability, and overlap).

Two other aspects are worth mentioning.
On the one hand, the amount of latency can
be conceptualized as continuous, distinguishing
between different degrees of (short and long)
latency. On the other hand, the amount of
latency is a separate issue from the assessment
of whether the effect is transitory (temporary)
or permanent and also a separate issue from the
abrupt or gradual nature of the effect.

Importance of Immediacy for Inferring
Causal Relations

It has been acknowledged that one of the
relevant aspects of the data pattern, when
assessing experimental control or the presence
of a functional relation, is whether the effect
of the intervention is immediate (Cook
et al., 2015; Horner et al., 2005). Specifically,
immediate effects are more easily and more
confidently interpreted as being due to the
intervention and not to an external factor
(Barton et al., 2018; L. L. Cohen et al., 2014;
Kennedy, 2005; Ledford, 2018; Riley-Tillman
et al., 2020; Tankersley et al., 2006; What
Works Clearinghouse, 2017). Conversely, “his-
tory” is considered to be a greater threat for
internal validity, in case the behavioral change
does not take place immediately after the
treatment onset (Petursdottir & Carr, 2018).

However, when using a SCED, the effects
are not necessarily always immediate (Dallery
& Raiff, 2014; Maggin et al., 2018; Wolfe
et al., 2019), for instance when studying academic
or developmental skills (Kratochwill et al., 2014;
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Lieberman et al., 2010) or in rehabilitation
(Krasny-Pacini & Evans, 2018). Other examples
of expected lack of immediacy include transition
states (Brogan et al., 2019) and extinction bursts,
that is, data in the beginning of the intervention
phase that are worse than the preceding baseline
measurements, when a reinforcer is removed
(Barnard-Brak et al., 2020; Riley-Tillman et al.,
2020). Moreover, in some cases distressing inter-
ventions may cause immediate distress, but not
the expected positive immediate effect (Holman
& Koerner, 2014). Therefore, it has been
suggested that “it is prudent not to be under the
exclusive control of abrupt changes in trend
across adjacent phases, or abrupt changes in level
between adjacent phases” (Parsonson & Baer,
1986, p. 172). This entails assigning less weight to
immediacy when visually inspecting the data
using the six commonly assessed data features
(Horner & Kratochwill, 2012; Wolfe et al., 2019).
Two very relevant aspects when judging whether
an effect that is not immediate is trustworthy is
whether there was an expectation for a delayed
effect (Barton et al., 2018; What Works
Clearinghouse, 2017) and whether the latency
of change is consistent across replications
(Ledford et al., 2018; Lieberman et al., 2010).
Moreover, Maggin et al. (2018) emphasize the
importance of trend and the magnitude of
change over time when an immediate effect can-
not be expected, and Barton et al. (2018)
emphasize the consistency of the magnitude of
change in level or trend replications. Finally, in
relation to consistency, it is relevant to explore,
in the context of the same study, why the effect
for certain participants is immediate and for
others not, if such a result happens to be
obtained (Kipfmiller et al., 2019).
Finally, immediacy has also been commented

on in relation to social validity, by posing the
question regarding whether a powerful effect is
an immediate and dramatic change that
requires a lot of resources to be maintained or a
gradual and self-maintained effect that requires
few resources (Franklin, Gorman, et al., 1996).
In summary, immediacy is theoretically

important for establishing a causal relation,
but in many behavioral applications the effects
of the intervention and the behavioral change
are not likely to be immediate. In those appli-
cations, the assessment of immediacy has to be
replaced by the assessment of whether the
actually observed effect matches the effect that
was predicted and expected on the basis of

previous research and the expert knowledge
of the behavioral process studied. Further-
more, maintenance of any effect observed
(immediate or gradual) is a relevant aspect of
the practical significance of any intervention.

Importance of Immediacy for Choosing a
Design

Whether the effect can be expected to be
immediate or not also has an effect on the kind
of SCED to be used. On the one hand, when
the effect is expected to be delayed and not
immediate a phase design (e.g., reversal design)
is preferable over an alternation design. On the
other hand, if the desired final level of the tar-
get behavior cannot be achieved immediately
and abruptly, but in a more gradual fashion,
Lane et al. (2017) and Tate and Perdices (2019)
recommend using changing criterion designs.
However, in the context of this design, when
comparing the behavior level to the prespecified
criterion, an immediate adherence to this level
is also required (Ledford et al., 2019), whereas
McDougall et al. (2006) state that a minimal
latency of change is also acceptable.

In contrast to changing criterion designs,
when immediate effects are expected, an alter-
nating treatments design can be used
(Holcombe et al., 1994). It is also required for
the effect to disappear immediately when an
intervention is withdrawn or when conditions
switch in order to avoid carryover effects.
Another option is to include washout periods
by design (Kwasnicka et al., 2019).

For a concurrent multiple-baseline designs, a
delayed effect may distort the assessment of the
verification period (Carr, 2005), in which the
intervention is already introduced for some tiers
but not yet for others. Thus, discarding history
as an alternative explanation for the changes in
the performance would need to be based on
observing a consistent pattern across tiers.

Finally, in relation to phase designs (multi-
ple-baseline and ABAB), immediate effects
allow for briefer phases (Kennedy, 2005), when a
SCED follows the principles of response-guided
experimentation.

Importance of Immediacy for Quantitative
Data Analysis

Immediate effects are assumed when using
some data analytical procedures such as the
between-case standardized mean difference

Rumen Manolov and Patrick Onghena466



(Shadish et al., 2014; also referred to as
“design-comparable effect size” and rec-
ommended by What Works Clearinghouse,
2020). In contrast, another quantification,
expressed as percentage change (Hershberger
et al., 1999; Olive & Smith, 2005) from the
baseline focuses only on the last three data
points from each phase and thus does not allow
for quantifying immediate effects. A third kind
of data analytical procedure allows estimating
when the largest rate in change takes place via a
logistic model (Verboon & Peters, 2020). This
way of analyzing the data assumes that the
change is progressive, which is similar to the
data analytical approach in the gradual effects
model by Swan and Pustejovsky (2018).
In the light of the data analytical options

mentioned so far, the choice of how to analyze
SCED data can be based on the researchers’
expectations. In a fourth data-analytical approach,
randomization tests, the test statistic is precisely
chosen according to the expected effect and, thus,
it can either focus on quantifying an immediate
effect (Michiels & Onghena, 2019) or a delayed
effect (Levin et al., 2017).
A fifth option arises in regression-based

analysis of SCED data. For instance, a model
based on generalized least squares regression
entails comparing the projected baseline trend
with the fitted intervention phase trend
(Maggin, Swaminathan, et al., 2011). This
model allows specifying for which moment in
time (i.e., for which intervention phase mea-
surement occasion) to compare the expected
baseline and intervention levels, although its
authors advocate for another option: namely,
to compute an average difference that com-
bines level and trend (Swaminathan
et al., 2014). In contrast, the results of another
regression-based approach, using a piecewise
model, are usually expressed as separate quanti-
fications of change in slope and change in level.
Regarding the quantification of the change in
level, it can reflect an immediate effect for the
first intervention phase measurement occasion
or it can focus on a different moment in time
(Moeyaert, Ugille et al., 2014).
Finally, instead of assuming that the effect is

either immediate or delayed, a different
(sixth) approach consists in using Bayesian
analysis to identify when is the most likely
moment in which the behavior changes and,
thus, whether this change is immediate or not

(Natesan & Hedges, 2017; Natesan Batley,
Minka, et al., 2020).

In summary, on the basis of the literature
reviewed, a potential conceptual definition of
immediacy could refer to a continuous feature
such as the latency of the onset of the effect,
regardless of whether this effect is abrupt (as a
change in level) or gradual (as a change in
slope), and regardless of its duration
(i.e., whether it is maintained or temporary).
Even if consensus could be reached regarding
a conceptual definition, there are many possi-
bilities to translate this conceptual definition
into an actual quantification.

Immediacy: Operational Definitions

How Many Data Points to Include
Following the recommendation from the

What Works Clearinghouse standards
(Kratochwill et al., 2013), a comparison between
the last three data points from the baseline
phase versus the first three data points from the
intervention phase has been highlighted in liter-
ature (Aydin & Tanious, 2022; Epstein et al., 2021;
Gage & Lewis, 2013; Geist & Hitchcock, 2014;
Haegele & Hodge, 2015; Horner & Kratochwill,
2012; Maggin et al., 2013; Michiels & Onghena,
2019; Ninci, 2019). Plavnick and Ferreri (2013)
even refer to these same measurement occasions
when defining how the assessment of level (rather
than immediacy) should be performed. Nonethe-
less, there have also been calls to consider the con-
textual factors when determining how many data
points reflect immediacy (L.-T. Chen et al., 2015).

A second option, referring to using more
than three measurements per phase, is to use
the last five data points from the baseline
phase as compared to the first five data points
from the intervention. This option was
suggested by Natesan and Hedges (2017),
introducing the Bayesian unknown change
point analysis. It was also mentioned by Wolfe
et al. (2019), when presenting a protocol for
performing visual analysis, and by Barton et al.
(2019) in a study comparing several data ana-
lytical options in the context of real data.

A third option, in this case referring to
fewer than three measurements can also be
found in literature. Specifically, Lane and Gast
(2014) refer to “absolute level change” quanti-
fying the immediacy of change from the last
session of baseline to the first session during
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intervention. Similarly, Ledford et al. (2018)
describe an example of an immediate effect as
“the first data point in each condition was differ-
ent in level than data point in the preceding
condition, in the expected direction” (p. 12).
As a fourth option, when discussing the

point of change, Morley (2018) states that the
assessment can be performed considering one,
two, or three points on either side of the intro-
duction of treatment. Thus, this agrees with
both the assessment of the “absolute level
change” (Lane & Gast, 2014) and with the What
Works Clearinghouse (2017) recommendation.
As a fifth option, a less specific number of

measurement occasions is also present in Lane
and Gast (2014). These authors refer to “rela-
tive level change” quantifying the proportional
change from the last half of baseline to the
first half of the intervention condition, using
median values.
Finally, it should also be kept in mind that

Michiels and Onghena (2019) found that ran-
domization tests for the comparison between
means of complete phases are particularly sen-
sitive to immediate effects (in random inter-
vention point designs). Thus, when selecting
between using all the data or only part of the
data for quantifying immediate effects, it is
important to consider two aspects. First, in
case the baseline level is expected to be stable,
the mean of all the baseline data could be a
useful summary and there would be no need
to discard baseline data. In contrast, the
researchers may prefer to focus on the last
baseline measurements, when any initial vari-
ability is expected to be stabilized, following
typical methodological recommendations
(Kazdin, 2021; Ledford et al., 2019). Second,
in case the immediate effect is expected to be
maintained, the mean of all the intervention
phase data could be a useful summary. In con-
trast, if the immediate effect is expected to be
decaying, it might make sense to discard later
intervention phase measurements.
Overall, in case phases were very short

(e.g., including only three measurement occa-
sions), choosing between three, four, or five
data points for the assessment would have
been inconsequential. However, reviews of
SCED data suggest that most baselines contain
five or more measurements (Shadish &
Sullivan, 2011), with a mean of 10 measure-
ments in some reviews (Smith, 2012), and a
median of seven in others (Pustejovsky

et al., 2019). Thus, how many measurements
per phase to consider when assessing immedi-
acy is not a trivial question.

What is the Focus of the Assessment of
Immediacy?

In previous literature (e.g., Kratochwill
et al., 2013; Ledford et al., 2019; Maggin
et al., 2018), immediacy has been considered
to be one of the six visually inspected data
aspects. However, it could also be considered
as a “meta-aspect”, in the sense that we can
have an immediate effect on the level, an
immediate effect on the variability, an immedi-
ate effect on the trend, and an immediate
effect on the overlap. In that sense which data
aspect is the focus of the assessment of imme-
diacy is relevant for the operational definition
of immediacy. Specifically, apart from level, a
quantification may also take trend into
account, although this is not equivalent to
quantifying an immediate effect on trend. For
instance, in piecewise regression, the first
intervention phase measurements as predicted
from the baseline trend are compared to the
first intervention phase measurement as
predicted from the intervention phase trend,
following the logic of piecewise regression
(Center et al., 1985; Moeyaert, Ugille
et al., 2014). This logic is also applicable to
multilevel models (Baek & Ferron, 2013).
Also, in the context of regression-based ana-
lyses, it has been highlighted that change may
not always be immediate, and the design
matrix needs to be modified to accommodate
a different expectation about the timing of the
effect (Miočevi�c et al., 2020).

A further option is to take both trend and
variability into account. Specifically, in the
visual aid proposed by Manolov and Vannest
(2019), the immediate effect is assessed, com-
paring the first three intervention measure-
ments to a projection of baseline Theil-Sen
trend with a variability band (computed via
the mean absolute deviation of the base-
line data).

A quantification that entails extrapolating
baseline trend, and combining change in level
and slope, in a similar way as the generalized
least squares model by Swaminathan et al.
(2014), is called the “mean phase difference”.
For this quantification, there is an option for a
limited projection of baseline trend in order
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to avoid unreasonable predictions (Parker,
Vannest, Davis, & Sauber, 2011), effectively
leading to a quantification of an immediate
effect. The exact extent of this projection, that
is, the number of initial intervention phase
measurement occasions considered, depends
on the baseline phase length and on the
degree of fit of the trend line to the baseline
data, which is related to the baseline data vari-
ability (Manolov et al., 2019).

A Different Perspective on Immediacy
In the previous sections, we referred to a

variety of ideas regarding how many data
points to include when assessing immediacy
and which data aspects to focus on. In the cur-
rent section, we refer to a proposal that entails
using all data and takes possible trends into
consideration. Beyond the recommendations
of the What Works Clearinghouse (2017), to
the best of our knowledge, the only proposal
dealing specifically with immediacy is Natesan
and Hedges’ (2017) Bayesian unknown
change-point model. The result of this model
is a range of moments in time in which the
largest behavioral change took place with
greatest probability. If this range is narrow and
centered around the moment of change in
phase, there is stronger evidence for an imme-
diate effect. Alternatively, this model can help in
identifying a delayed effect, if the range is poste-
rior to the moment in which the intervention
was introduced. The Bayesian unknown change-
point model offers an operational definition
that is apparently closer to Morley’s (2018) use
of the expression “point of change”, which
could be understood as looking at when the
largest behavior change occurs and whether this
change is simultaneous with the introduction of
the intervention.
The main limitation of the model is its com-

plexity, illustrated in several features. First, it is
necessary to make assumptions about the out-
come being continuous and normally distrib-
uted (Natesan Batley et al., 2021). Second, it is
necessary to estimate autocorrelation, which
can be problematic when the number of avail-
able measurements is insufficient (Huitema &
McKean, 1991; Krone et al., 2016; Shadish
et al., 2013). Third, it is necessary to specify
priors and using inappropriate priors may lead
to inappropriate results, especially in small
samples (Natesan, 2019). Similarly, Rindskopf

(2014) alerts that Bayesian methods “will not
converge if they are not given somewhat infor-
mative priors and ‘reasonable’ start values.”
(p. 587). Finally, Bayesian methods entail data
simulations using relatively complex software
(Natesan Batley, Contractor, & Caldas, 2020).
Even the proponents of Bayesian analysis rec-
ognize that it requires a learning process that
is likely to make this proposal less attractive to
applied researchers (Natesan, 2019; Natesan
Batley, Contractor, & Caldas, 2020). There-
fore, in the following section, we focus on an
alternative that assumes a known change-point
and that is distribution-free, one that is easier
to understand and implement.

Proposing a Sensitivity Analysis with
Randomization Test (SART) Approach

Sensitivity Analysis in Relation to the
Number of Data Points (and the Focus)

From the text so far, it can be deduced that
there are multiple options for specifying how
many data points to use for investigating
immediacy. Thus, immediacy can be assessed
by comparing the results of several possible
numbers of values per phase. For instance,
specifying three measurements per phase as a
value for assessing immediacy has been recog-
nized as arbitrary (Kratochwill et al., 2013)
and it is not the only possible option, as using
one, three, or five values per phase has already
been mentioned. Logically, there is no sound
reason why two or four measurements per
phase should not be considered, too. Thus,
there are researcher degrees of freedom in
the data analytic process (Wicherts
et al., 2016) and it is necessary to consider
their effect on the conclusions. Trying out dif-
ferent options and checking the degree to
which the conclusions agree is well-aligned
with the logic of sensitivity analysis (Steegen
et al., 2016); that is, checking the degree to
which several data analytical options agree or
converge, although we are not specifically
referring to assumptions and to robustness
(e.g., Baek & Ferron, 2013; Moeyaert, Ferron,
et al., 2014), and whether meeting them or
not affects the validity of the conclusions.

In terms of the focal data feature, if compar-
ing level (e.g., means or medians) is not the
only possible kind of quantification, then sev-
eral other options need to be considered. If
trend is to be taken into account, apart from
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the analyses already mentioned in the previous
section, another option arises. Specifically,
regression analysis can be used to detrend the
baseline and intervention phase data
(Allison & Gorman, 1993; Parker et al., 2006)
and the residuals from each phase can be used
for quantifying the immediate effect. Overall,
we consider that two approaches are reason-
able: (a) compute the type of quantification
that represents best the kind of effect
expected, following the logic of randomization
tests (Heyvaert & Onghena, 2014b; Levin
et al., 2021), and/or (b) follow a sensitivity
analysis approach, computing several possible
quantifications and checking the degree to
which their conclusions converge. Whenever
there is a theoretical or empirical basis for any
expectations about the data pattern, we advo-
cate for deciding a priori the focal data fea-
ture and following the sensitivity analysis
approach only for the number of measure-
ments involved. However, in case the
prespecified choice of a test statistic is inap-
propriate (e.g., a mean difference was selected
before gathering the data, but clear trends
appear in the data once collected), then it
would be reasonable to also report the results
using another test statistic, selected a
posteriori. This would be an example of using
visual analysis to validate the results of a statis-
tical analysis (Parker et al., 2006) and it would
require making explicit the fact that the
choice of the (second) test statistic is made a
posteriori and how the results using different
test statistics differ.

Randomization Test Logic
Assessment of Effects in the Presence of
Randomization
Randomization in the design and the use of

randomization tests for analyzing the data
were initially suggested by Edgington (1967,
1996). Afterwards, the strengths of randomiza-
tion tests have been echoed by multiple
authors (Craig & Fisher, 2019; Jacobs, 2019;
Kratochwill & Levin, 2010; Onghena, 1992).
The idea of the proposal is to benefit from the
use of randomization in the design. Specifi-
cally, the type of randomization refers to
selecting at random when to change the
phase, with certain restrictions (i.e., minimum
phase length of 5 as per the WWC standards),
as described by Edgington (1975). On the

basis of the randomization in the design, all
possible divisions of the data (i.e., moments of
phase change) could have taken place and all
are equally likely under the null hypothesis of
no intervention effect. The question that can
be answered via the randomization test is
whether a difference as large as or larger than
the one actually observed is exceptional, given
that the null hypothesis is true. Thus, the
descriptive result (e.g., a mean difference) is
compared to other possible results (e.g., mean
difference for all the admissible points of
change in phase) in order to quantify the
degree to which the former is expected to
happen in absence of an effect. If the proba-
bility is small (e.g., equal to or smaller than
.05), then there is evidence of the statistical
significance of the result.

Caution in the Absence of Randomization
Following the logic of randomization tests, it

is possible to suggest a permutation test
(in the absence of actual random assignment)
in order to perform calculations analogous to
the ones performed when a randomization
test is used. Thus, an exploratory assessment
of the degree to which there is evidence about
an immediate effect is also possible in the
absence of randomization (Edgington &
Onghena, 2007; Onghena et al., 2019). How-
ever, the statistical-conclusion validity relies on
randomization actually taking place in the
design. Therefore, any interpretation of the
p-value resulting from the permutation test
should be made with caution. Nevertheless,
this limitation is also applicable when using
other kinds of statistical tests that rely on ran-
dom sampling which has not actually taken
place.

Test Statistic
When the phases are compared, the differ-

ence is quantified via a test statistic. In terms
of the data aspect that is the focus of the quan-
tification, this test statistic can be a difference
in means, a difference in slopes, or a non-
overlap index (Heyvaert & Onghena, 2014a).
Ideally, the choice of what data aspect to quan-
tify should be based on the expected data pat-
tern: mean difference when stable data are
expected, change in slope when a progressive
linear effect is expected, and a nonoverlap
index in case the measurement of the target
variable is expressed in ordinal terms and an
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interval or ratio scale cannot be assumed. In
terms of the number of data points to include
when computing the test statistic, it is possible
to use all measurements or only some of them
(e.g., the last three of the baseline phase and
the first three of the intervention phase). If
there is no clear justification for choosing a
given number of measurements, a possibility is
to include several possible values and check
the extent to which the results differ.

Numerical Summary
The value computed for the actual point of

change in phase is called “the observed value
of the test statistic”, whereas the values com-
puted for all other admissible points of change
in phase are called “pseudovalues” or “potential
values”. A way to assess the relative size of the
observed value is by ranking all pseudovalues and
the observed value itself in ascending order
(from smallest to largest). From the rank of the
observed value, the randomization p-value can
easily be determined as the proportion of
pseudovalues as large as or larger than the
observed value of the test statistic. If desired, it is
possible to determine whether the observed value
of the test statistic is one of the 5% largest
(if there are at least 20 admissible intervention
start points), or whether it is the largest one.

Combining the Sensitivity Analysis with
Randomization Test Logic
The randomization test logic can be

followed for checking the degree to which the
quantification of the difference between con-
ditions in the focal data feature (e.g., a mean
difference) is among the largest ones that
could have been obtained for all admissible
points of change in phase. Complementarily,
the sensitivity analysis approach can be
followed for checking the degree to which the
extremeness of this quantification is similar
across different operational definitions of the
immediate effect (i.e., different number of
measurements used). Thus, if the quantifica-
tion for the actual point of change in phase is
among the (5%) largest ones and this quantifi-
cation is similarly among the largest ones
regardless of the number of measurements
used for computing, then the evidence for an
immediate intervention effect would be stron-
ger. In summary, the sensitivity analysis with
randomization test (SART) approach can be

conceptualized as a tool for identifying when
changes were most clear and whether the
moment of maximal change warrants a con-
clusion of an immediate effect.

Graphical Representation
The numerical results can be accompanied

by a graphical representation, similar to a his-
togram. In this chart, each admissible point
for change in phase, taking into account possi-
ble restrictions for a minimal phase length
(Edgington, 1996) would be represented on
the abscissa (X-axis). On the ordinate (Y-axis),
the observed value of the statistic and the
pseudovalues are represented, including a hor-
izontal line for 0, representing no difference
between the phases. Positive values (above the
horizontal line) are “favorable” results, that is,
results in line with the expected effect or the
alternative hypothesis. Furthermore, the
observed value of the test statistic is depicted
in green if a favorable result is obtained. It is
depicted in red if an unfavorable result is
obtained.

Correspondence with Conceptual Definitions
Apart from obtaining the rank or the p-

value for the statistic, thanks to the proposed
graphical representation, it is possible to
observe the distribution of the differences and
check around which potential moment of
change the differences are larger. Moreover, it
is possible to identify the specific moment for
which the change is largest. Both these pieces
of information allow assessing whether the
largest change occurs when the intervention is
introduced or the effect is delayed, and by
how many measurement occasions. Therefore,
it is possible to evaluate the quickness of
change, which is well-aligned with most con-
ceptual definitions of immediacy. In contrast,
merely comparing the last three (or in gen-
eral, k) baseline measurements to the first
three (k) intervention phase measurements,
only quantifies an abrupt change in level but
does not inform about quickness.

Illustrations with A-B designs
At this stage, we will present a series of

examples of the SART approach. For the sake
of simplicity, in all examples, we will focus on
the mean level, rather than on trend, variabil-
ity, or overlap. However, in real research, the
appropriate practice would be to choose a test
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statistic (and a focal data feature) prior to
gathering the data, on the basis of the
expected effect of the intervention (Heyvaert
& Onghena, 2014b; Levin et al., 2017),
according to the theoretical background and
the empirical evidence available. Additionally,
in all examples we will assume that the mini-
mum number of measurements per phase is set at
five, following common recommendations (Tate
et al., 2013; What Works Clearinghouse, 2020).
The first illustrative data set is an AB design

with randomly chosen intervention start point
(Winkens et al., 2014). The aim of the study
was to reduce the number of aggressive behaviors
in a person diagnosed with olivo-ponto-cerebellar
ataxia, using a method that entails identifying
antecedent events, target behaviors, and conse-
quent events. Figure 1 represents the raw data,
whereas Figure 2 represents the output of the
SART approach.
The visual inspection of Figure 1 suggests that

there is a clear immediate effect if the last three
baseline measurements are compared to the first
three intervention phase data points. However,
this effect is temporary, as there is a deterioration
in later sessions and also increased variability.
Figure 2 offers a representation of how the

rank of the value of the test statistic varies
according to the number of data points
included from each phase. Specifically, if
three measurements per phase are included,
the value of the test statistic is the largest of all
possible data divisions. In case more than
three or less than three measurements per
phase are used, the results are fairly consistent
in that the value of the test statistic is one of
the largest (although not the largest). When
more measurements are included, there is less
evidence for immediate effect, which agrees
with the inspection of the time series line plot:
The effect is lost with time. Finally, it should
be noted that beyond the immediate effect,
the complete time series resembles noise
(both looking at the time series plot from
Fig. 1 and the bottom right plot from Fig. 2).
The following three datasets were used by

Natesan Batley et al. (2021) illustrating the
Bayesian Unknown Change Point analysis for
three different data patterns. In their article,
these data were named Dataset 1 (Coulter &
Lambert, 2015), Dataset 2 (Macpherson
et al., 2015), and Dataset 3 (Barber et al., 2016).
The data gathered by Coulter and Lambert

(2015) are the percent of correct words read

per minute by participants with a learning dis-
ability. The aim was to increase this target
behavior, using preteaching of keywords. The
raw data are depicted in Figure 3, whereas
Figure 4 represents the output of the SART
approach. The data from Figure 3 suggest an
immediate effect, occurring simultaneously
with the change in phase at measurement
occasion 13. When inspecting Figure 4 we see
that the evidence for an immediate effect is
stronger (i.e., the value of the test statistic is
among the largest one or two) when three or
fewer values per phase are used to compute
the immediate effect. When more values are
used, the immediate effect does not look as
evident. Moreover, all panels of Figure 4 agree
that there is an additional improvement at the
end of the data series, after measurement
occasion 26.

The data gathered by Macpherson et al.
(2015) are the percentage of opportunities in
which verbal compliments occurred, as
expressed by a child diagnosed with autism.
The aim was an increase in this target behav-
ior, using portable video modeling technology.
The raw data are depicted in Figure 5,
whereas Figure 6 represents the output of the
SART approach. The visual inspection of
Figure 5 suggests that the latency of the effect
is two measurement occasions (i.e., it is not
immediate). Moreover, this delayed effect is
not abrupt, but rather somewhat gradual in
that the upper asymptote is not reached ini-
tially at the third intervention phase measure-
ment occasion, but rather at the fourth one.
Accordingly, the SART approach panels in
Figure 6 suggest that the mean difference for
the actual moment of change in phase is not

Figure 1

Winkens et al. (2014) Data
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Figure 2

Results of the Randomized Sensitivity Analysis, Using a Mean Difference as a Test Statistic, for the Winkens et al. (2014) Data
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among the largest ones; the pseudovalues of
the test statistic are larger for later measure-
ment occasions.
The data gathered by Barber et al. (2016)

represent social communication skills of a pre-
school child diagnosed with autism. The aim
was to increase the number of responses, using
peer mediated interventions. The raw data are
depicted in Figure 7, whereas Figure 8 repre-
sents the output of the SART approach. The
visual inspection of Figure 7 suggests that
there is a gradual increase of the target behav-
ior throughout the intervention phase, until
measurement occasion 17 when an apparent
upper asymptote is reached. However, this
gradual improvement appears to be the result
of an already existing improving baseline
trend. The SART approach panels in Figure 8
suggest that the mean difference for the actual
point of change in phase is not among the
largest ones, further emphasizing the lack of
an immediate effect. Actually, the largest
changes are observed if the point of change in
phase were earlier (measurement occasion 6)
or later (measurement occasions 16 or 17).
Finally, when all data are taken into account
(bottom right panel of Fig. 8), it is apparent
that the mean difference remains practically
unchanged for all admissible points of change
in phase, suggesting that there is no clear
effect of the intervention.

Illustration with Methodologically Appropriate
Single-Case Experimental Designs
Description of the Data. For the current

illustration, we use the data from a multiple-

baseline design across participants, as reported
by Laski et al. (1988). Eight children diag-
nosed with autism spectrum disorder partici-
pated, four being nonverbal (see Fig. 9) and
four presenting echolalia (see Fig. 10). The
aim of the study was to increase the children’s
speech by using the Natural Language Para-
digm, and the target behavior is measured as
the percentage of intervals with child vocaliza-
tions. There are two data sets for one of the
nonverbal children: one interacting with the
mother and one with the father. We also use
the data from an ABAB design, replicated
across participants, as reported by Lambert
et al. (2006). The disruptive behavior (quanti-
fied as the number of intervals present) of
four fourth-grade students was studied, with
Condition A representing single-student
responding and Condition B being the
response card treatment. In the Lambert et al.
study, there are four participants in Class A
and five participants in Class B, but for the
current illustration we included only the data
from two participants from Class B (see
Fig. 11). Both data sets have been used in pre-
vious illustrations of data analytical
approaches: Lambert et al. in a Journal of School
Psychology special issue (Shadish, 2014), and
also in Peng and Chen (2018); Laski et al.
(1988) in Hedges et al. (2013), Moeyaert et al.
(2014), and Natesan and Hedges (2017).

Analyses Performed. The analyses consisted
in computing mean differences for each
admissible data division, considering a mini-
mum of three measurement occasions per
phase. The rank of the mean difference for
the actual moment of change in phase was
obtained with lower ranks indicating greater
difference (i.e., the rank of 1 corresponded to
the situation in which the mean difference was
largest for the actual moment of change in
phase). We also noted for which potential
moment of change in phase the mean differ-
ence was largest: it could be the actual one, or
a previous or later moment.

A sensitivity analysis was performed, comput-
ing these mean differences, as well as the
ranks and the moments of largest difference,
for different amounts of data. Specifically, we
compared the results of using one, two, or
three measurements per phase (referring to
the last baseline and the first intervention
phase data points), and using for all the mea-
surements available.

Figure 3

Coulter and Lambert (2015) Data
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Figure 4

Results of the Randomized Sensitivity Analysis, Using a Mean Difference as a Test Statistic, for the Coulter and Lambert (2015) Data
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For the Lambert et al. (2006) data, we per-
formed three comparisons per participant: A1-B1,
B1-A2, and A2-B2. For the Laski et al. (1988) data,
there was one A-B comparison per tier.
In the subsequent section, we represent a

numerical summary of the results, constructed
on the basis of graphical representations simi-
lar to Figures 2, 4, 6, and 8.
Results for the Laski et al. (1988) Data.

Table 1 includes the results for the Laski et al.
(1988) data. The cells are colored in order to
aid the readability. Green cells mark partici-
pants for whom the largest difference was
observed for the actual moment of change in
phase (i.e., nonverbal Participants 2 and 4;
Participants 1, 2, and 4 with echolalia). For
these participants, the evidence for an imme-
diate effect is strongest, especially considering
that the number of measurements used for
computing the mean difference does not
affect the result.
In red are marked the cells that represent

participants for whom the largest mean differ-
ence is for a potential moment of change in
phase that is later than the actual moment.
This is the case for nonverbal Participant
3, for whom the mean difference for the
actual moment of change in phase is among
the largest ones. In contrast, for Participant
3 with echolalia, according to the amount of
data used for computing the mean difference,
the largest difference is observed for either
earlier (cells in orange) or later (cells in red)
potential moments of change in phase. In any
case, the mean difference for the actual
moment of change in phase is among the
smallest ones.
Finally, for nonverbal Participant 1, the larg-

est mean difference is observed for earlier

potential moments of change in phase (cells
in orange), and the actual mean difference is
among the second largest.

Overall, there is evidence for a consistent
immediate effect for three of the four children
with echolalia. For the nonverbal children, the
mean difference for the actual moment of
change in phase is the largest (or one of the
two largest) for all participants, suggesting that
the effect could be considered immediate.

Results for the Lambert et al. (2006) Data.
Table 2 contains the results for Participants B3
and B4 from the Lambert et al. dataset. The
green cells for Participant B3 suggest that
there was an immediate reduction of the tar-
get behavior with the introduction of the inter-
vention (i.e., comparisons A1-B1 and A2-B2),
but there was not an immediate increase of
the target behavior with the withdrawal of the
intervention (i.e., comparison B1-A2). Actually,
the largest increase is taking place in later
measurement sessions (cells in red) in phase
A2. This could be understood as evidence for
a delayed or progressive deterioration, once
the intervention is withdrawn.

For Participant B4, there is no evidence for
an immediate effect, as the largest mean dif-
ference is observed always for potential
moments of change in phase, which are ear-
lier than the actual moment. Moreover, the
mean difference for the actual moment of
change in phase is not among the largest ones.
Thus, any changes in the behavior cannot be
attributed to the change in conditions.

Overall, if we consider only the results for
these two participants (and not for all nine
participants, whose results are reported by
Lambert et al., 2006), the evidence for an
immediate effect is not consistent: partially
present for one of the participants (although
deterioration is rather gradual) and not pre-
sent for the other participant.

Alternative Analyses. It should be noted that
the illustrations presented so far used a mean
difference as a quantification, or test statistic
in a randomization test (if we convert the
ranks to p-values and in case the moment of
change in phase was actually determined at
random). This should not be interpreted as a
recommendation of using only mean differ-
ence as a quantification. We rather echo the
recommendation to choose the test statistic
according to the type of effect expected
(Edgington, 1975), for instance a difference in

Figure 5

Macpherson et al. (2015) Data
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Figure 6

Results of the Randomized Sensitivity Analysis, Using a Mean Difference as a Test Statistic, for the Macpherson et al. (2015) Data
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slope or variability (Levin et al., 2021), or a
delayed effect (Levin et al., 2017). Thus, the
choice of a quantification is based on the
subject-matter knowledge of the kind of target
behavior and the intervention used. In rela-
tion to immediacy, if we consider it a “meta-
aspect”, there could be an immediate change
in level or an immediate change in slope, or
an immediate nonoverlap (if the researcher is
using ordinal data or is not willing to summa-
rize / represent the data via flat mean lines or
trend lines).
Peculiarities Arising from Using Complex

Designs. When applying the SART approach
to designs that are more complex (and more
appropriate than AB), there are two aspects to
be taken into account. On the one hand, a
multiple-baseline or a reversal design can be
decomposed into a series of A-B comparisons,
each of which is first analyzed separately and
afterwards the consistency across all within-
study replications (i.e., all A-B comparisons
within the multiple-baseline or a reversal
design) is assessed. This logic is consistent with
the idea that each A-B comparison can be con-
sidered a “basic effect” (Horner &
Odom, 2014), which is necessary but not suffi-
cient, as the consistency of effects is to be eval-
uated (Kratochwill et al., 2013). Relatedly, the
assessment of consistency of effect has each
A-B comparison as a building block (Tanious
et al., 2020). Similarly, previous recommenda-
tions about how to pool several A-B compari-
sons when assessing intervention effectiveness
have referred to counting the number of posi-
tive results in each A-B comparison and
assessing whether a 3:1 ratio of effects to no

effect is achieved (Cook et al., 2015; Maggin
et al., 2013).

On the other hand, to better understand
the complete data pattern, it is necessary to
consider the possibility that all transitions
between phases are not exactly equivalent in a
reversal design or that a within-subject replica-
tion from a reversal design may not be the
same as a between-subject replication in a
multiple-baseline design. Regarding the rever-
sal designs, it is possible to have an a priori
expectation for an extinction burst (Katz &
Lattal, 2021) during the first A-B comparison
in an ABAB design and the possibility for an
immediate effect in the second A-B compari-
son. Regarding multiple-baseline designs,
between-cases (across-series) comparisons may
be relevant for verification (Carr, 2005; Ferron
et al., 2014), which would entail that it is not suf-
ficient to assess each A-B comparison separately.
However, it has been recently emphasized that
between-cases comparison, typical for concur-
rent multiple-baseline designs, is not a critical
aspect (Ledford, 2022; Slocum et al., 2022).

In order to address and accommodate com-
plexities within the SART approach, two
aspects are crucial: (a) the explicitly stated a
priori expectation (with its justification) about
the kind of effect of introducing or withdraw-
ing an intervention for each participant; and
(b) the evidence obtained regarding the
moment in which the largest change is
observed. The a priori expectation and the
empirical evidence are then compared in
order to assess the degree to which there is
support for a causal inference.

Boundary Conditions When Using Complex
Designs. The SART approach is applicable to
designs that consist of phases (i.e., several con-
secutive measurements in the same condi-
tion), in order to be able to assess when the
largest change is taking place. In that sense, in
an alternating treatment design (which is
expected to be used when target behavior is
susceptible to immediate changes, coinciding
with the rapid change in conditions), the
application of SART would not be possible, as
the common recommendation is for a maxi-
mum of two consecutive measurements per
condition (Kratochwill et al., 2013). A chang-
ing criterion design does include several mea-
surements per condition, but achieving
immediately the criterion level desired may

Figure 7

Barber et al. (2016) Data
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Figure 8

Results of the Randomized Sensitivity Analysis, Using a Mean Difference as a Test Statistic, for the Barber et al. (2016) Data
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not be critical in case the range-bound version
(McDougall et al., 2006) is used, specifying an
acceptable range around this criterion level.
Moreover, the aim may not be to achieve the
pre-established level immediately, but to eventu-
ally achieve a mastery criterion, before changing
the criterion level (Manolov et al., 2020).

Discussion

Assessing Immediacy and Inferring
Causality
Immediate Effects

In order to be able to state that the
observed data pattern is indicative of a causal
effect of the intervention, the explicitly stated
a priori expectations of the researchers are
crucial because in that way observations are
firmly linked to a causal theory or a body of
previous research findings. The researcher
needs to state whether an effect is expected to
be immediate or to have a certain delay/
latency. Such an expectation needs to be justi-
fied on the basis of previous research or the-
ory. The assessment of the potential moment
of change in phase for which the difference is
largest (i.e., the rank is equal to 1) can be
understood as another way of checking
whether the actual moment of change in
phase coincides with the largest difference,
suggesting an immediate effect.

Delayed Effects
It is relevant to consider the possibility of

transition states, involving a change from one
stable state of behavior to another
(Sidman, 1960). A transition state is expected
to start when a change in the conditions is intro-
duced, but this also depends on: (a) the kind of
intervention (e.g., aiming extinction of a behav-
ior by means of no longer rewarding it; fixed-
vs. variable-interval reinforcement schedule),
which affects the perception of the participant
regarding when conditions have changed; and
(b) the moment in which a just-noticeable effect
is produced. A specific kind of transition state,
called “extinction burst” is especially relevant
when referring to immediacy. An extinction
burst entails an immediate effect that is the
opposite of the desired one, in relation to the
use of extinction as intervention to reduce an
undesirable behavior (Katz & Lattal, 2021).

Figure 9

Multiple-Baseline Data for Nonverbal Children, Gathered by Laski
et al. (1988)
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Lack of clarity about the definition of the
beginning and the end of a transition state may
lead to (unnecessarily) discarding data, because
of not knowing whether it belongs to a transi-
tion state or a stable state (Sidman, 1960). The
approach we propose does not entail discarding
data in the beginning of the new condition, due

to unclear assessment of such data (once gath-
ered). In contrast, our approach is based on the
researcher’s expectations regarding whether a
transition state will be present or not. If a transi-
tion state is not expected for the specific interven-
tion and target behavior (on the basis of previous
research), then an immediate effect may be of
interest. If a transition state is expected, then it
may be more relevant to study the latency of the
effect (i.e., for which potential moment of
change in phase is the difference largest).

In relation to delayed effects, it would be
important to assess whether a similar amount of
delay is observed for all A-B comparisons
(i.e., consistency of effects, in a replication within
a case as in an ABAB design or across cases as in
a multiple-baseline design) and whether this delay
is reasonable and does not preclude inferring that
the behavioral change is due to the intervention,
rather than to some extraneous factor.

Finally, apart from studying delayed effects,
it is also possible to obtain evidence that the
behavior change is not related to the interven-
tion, because the largest change takes places
before the introduction of the intervention.

Addressing Uncertainties
The proposal addresses two kinds of uncer-

tainty. The first kind of uncertainty results

Figure 10

Multiple-Baseline Data for Children with Echolalia, Gathered by
Laski et al. (1988)

Figure 11

Replicated ABAB Data (Participants B3 and B4), Gathered by
Lambert et al. (2006)
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from the definitions of immediacy and the differ-
ent number of data points per phase that have
to be included in the calculations. Similarly,
when Sidman (1960) refers to the number of
measurement occasions that need to be consid-
ered when assessing a change (including the
beginning and end of a transition state) in the
target behavior, he emphasizes the importance
of both the number of repeated measurements
available and their spacing, for making such an
assessment possible. Considering that no clear-
cut answer is available, the sensitivity analysis we
propose (in relation to the amount of data used
when quantifying differences) seems justified. A
sensitivity analysis can be performed to assess the
robustness of the immediate effect under differ-
ent situations (i.e., different number of data
points used for the quantification).
The second kind of uncertainty refers to del-

ayed effects. In case there is not enough empiri-
cal evidence to have an expectation about the
amount of delay, the approach proposed can
show for which delay the evidence is strongest.
Overall, in relation to the difficulty to mark

with precision when a transition ends and

stability begins, Sidman (1960) highlights that
“we cannot escape from the continuous tem-
poral properties of a behavioral state by arbi-
trarily selecting discrete observation points.”
(p. 287). The study of latency (i.e., for which
potential moment of change in phase the differ-
ence is largest) is well-aligned with this idea.

Relation to Visual Analysis
In terms of SCED data analysis, the assess-

ment of the intervention effectiveness requires
evaluating the adequacy of the design, the
evaluation of the data gathered (Brossart
et al., 2014) and social validity (Horner
et al., 2005). The evaluation of the data is usu-
ally both visual and quantitative (Tanious &
Onghena, 2021).

Regarding visual analysis, there are three
links with the proposal. First, immediacy is one
of the aspects that is supposed to be inspected
visually (Kratochwill et al., 2013; Ledford
et al., 2019; Maggin et al., 2018) and thus the
topic is relevant for visual analysis. Second,
the main guidance provided so far for the

Table 1

Results for the Multiple-Baseline Designs by Laski et al. (1988) with Five Nonverbal Children and Four Children with Echolalia

Laski - Nonverbal P1 P2 P3Mom P3Dad P4

Number of possible moments of change in phase 8 8 9 11 12
Moment of change - Session # 5 6 7 8 11
Moment of largest difference (1 datum per phase) 9 6 8 10 11
Rank of observed difference (1 datum per phase) 6 1 3 2 1
Moment of largest difference (2 data per phase) 4 6 8 10 11
Rank of observed difference (2 data per phase) 2 1 2 3 1
Moment of largest difference (3 data per phase) 4 6 8 9 11
Rank of observed difference (3 data per phase) 2 1 2 3 1
Moment of largest difference (all data) 4 6 8 8 11
Rank of observed difference (all data) 2 1 2 1 1

Laski - Echolalia P1 P2 P3 P4

Number of possible moments of change in phase 11 9 14 15
Moment of change - Session # 8 8 9 12
Moment of largest difference (1 datum per phase) 8 8 10 12
Rank of observed difference (1 datum per phase) 1 1 14 1
Moment of largest difference (2 data per phase) 8 8 4 12
Rank of observed difference (2 data per phase) 1 1 11 1
Moment of largest difference (3 data per phase) 8 8 12 12
Rank of observed difference (3 data per phase) 1 1 9 1
Moment of largest difference (all data) 8 8 4 12
Rank of observed difference (all data) 1 1 11 1

Note. Cells in green mark comparisons for which the largest difference is observed for the actual moment of change in
phase. Cells in orange mark comparisons for which the largest difference is observed before the actual moment of
change in phase. Cells in red mark comparisons for which the largest difference is observed after the actual moment of
change in phase. Numbers in bold correspond to moments of change in phase.
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assessment of immediacy refers to comparing
the last three baseline measurement occasions to
the first three intervention phase measurement
occasions (Horner & Kratochwill, 2012). However,
there has been no specific visual aid related to this
aspect, as there have been for level, trend, or vari-
ability. We are providing a visual representation
(and a quantification) of one possible way of
assessing immediacy. Third, the visual inspection
of the traditional time-series line graph can be
used to assess the degree to which the researcher’s
expectation about the type of effect (e.g., change
in level) is reasonable considering the data actu-
ally obtained. Thus, visual inspection can be
used as a means for validating the quantitative
approach followed for summarizing numerically
the magnitude of the intervention effect
(Parker et al., 2006).

Repeated Arbitrary Values and Sensitivity
Analysis
The typical number of measurements that

have to be included when assessing imme-
diate effects, as commonly mentioned in the

methodological single-case literature, are 3 to
5 (What Works Clearinghouse, 2017; Wolfe
et al., 2019). Incidentally, the values of 3 and
5 are the same as the ones for the required min-
imal phase lengths in past recommendations
and more recent ones (Tate et al., 2013). These
values are arbitrary and are likely to be overrid-
den by the stability (or lack thereof) in the data
pattern (Barnard-Brak et al., 2021) or by ethical
considerations (Lancioni et al., 2021).

Moreover, the value of 3 is also the same as
the number of replications required for phase
designs, whereas 5 is the number of replica-
tions required for alternation designs
(Kratochwill et al., 2013), but these values are
also arbitrary (Wolery, 2013). Moreover, there
have been some studies discussing the need
for that many replications (Lanovaz &
Turgeon, 2020; Lanovaz et al., 2019).

Finally, 5 is also the number of SCED stud-
ies and 3 is the number of independent
research teams required for establishing an
intervention as an evidence-based practice
(Kratochwill et al., 2013). These values are also
“somewhat arbitrary but they are based on

Table 2

Results for Two of the Participants from Class B, from the Study by Lambert et al. (2006), Each Following an ABAB Design

Lambert - Participant B3 A1-B1 B1-A2 A2-B2

Number of possible moments of change in phase 8 8 11
Moment of change - Session # 8 8 8
Moment of largest difference (1 datum per phase) 8 11 8
Rank of observed difference (1 datum per phase) 1 2,5 1
Moment of largest difference (2 data per phase) 8 11 8
Rank of observed difference (2 data per phase) 1 2 1
Moment of largest difference (3 data per phase) 8 9 8
Rank of observed difference (3 data per phase) 1 4 1
Moment of largest difference (all data) 8 11 8
Rank of observed difference (all data) 1 4 1

Lambert - Participant B4 A1-B1 B1-A2 A2-B2

Number of possible moments of change in phase 10 7 10
Moment of change - Session # 11 8 8
Moment of largest difference (1 datum per phase) 9 5 11
Rank of observed difference (1 datum per phase) 2 5,5 5
Moment of largest difference (2 data per phase) 9 5 6
Rank of observed difference (2 data per phase) 4,5 4 7,5
Moment of largest difference (3 data per phase) 9 5 6
Rank of observed difference (3 data per phase) 4 5 9
Moment of largest difference (all data) 9 4 5
Rank of observed difference (all data) 4 5 7

Note. Cells in green mark comparisons for which the largest difference is observed for the actual moment of change in
phase. Cells in orange mark comparisons for which the largest difference is observed before the actual moment of
change in phase. Cells in red mark comparisons for which the largest difference is observed after the actual moment of
change in phase. Numbers in bold correspond to moments of change in phase.
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both expert judgment and logic” (Hitchcock
et al., 2015, p. 466).
In summary, arbitrary values based on

expert judgment may be useful, but they need
not be considered fixed and immutable. In
that sense, these values are open to discussion
and proposals such as the present one aim to
show the effects of different possible values on
the conclusions regarding the presence of an
immediate effect. Thus, a kind of sensitivity
analysis is performed exploring the extent to
which the evidence of an immediate effect is
sensitive to data analytical choices (Steegen
et al., 2016), or researcher degrees of freedom
(Wicherts et al., 2016).

Implications
Number Crunching and Making Sense of the
Numerical Values
Computing multiple values for multiple

admissible points of change in phase and multi-
ple possible definitions of an “immediate
effect” may look like simple number crunching
and lead potentially to overfitting.1 However,
checking the results for all admissible points of
change in phase makes sense when randomiza-
tion is used in the design and under the null
hypothesis of no intervention effect (i.e., that it
does not matter which is the actual point of
change in phase). Checking the results for dif-
ferent possible definitions of an “immediate
effect” is reasonable in case there is no clear
expectation or justification regarding the num-
ber of measurements to use. It should be noted
that we are not suggesting here to try several
possible operational definitions and to report
selectively only the most favorable one (see
more in the next section). We do consider that
a sensitivity analysis approach may be prefera-
ble to picking an operational definition without
a clear (empirical or theoretical) basis and just
hoping that the conclusions would be correct.
In summary, researchers need to be aware that

their conclusions can be sensitive to the analytical
decisions made (e.g., the way in which immediacy
is operationally defined). In the absence of a gold
standard, such analytical decisions need to be
clearly justified (Tincani & Travers, 2022). If a sin-
gle option cannot be reasonably justified, then

the sensitivity analysis approach (Steegen
et al., 2016) becomes potentially useful.

Understanding of the numerical results can
be enhanced by visually inspecting the time
series plot with the raw data (Kratochwill
et al., 2021; Parker et al., 2006). Such a visual
inspection can help identifying the onset and
offset of the treatment effect, as well as the
degree to which any unwanted or unexpected
variability or trends can affect the quantifica-
tions. Finally, it should be noted that anything
computed needs to be reported, as we further
stress in the following section.

Sensitivity Analysis Approach and Reporting
Immediacy is not the only data aspect that is

susceptible to multiple operational definitions.
As mentioned in the introduction, the same is
the case for overlap (Parker, Vannest, &
Davis, 2011), level (e.g., choosing between a
standardized mean or a percentage change
measure), and trend (Manolov, 2018). There-
fore, it is possible to perform a sensitivity anal-
ysis for each of these data aspects, if they are
chosen to be the focus of the analysis, according
to the type of effect expected. In case a single
operational definition is chosen for the focal
data feature, a justification is required. In that
sense, we echo the recommendation from the
Risk of Bias in N-of-1 Trials methodological qual-
ity scale (Tate et al., 2013) that in the absence
of a clear consensus about the most appropriate
data analytical approach, it is indispensable to
justify the reason for choosing one option over
the other.

A second aspect related to reporting refers
to the need to report the results of all planned
analyses (including test statistics in a randomi-
zation test that were chosen prior to gathering
the data). This would enable avoiding selective
reporting (Kratochwill et al., 2018; Tincani &
Travers, 2018), which is a kind of questionable
research practice that can take place in the
SCED context (Laraway et al., 2019). Relat-
edly, it is worth discussing how to proceed
when the initial expectations are not matched
by the observed data pattern (including the
results of the SART approach). To begin with,
in case the researchers do not have a solid
basis for stating a priori whether the effect of
the intervention should be immediate or not,
they could be explicit about the exploratory
character of their analysis (including an explor-
atory application of the SART approach). In

1In this case it could be understood as identifying an
operational definition of immediacy that is only appropri-
ate (or only leads to large effects) for the data at hand.
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case there are a priori expectations and these
are not met by the observed data pattern
(e.g., the effect is expected to be immediate but
the results suggest it is delayed, or vice versa),
there are four suggested actions to be taken:
(a) be explicit, in the written report, about the
divergence between the initial expectation and
the data pattern observed; (b) explore whether
the kind of effect observed is consistent across
all replications within the study (e.g., all A-B
comparisons that are part of a multiple-
baseline or a reversal design); (c) review the
available evidence from previous research
regarding whether immediate effects have
been previously observed; and (d) frame the
interpretation of the results (in terms of the
strength of the evidence for a causal relation
between the intervention and the changes in
the target behavior) according to the two
previously mentioned aspects: the consis-
tency of the results within the study and the
degree of convergence with previous studies.
Finally, it should be noted that following the

SART approach when assessing immediacy
entails checking qualitatively the congruency
of the results, and it is not equivalent to the
multiple randomization testing procedure
presented by Tanious, De, and Onghena
(2019). These authors proposed testing for
several effects simultaneously, while keeping
the Type I familywise error rate under control.

Limitations
Despite the illustrations using mean differ-

ence, it should be noted that the SART
approach is not restricted to focusing on level.
We reiterate the importance of choosing the
kind of quantification according to the
expected effect (or data pattern), as com-
monly recommended in the context of ran-
domization tests (Edgington, 1975; Levin
et al., 2021). In the current text we did not
provide details on how to select the appropri-
ate quantification, but we here direct the
interested reader to several potentially useful
sources. For instance, if a regression (includ-
ing multilevel) model is used, Moeyaert, Ugille,
et al. (2014) and Natesan Bateley and Hedges
(2021) provide indications on model building.
For a nonparametric measure such as Tau
(Parker, Vannest, Davis, & Sauber, 2011, see also
Tarlow, 2017, for an alternative), Fingerhut et al.
(2021) provide indications about how to choose

one of the possible versions. When a randomiza-
tion test is used, given that the test statistic can be
chosen by the researchers, the discussion by
Levin et al. (2021) is useful. Finally, covering sev-
eral possible quantifications, including the ones
previously mentioned in the current paragraph,
Manolov et al. (2022) offer suggestions regarding
the choice of a quantification according to the
design and the expected data pattern.

In relation to any potential criticism directed
towards p-values (e.g., Branch, 2014; J. Cohen,
1994), it should be noted that a p-value could be
understood simply as the degree to which the
observed difference is extreme, considering all
possible differences (all potential moments of
change in phase) and is just another way of
expressing the rank that would be assigned to
the actually observed difference. Thus, the focus
would be placed on the rank of the quantifica-
tion of immediate effect obtained for the actual
moment of change in phase: The evidence for
an immediate effect will be stronger whenever
the rank is close to 1, regardless of the number
of potential changes in phase. Therefore, the
main use of the SART approach would be to
compare whether the initial expectations
(regarding whether the effect should be imme-
diate) are matched by the results (regarding the
moment of largest difference): Such a use is not
bound to statistical power, as the aim is not nec-
essarily to achieve p ≤ :05. However, having few
measurements entails having a smaller sample
of the target behavior and few potential
moments of change in phase, which may com-
promise obtaining clear distinctions between
immediate and delayed effects, and changes
taking place before the introduction of the
intervention.

Future Research
In future research, we consider that a simu-

lation study could be useful to inform about
the statistical power of a randomization test
using (a) different number of measurements
when computing the test statistic; and (b), differ-
ent test statistics (i.e., with different focal data
features). Furthermore, a field test in a research
domain where immediate effects are expected
could be performed to obtain evidence regard-
ing whether the conclusions of studies usually
vary according to (a) the number of measure-
ments used when computing immediate effects;
and (b) the focal data feature.
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Another line of research could focus on the
way in which the SART approach can be inte-
grated with (and contribute to) meta-analysis.
As ad hoc suggestions, we can point at the pos-
sibility to count, for each study, whether the a
priori expectations are well-aligned with the
evidence from applying the SART approach.
This could lead to a simple form of quantita-
tive integration known as “vote-counting”.
Other options, related to randomization tests
(although not specific to the SART approach),
include the quantitative integration of the
values of the test statistic (which can be effect
size indices) or the combination of probabili-
ties (Onghena et al., 2018).
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