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Abstract 

Background: Endometrial cancer (EC) is the most frequent malignancy of the female genital tract worldwide. Our 
study aimed to construct an effective protein prognostic signature to predict prognosis and immunotherapy respon-
siveness in patients with endometrial carcinoma.

Methods: Protein expression data, RNA expression profile data and mutation data were obtained from The Cancer 
Proteome Atlas (TCPA) and The Cancer Genome Atlas (TCGA). Prognosis-related proteins in EC patients were screened 
by univariate Cox regression analysis. Least absolute shrinkage and selection operator (LASSO) analysis and multi-
variate Cox regression analysis were performed to establish the protein-based prognostic signature. The CIBERSORT 
algorithm was used to quantify the proportions of immune cells in a mixed cell population. The Immune Cell Abun-
dance Identifier (ImmuCellAI) and The Cancer Immunome Atlas (TCIA) web tools were used to predict the response 
to immunochemotherapy. The pRRophetic algorithm was used to estimate the sensitivity of chemotherapeutic and 
targeted agents.

Results: We constructed a prognostic signature based on 9 prognostic proteins, which could divide patients into 
high-risk and low-risk groups with distinct prognoses. A novel prognostic nomogram was established based on the 
prognostic signature and clinicopathological parameters to predict 1, 3 and 5-year overall survival for EC patients. The 
results obtained with Clinical Proteomic Tumor Analysis Consortium (CPTAC), Human Protein Atlas (HPA) and immu-
nohistochemical (IHC) staining data from EC samples in our hospital supported the predictive ability of these proteins 
in EC tumors. Next, the CIBERSORT algorithm was used to estimate the proportions of 22 immune cell types. The 
proportions of CD8 T cells, T follicular helper cells and regulatory T cells were higher in the low-risk group. Moreover, 
we found that the prognostic signature was positively associated with high tumor mutation burden (TMB) and high 
microsatellite instability (MSI-H) status in EC patients. Finally, ImmuCellAI and TCIA analyses showed that patients in 
the low-risk group were more inclined to respond to immunotherapy than patients in the high-risk group. In addi-
tion, drug sensitivity analysis indicated that our signature had potential predictive value for chemotherapeutics and 
targeted therapy.
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Background
Endometrial cancer (EC) is the most common gyneco-
logic malignancy of the female genital tract in the world 
[1]. Although the incidence of EC is increasing, outcomes 
for patients are favorable because of the early symptoms 
of irregular vaginal bleeding, which trigger patients to 
seek care when the cancer is at an early stage [2]. How-
ever, the mortality rate for EC has increased more quickly 
than the incidence rate, with an estimated 76,000 deaths 
among women each year worldwide [3]. This increased 
disease mortality is associated with advanced stage, 
aggressive histology and metastasis [4]. It is difficult to 
reliably identify the patients with EC who are at the high-
est risk of recurrence and apply effective therapeutics. 
Despite advances in multidisciplinary and multi-institu-
tional collaboration, progress and success with the devel-
opment of prognostic markers remain limited. To date, 
there are no reliable biomarkers or predictive models to 
precisely predict the survival of EC patients [5]. To fur-
ther improve the outcomes of EC patients overall, pre-
dictive and prognostic signatures to identify high-risk 
patients are critical.

EC consists of a heterogeneous group of tumor cells 
and proteins with distinct characteristics. Anatomi-
cal classification offers limited information for evaluat-
ing patient outcomes, and the response to treatment 
is difficult to predict by this system. Recent studies 
have demonstrated that proteins play critical roles in 
the pathogenesis and progression of EC [6]. With the 
development of high-throughput technologies, mass 
spectrometry-based proteomics allows the reclassifica-
tion of cancer and may influence prognosis and guide 
clinical decision-making [7]. At present, proteomic and 
molecularly guided management of EC lags behind most 
other cancers [8]. Recently, protein-based prognostic 
signatures according to public databases have attracted 
wide attention and revealed huge potential in prognosis 
prediction for cancer patients [9–12]. Considering the 
importance of proteomics and the immune microenvi-
ronment in the carcinogenesis and progression of EC, the 
identification of a protein prognostic signature is neces-
sary to provide novel insights into the biological behav-
iors of EC and benefit clinical treatments.

The use of newly developed proteomics technolo-
gies and bioinformatics approaches to investigate EC 
has provided unprecedented insight into cancer biology 

and treatment efficacy [13]. The Cancer Proteome Atlas 
(TCPA) database is an open-access bioinformatics data 
repository based on mass spectrometry that can quan-
titatively evaluate vast amounts of protein markers in 
thousands of samples in a fast, sensitive and cost-effec-
tive high-throughput way. Screening proteins of potential 
prognostic value is a key step for predicting the prognosis 
of patients and identifying new therapeutic targets. The 
current challenge is to check whether specific molecu-
lar characteristics can be matched for patient prognosis 
and therapeutics [14]. In this study, we established a pro-
tein-based prognostic signature to predict the individual 
prognosis of EC. To validate the prognostic signature, we 
investigated its efficiency and accuracy in the training 
and testing sets. The results obtained with Clinical Pro-
teomic Tumor Analysis Consortium (CPTAC), Human 
Protein Atlas (HPA) and immunohistochemical (IHC) 
staining data from EC samples in our hospital supported 
the predictive ability of these proteins in EC tumors. In 
addition, immune cell infiltration and the tumor muta-
tion burden (TMB) associated with this signature were 
explored. Our study demonstrated and proved that the 
protein-based prognostic signature can be applied in the 
clinical prognosis of EC patients. Importantly, our study 
provided a new approach for predicting the response to 
treatment, including immunotherapy, chemotherapy and 
targeted therapy, in EC patients.

Methods
Data collection
The protein expression data of EC were retrieved from 
TCPA (https:// www. tcpap ortal. org/ tcpa/). RNA-seq 
expression profile data (HTSeq-FPKM) were down-
loaded from the TCGA data portal (https:// portal. gdc. 
cancer. gov/ cart). The corresponding clinical data, includ-
ing age, survival time, tumor grade, clinical stage and 
microsatellite instability (MSI) status, were downloaded 
from the TCGA portal. Patients were randomly divided 
into a training set and a testing set at a ratio of 5:5 using 
the “caret” package. The distributions of clinical stage, 
follow-up time, age, and death rate were similar between 
the two datasets (Table S1). The training set was used to 
identify the prognostic proteins and establish the pro-
tein-based prognostic signature, and the testing set was 
used to validate its prognostic capability.

Conclusion: Our study constructed a novel prognostic protein signature with robust predictive ability for survival 
and efficiency in predicting the response to immunotherapy, chemotherapy and targeted therapy. This protein signa-
ture represents a promising predictor of prognosis and response to cancer treatment in EC patients.

Keywords: Endometrial carcinoma, Proteomics, Prognostic signature, Tumor-infiltrating immune cells, Treatment

https://www.tcpaportal.org/tcpa/
https://portal.gdc.cancer.gov/cart
https://portal.gdc.cancer.gov/cart


Page 3 of 17Lai et al. BMC Cancer          (2022) 22:325  

Construction of the protein prognostic signature
To explore the possible proteins in relation to progno-
sis for EC patients, univariate Cox proportional hazard 
regression analysis was used to identify the relationship 
between prognostic proteins and OS in the training set, 
and p < 0.05 was considered to be statistically significant. 
After that, using the “glmnet” package [15, 16], prognostic 
proteins were evaluated by the least absolute shrinkage 
and selection operator (LASSO) to minimize overfitting 
and identify the most significant prognosis-related pro-
teins. To choose the penalty parameter λ, tenfold cross-
validation was conducted on the training set. The optimal 
penalty parameter was defined as the value within one 
standard deviation of the minimum cross-validated par-
tial likelihood deviance to obtain the best model. A sub-
set of proteins was obtained by shrinking the regression 
coefficient using a penalty proportional to their size. The 
proteins with nonzero regression coefficients were cho-
sen for subsequent multivariate Cox regression analyses. 
Next, the regression coefficient obtained by multivariate 
Cox regression analysis was multiplied by the expres-
sion level of each protein to construct the protein-based 
prognostic signature. The following formula based on the 
combination of regression coefficient and protein expres-
sion level was used to calculate the risk score: Risk scor
e =  expressionprotein1 × βprotein1 +  expressionprotein2 × βprotei

n2 + ⋯ +  expressionprotein x × β protein x, where β represents 
the coefficient index and x is the number of proteins. The 
risk score was calculated based on this model for each 
patient in the training set and testing set. Patients were 
divided into high-risk or low-risk groups according to the 
median value of risk scores.

Performance assessment
The efficiency and sensitivity of survival prediction based 
on the risk score was verified by receiver operating char-
acteristic (ROC) curve analysis. We calculated the area 
under the curve (AUC) at 1, 3 and 5 years using the “sur-
vival ROC” package and evaluated the significance of the 
survival difference between the high-risk and low-risk 
groups. Kaplan–Meier survival curve analysis was used 
to analyze the overall survival (OS) between the high-risk 
and low-risk groups. The concordance index (c-index) 
was applied to assess the accuracy of this signature in the 
training, testing and total sets. We calculated the C-index 
through bootstrap resampling to estimate model accuracy 
using the “dplyr”, “rms”, “survival” and “pec” R packages.

Identification of prognostic factors and predictive 
nomogram construction
To identify independent prognostic parameters and 
to validate the independent prognostic value of the 

prognostic signature and clinicopathological param-
eters, including age, survival time, tumor grade, clini-
cal stage and MSI status, univariate and multivariate 
Cox regression analyses were performed in the train-
ing and testing groups. After testing for collinearity, 
we formulated a prognostic nomogram consisting of 
all independent prognostic factors and relevant clini-
cal parameters based on multivariate Cox regression 
analysis. The predictive accuracy of the nomogram was 
tested by presenting the difference between actual sur-
vival and predicted survival using a calibration plot.

Verification of prognostic protein expression
The UALCAN website (http:// ualcan. path. uab. edu/ cgi- 
bin/ ualcan- res. pl) is the Clinical Proteomic Tumor Anal-
ysis Consortium (CTPAC) database data mining platform 
that provides the proteins expression level of EC patients. 
Human Protein Atlas (HPA) provides the protein level 
of prognostic proteins in tumor and normal tissues. For 
IHC studies, 100 formalin-fixed paraffin-embedded 
(FFPE) tumor samples of EC patients were obtained from 
the pathology department of the Second Affiliated Hos-
pital of Fujian Medical University from January 01, 2011 
to December 01, 2021. The diagnosis and clinical stage of 
EC were determined according to the International Fed-
eration of Gynecology and Obstetrics (FIGO) guidelines. 
Antibodies against ER (SP1; Roche) and PR (1E2; Roche) 
were used in this study. The expression of ER-α and PR 
proteins was determined by scoring the percentages of 
positive rate (ranging from 0 to 100%) tumor cells. This 
study was approved by the Ethics Committee of The Sec-
ond Affiliated Hospital of Fujian Medical University. The 
need for written informed consent was waived due to the 
retrospective nature of this study.

Estimation of tumor‑infiltrating immune cells
The CIBERSORT algorithm was used to quantify the pro-
portions of immune cells in a mixed cell population [17]. 
The RNA-Seq (FPKM format) of EC samples was ana-
lyzed to obtain the abundance ratio matrix of 22 immune 
cells in each sample, including macrophages (M1 mac-
rophages, M2 macrophages, and M0 macrophages), T 
cell types (T follicular helper [Tfh] cells, resting memory 
CD4 + T cells, activated memory CD4 + T cells, γδ T 
cells, CD8 + T cells, Tregs, and naïve CD4 + T cells), rest-
ing natural killer (NK) cells, activated NK cells, resting 
mast cells, activated mast cells, memory B cells, resting 
dendritic cells (DCs), activated DCs, naïve B cells, mono-
cytes, plasma cells, neutrophils and eosinophils [18]. 
The CIBERSORT results of samples with p < 0.05 indi-
cated that the inferred fractions of immune cell popula-
tions produced by CIBERSORT were accurate and were 

http://ualcan.path.uab.edu/cgi-bin/ualcan-res.pl
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eligible for further analysis. The CIBERSORT output esti-
mates were normalized, and immune cell type fractions 
were summed up to one.

TMB analysis
The mutation data of EC patients were downloaded from 
the TCGA data portal. The data were stored in the form 
of Mutation Annotation Format and processed by Var-
Scan software. The “maftools” package was used to ana-
lyze and summarize these mutation data [19]. For each 
EC patient, we calculated the tumor mutation burden 
(TMB) score as follows: (total mutation/total covered 
bases) ×  106 [20].

Prediction of immunotherapy response
Immune Cell Abundance Identifier (ImmuCellAI) is 
a computational method published in 2020 to predict 
the response to immune checkpoint blockade based on 
the abundance of immune cells, particularly different T 
cell subsets [21]. The abundance of infiltrating immune 
cells was calculated by ImmuCellAI and used to develop 
the response prediction model. The immunotherapy 
response prediction model was developed using a sup-
port vector machine with the radial basis function kernel. 
The Cancer Immunome Atlas (TCIA) web tool provides 
the results of comprehensive immunogenomic analyses. 
Tumor immunogenicity was quantitatively scored from 0 
to 10 and was named the immunophenoscore (IPS). The 
IPS could be applied to predict the response to immune 
checkpoint inhibitors [22].

Assessment of the sensitivity of chemotherapy 
and molecular drugs
To estimate the risk score in predicting the response to 
chemotherapy and molecular drugs, the “pRRophetic” 
R package was applied to calculate the half-maximal 
inhibitory concentration (IC50) of samples between the 
low-risk and high-risk groups. According to clinical rec-
ommendations, chemotherapeutic and molecular drugs 
such as paclitaxel, docetaxel, cisplatin, doxorubicin, 
PI3K/Akt/mTOR inhibitors and VEGF inhibitors were 
selected as candidate drugs. The IC50 between the low-
risk and high-risk groups was compared by the Wilcoxon 
signed-rank test.

Statistical analysis
Statistical analyses were performed using R software 
(version 3.6.3). All tests were two sided, and a p value 
of less than 0.05 was considered statistically significant 
unless stated otherwise. The survival curves were com-
pared using the Kaplan–Meier method, and the log-rank 
test was used to evaluate the statistical significance of 
the survival rates between different groups. The hazard 

ratio (HR) and 95% confidence interval were calculated to 
identify genes related to OS. The Mann–Whitney U test 
was used to compare the differences between two groups. 
The predictive accuracy of the risk signatures was deter-
mined by ROC curves.

Results
Construction of a proteomic signature from the training 
set
The workflow of our study is shown in Fig. 1. The whole 
dataset was divided into a training set (n = 200) and a 
testing set (n = 199). The training set was used to build 
the protein prognostic model, and the testing set and 
whole dataset were used to validate the prognostic 
model. To screen prognosis-related proteins, univari-
ate Cox regression analysis was conducted to assess the 
prognostic characteristics of 223 proteins from the 
TCPA database. After screening, 45 proteins were iden-
tified to show a remarkable correlation with OS in the 
training set (p < 0.05) (Fig.  2a). Next, LASSO penal-
ized Cox regression was applied to reduce the prognos-
tic proteins, and tenfold cross-validation for penalty 
parameter selection is shown in Fig. S1a. Finally, 9 
prognostic proteins with nonzero regression coeffi-
cients were included in the multivariate Cox regression 
analysis. We calculated the risk score of each patient 
based on the coefficient of each prognostic protein: Risk 
score = (-1.72179 × X1433EPSILON) + (0.02186 × Chk2-
pT68) + (-0.1646 × ER alpha) + (0.08018 × F ibr one ctin) + 
(-0.14603 × PR) + (0.10249 × EPPK1) + (-0.05177 × Anne
xin 1) + (-0.71246 × Myosin IIA) + (0.15701 × p16INK4a 
1). The forest plot of HR showed that X1433EPSILON, 
ER-alpha, PR, Annexin 1, and Myosin IIA were favora-
ble prognostic proteins and that Chk2-pT68, Fibronec-
tin, EPPK1, and p16INK4a were unfavorable prognostic 
proteins (Fig.  2b). Principal component analysis (PCA) 
showed that the prognostic signature could clearly cat-
egorize EC patients into two groups in both the training 
set (Fig. 2c) and testing set (Fig. 2d).

Assessment the performance of the protein prognostic 
signature
EC patients in the training set were divided into a high-
risk group (n = 100) and a low-risk group (n = 100) 
according to the median risk score. Patients belonging 
to the low-risk group had a significantly better prognosis 
than patients in the high-risk group. Survival curve anal-
ysis showed that the low-risk group had longer OS than 
the high-risk group (Fig. 3a). The AUC for the immune-
related risk signature was 0.784, 0.843 and 0.796 at 1, 3 
and 5 years for OS (Fig. 3b). Patients in the training set 
appeared to have an increased mortality rate with an 
increase in risk scores according to the risk plot. In the 
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high-risk group, Chk2-pT68, Fibronectin, EPPK1, and 
p16INK4a proteins were upregulated, while X1433EP-
SILON, ER-alpha, PR, Annexin 1, and Myosin IIA were 
downregulated (Fig. 3c).

Subsequently, we used the testing set (n = 199) and the 
total dataset (n = 399) to verify the accuracy of the sig-
nature. As expected, the Kaplan–Meier survival curves 
showed that OS was significantly longer in the low-
risk group than in the low-risk group in the testing set 
(Fig. 3d). The ROC analysis showed that the 1-, 3- and 
5-year AUC values were 0.779, 0.783, and 0.719, respec-
tively (Fig.  3e). The distribution of the risk score, sur-
vival status, and expression of 9 proteins in the testing 
set were similar to those in the training set (Fig. 3f ). For 
the total set, remarkable survival differences between 
the high-risk and low-risk groups were also verified 
(Fig.  3g), and the ROC analysis showed that the 1-, 3- 
and 5-year AUC values were 0.766, 0.808, and 0.755, 
respectively (Fig. 3h). The risk curve and protein profile 
heatmap showed similar characteristics to those of the 
training set and the testing set (Fig. 3i). In addition, the 
C-index of the prognostic signature was greater than 0.7 

(Fig. S1b). These results indicated that the protein sig-
nature may be used as a prognostic biomarker for EC 
patients.

Construction of a predictive nomogram based 
on the prognostic signature
To assess the independent prognostic force of the 
prognostic signature, both univariable and multivari-
able Cox proportional hazard regression models were 
applied in the training and testing sets. The results 
from univariable and multivariable analysis dem-
onstrated that the prognostic signature could be an 
independent predictor after other variables, including 
age, grade, stage and TMB status, were adjusted in the 
training set (Fig. 4a), testing set (Fig. S2a) and total set 
(Fig. S2b). To construct a suitable tool for clinical prac-
tice, we established a prognostic nomogram to predict 
1-, 3- and 5-year OS using the protein prognostic sig-
nature and the independent clinicopathological factors 
we found above (Fig.  4b). The calibration curve dem-
onstrated optimal predictive accuracy between predic-
tive and actual values for the probabilities of 1-, 3- and 

Fig. 1 The workflow of this study
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5-year survival, indicating the good ability to distin-
guish most survival outcomes at these time points 
(Fig. 4c). In particular, it is worth mentioning that the 
AUC of the protein signature was better than that of 
the existing clinicopathological characteristics, includ-
ing age, grade, stage and MSI status (Fig.  4d). These 
results revealed that the predictive nomogram had 
good accuracy in predicting the survival of patients 
with EC.

Furthermore, we validated the performance dif-
ferences between our signature and other previously 
reported gene signatures in EC. The AUC of present 
protein signature for 1, 3 and 5 year OS prediction was 
higher in comparison with Hu’s signature [23], Huang’s 
signature [24], Liu’s signature [25] and Qin’s signature 
[26] (Fig. S3a). Our model had the highest C-index 
value compared to other reported models (Fig. S3b). 
Notably, a forest plot showed that our protein signa-
ture was more powerful in predicting the prognosis of 
EC patients than other published prognostic signatures 
(Fig. S3c). These data indicated that the power of our 
prognostic signature seemed better than that of other 
previously reported studies.

Clinical relevance assessment and construction 
of the protein coexpression network
We performed clinical correlation analysis to explore 
the correlation between 9 prognostic proteins, risk 
score and clinical characteristics in EC patients. We 
found that the risk score was significantly increased 
in patients with high-grade and high-stage tumors 
(Fig.  5a-b). The correlation analysis showed that the 
expression of EPPK1 and p16INK4a was increased in 
older patients (≥ 65  years), and Annexin 1 and Myo-
sin IIA were more highly expressed in younger patients 
(< 65  years) (Fig.  5c). ER-alpha and Annexin 1 expres-
sion levels were higher in early-stage tumor tissues 
than in advanced-stage tumor tissues, while Chk2-
pT68 and p16INK4a exhibited the opposite features 
(Fig. 5d). Other results of the clinical correlation analy-
sis are shown in Fig. S4. Next, we carried out protein 
coexpression analysis for all 9 proteins, and 27 identi-
fied proteins with correlation coefficients > 0.4 and a p 
value < 0.001 were identified. All of these proteins are 
shown in the Sankey diagram (Fig. 5e). The correlation 
of the proteins included in the prognostic signature is 
displayed in Fig. 5f, in which ER-alpha and PR showed 

Fig. 2 Construction of a prognostic signature from the training set. a Volcano plot of 45 proteins that were significantly associated with OS in EC. 
The red dots represent high-risk proteins, while the green dots indicate low-risk proteins. b Forest plot of the multivariate Cox regression analysis in 
the training set. c Principal component analysis based on the expression level of 9 prognostic proteins in the training set. d Principal component 
analysis based on the expression level of 9 prognostic proteins in the testing set
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the strongest positive correlation, while ER-alpha and 
fibronectin showed the strongest negative correlation.

Verification of the expression levels of prognostic proteins
We analyzed the expression of 9 prognostic proteins in 
EC and normal tissue from the CPTAC database. The 
ER-alpha, PR and Annexin 1 protein expression levels 
were increased in normal tissue compared with EC tis-
sue, while the expression of Chk2-pT68, EPPK1 and 

p16INK4a was lower in normal tissue (Fig. 6a). In the 
HPA data, compared with normal tissues, Chk2-pT68, 
EPPK1 and p16INK4a were expressed at medium to 
high levels in tumor tissues, while the expression of 
ER-alpha, PR and Annexin 1 was significantly down-
regulated in EC tumors (Fig.  6b). In addition, immu-
nohistochemistry (IHC) was applied to evaluate the 
expression levels of ER-alpha and PR in EC patients. 
IHC staining data from 100 clinical samples in our 

Fig. 3 Assessment of the predictive power of the prognostic signature. a Kaplan–Meier analysis of OS in the high-risk and low-risk groups in the 
training set, d testing set and (g) total set. b Time-independent ROC analysis of risk scores for predicting OS in the training set, (e) testing set and (h) 
total set. c The distribution of risk scores, survival status and expression level of 9 prognostic proteins in the training set, (f) testing set and (i) total set
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hospital indicated that medium to high levels of ER-
alpha and PR expression were present in the early stage 
(FIGO Stages I and II), while low to medium levels of 
expression were observed in advanced stage patients 
(FIGO Stages III and IV) (Fig. 6c).

Association of the prognostic signature and tumor 
infiltrating immune cells
To investigate the correlation of the prognostic sig-
nature with tumor infiltrative immune cells in EC 
samples. The CIBERSORT algorithm was used to 

Fig. 4 Identification of independent prognostic factors and establishment of the nomogram. a Univariate and multivariate Cox regression analyses 
to verify the prognostic values of various clinicopathological factors and risk scores. b A nomogram based on the prognostic signature consisting of 
risk score and clinical factors. c Calibration plot for evaluating the predictive accuracy of the nomogram at 1-, 3- and 5-year survival. d ROC analysis 
of the performance of the proteomic signature and clinicopathological factors
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quantify the proportions of immune cells in each EC 
sample. The proportions of CD8 T cells, T follicular 
helper cells and regulatory T cells were higher in the 
low-risk group, while M2 macrophages, monocytes 
and activated dendritic cells showed a higher den-
sity in the high-risk group (Fig. 7a). In addition, high 
infiltration of CD8 T cells, T follicular helper cells 
and regulatory T cells was correlated with prolonged 
OS by Kaplan–Meier analysis (Fig.  7b), which was 
consistent with previous results showing that a low 
risk score was associated with better prognosis. Cor-
relation analyses of immune cells and the risk score 
system indicated that the infiltration regulatory T 
cells were negatively correlated with the risk score 
system, while macrophage M2 and activated den-
dritic cells were positively correlated with the risk 
score system (Fig.  7c). Taken together, these results 
indicated that the risk score system might negatively 
reflect the infiltration level of effector T cells in PC 
tumors, which are responsible for adaptive antitumor 
immunity.

TMB, MSI and immunotherapy responsiveness 
with prognostic signature correlations 
between the prognostic signature and TMB and MSI status
To evaluate the relationship between the prognostic sig-
nature and TMB, we analyzed the mutation profile of EC 
patients. A summary of the overall mutation profile of EC 
patients is shown in Fig. 8a. The top five mutated genes 
in EC patients were PTEN, PIK3CA, ARID1A, TP53 and 
TTN. The mutations were classified according to the 
variant effect predictor; among these mutations, mis-
sense mutations were the most common, and the most 
common mutation type was SNPs (Fig. S5a). The TMB 
value in the low-risk group was higher than that in the 
high-risk group (Fig.  8b). Furthermore, high TMB was 
associated with more favorable outcomes in EC patients 
(Fig. S5b). By analyzing the association between the 
risk score and MSI status, we found that the risk score 
was significantly decreased in MSI-H patients (Fig.  8c). 
Patients with MSI-H had a better prognosis than those of 
patients with MSS or MSI-L (Fig. 8d). Tumor mutational 
burden (TMB) and MSI status were promising predic-
tive biomarkers for treatment with immune checkpoint 

Fig. 5 The relationship between 9 prognostic proteins, the risk score and clinical characteristics. a The scatter plot shows the correlation between 
the risk score and tumor stages. b The scatter plot shows the correlation between risk score and tumor grade. c The expression of EPPK1, p16INK4a, 
Annexin 1 and Myosin IIA was related to age in EC patients. d The expression of ER-alpha, Annexin 1, Chk2-pT68 and p16INK4a was significantly 
associated with cancer stage. e Sankey diagram of all proteins related to 9 proteins in the TCPA database (correlation coefficient > 0.4) (p < 0.001). (F) 
The corelationship of 9 proteins in the prognostic signature. * p < 0.05, ** p < 0.01, *** p < 0.001



Page 10 of 17Lai et al. BMC Cancer          (2022) 22:325 

Fig. 6 The relationship between 9 prognostic proteins, the risk score and clinical characteristics. a Protein level of prognostic proteins in EC tumor 
tissues and normal tissues. b Representative protein expression levels of ER-alpha, PR, Annexin 1, Chk2-pT68, EPPK1, p16INK4a and ASNS explored 
in the HPA database. c IHC staining data of ER-alpha and PR expression levels from 100 clinical samples in our hospital. * p < 0.05, ** p < 0.01, *** 
p < 0.001
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inhibitors. These results suggested that the prognostic 
signature was significantly associated with TMB and MSI 
status, which has the potential to predict the response to 
immune checkpoint inhibitors.

Predicting response to immunotherapy in patients with EC
Finally, we evaluated the potential immunotherapy 
response in each patient by the ImmuCellAI algorithm. 

The results showed that patients in the low-risk group 
(76%, 153/201) were more likely to respond to immune 
checkpoint blockade than were patients in the high-
risk group (63%, 127/202) (Fig. 9a). In addition, the risk 
score was lower in the responders than in the nonre-
sponders (Fig.  9b). The Kaplan–Meier curve showed 
better survival in the responder group than in the 
nonresponder group (Fig. S5c). In addition, we further 

Fig. 7 Association of the prognostic signature and tumor infiltrating immune cells. a Violin plot comparing the proportions of immune cells 
between the high-risk and low-risk groups. b Survival curves obtained by the Kaplan–Meier method indicated that high proportions of CD8 T cells, 
T follicular helper cells and regulatory T cells were significantly associated with prolonged OS. c Correlation matrix of 22 immune cells and the risk 
score system
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applied TCIA to predict the susceptibility of patients 
to immunotherapy. We found that the low-risk group 
had a higher IPS than that of the high-risk group, which 
meant that the low-risk group may be more sensitive 
to immune checkpoint inhibitors (Fig.  9c-d). Taken 
together, these results indicated that the prognostic sig-
nature could predict the potential response to immuno-
therapy in EC patients.

In addition, we also evaluated the relationship between 
the model and the sensitivity to chemotherapy and tar-
geted therapy for EC patients. Our results showed that 
the IC50 values of paclitaxel, cisplatin and doxorubicin 
were significantly higher in samples of the low-risk 
group than in those of the high-risk group (Fig.  10a). 

Interestingly, the high-risk group demonstrated much 
higher sensitivity to the AKT inhibitor VIII, VEGFR 
inhibitor (pazopanib) and mTOR inhibitor (temsiroli-
mus) than that of the low-risk group (Fig.  10b). These 
results indicated that the risk score had potential predic-
tive value for chemotherapy and targeted therapy.

Discussion
At present, almost all risk stratification systems in 
EC use a composite of histology, stage and grade. 
Recent studies have shown that cancers of the same 
stage and histology have distinctive molecular and 
genomic profiles [8]. Proteogenomic expression data 
have enabled a comprehensive understanding of the 

Fig. 8 Association of the prognostic signature with TMB and MSI status. a Summary of the overall mutation profile of EC patients. b The scatter plot 
shows the correlation between the risk score and TMB value of EC patients. c Violin plot of the association of MSI status and risk score. d Kaplan–
Meier curves showed that MSI-H patients had a favorable prognosis in EC patients
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prognosis of cancer. Although the application of 
next-generation sequencing (NGS) makes the analy-
sis of RNA and DNA levels popular in clinical oncol-
ogy, it is worth noting that most genes need to play 
a role at the protein level. Systematic investigation 
of protein expression profiling provided an essen-
tial approach to uncover interactions between the 
immune system and tumor components in patients, 
providing useful information for cancer prognosis 
or guiding treatment decisions. The proteomics sig-
nature has been widely studied in various tumors, 
including renal cell carcinoma, head and neck squa-
mous cell carcinoma, colorectal cancer, hepatocel-
lular carcinoma, lung squamous cell carcinoma and 
bladder urothelial carcinoma. However, to date, there 

are relatively few studies exploiting the role of prot-
eomic models in EC patients.

In this study, we acquired 45 prognostic proteins 
based on univariate regression analysis. Then, we used 
the LASSO-Cox algorithm to develop a prognostic 
signature composed of 9 proteins and calculated the 
risk score for each patient. Patients were divided into 
high-risk and low-risk groups by the risk scores of the 
prognostic signature. EC patients in the low-risk group 
showed a longer OS than those in the high-risk group 
in both the training and testing sets. The accuracy 
of the signature prediction for 1, 3, and 5  years of the 
three sets was more than 0.7. These results proved its 
accurate prediction ability and indicated that the sig-
nature was a potential prognostic tool for EC patients. 

Fig. 9 The low-risk group may be more sensitive to immunotherapies. a The differences in response results to immunotherapy between low-risk 
and high-risk groups. b The scatter plot shows the correlation between immunotherapy responsiveness and risk score in EC patients. c The relative 
probabilities of responding to anti-CTLA-4 antibody in the low-risk and high-risk groups. d The relative probabilities of responding to anti-PD-1/
PD-L1 antibody in the low-risk and high-risk groups
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Compared with a single biomarker, the combination 
of multiple proteins showed better predictive efficacy. 
In addition, the prognostic nomogram consisting of a 
9-protein signature and clinicopathological factors may 
enable medical practitioners to determine individual 
patient prognosis. Our results also showed that the 
performance of the protein signature in predicting the 
prognosis of EC patients was better than the previously 
published signatures. Furthermore, we also compare 
proteins identified in our study with previous studies. 
There was no overlap proteins among these studies. 
These prognostic proteins or genes were enriched in 
several molecular pathways. The prognostic signature 
based on transcriptome dataset may lead some bias as 
our signature derived from proteomic data.

Among these 9 proteins in our prognostic signa-
ture, 4 proteins (Chk2-pT68, Fibronectin, EPPK1, and 

p16INK4a) were associated with risk factors, and 5 pro-
teins (X1433EPSILON, ER-alpha, PR, Annexin 1, and 
Myosin IIA) were related to protective factors. Our 
study found that high expression levels of Chk2-pT68 
and p16INK4a were related to higher tumor grade, clini-
cal stage and microsatellite stability, which were asso-
ciated with a lower OS rate of EC patients. Chk2 is an 
enzyme that is a key component of the DNA damage 
response. These data were in conflict with other studies 
where Chk2 protein was shown to be a tumor suppres-
sor and to act as a good prognostic indicator in other 
tumor types [27, 28]. These distinct associations with 
patient prognosis may be explained by the complex 
function of Chk2 and its complicated interactions with 
other key cancer proteins. p16INK4a is a tumor suppres-
sor protein that has a crucial role in the process of cel-
lular senescence in progenitor cells [29]. The increased 

Fig. 10 a Evaluation of the sensitivity of chemotherapy drugs between the high-risk and low-risk groups based on the IC50 values of paclitaxel, 
cisplatin and doxorubicin for EC patients. b Differences in molecular drug sensitivity between the high-risk and low-risk groups based on IC50 
values of AKT inhibitor VIII, VEGFR inhibitor (pazopanib) and mTOR inhibitor (temsirolimus)
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expression of p16INK4a in the high-risk group in this 
study indicated the importance of cellular senescence in 
tumor progression. Correspondingly, we also observed 
that higher expression levels of ER-alpha and Annexin 
1 were related to lower tumor grade, clinical stage and 
microsatellite stability. ER-alpha is a member of the ster-
oid/nuclear receptor superfamily and functions as a sig-
nal transducer and transcription factor to regulate target 
gene expression. Studies with EC and breast cancers have 
shown that a high expression level of ER-alpha was asso-
ciated with a favorable prognosis and a good response to 
treatment [30, 31]. These findings were consistent with 
our results that EC patients with high levels of ER-alpha 
had a longer OS. Furthermore, IHC staining in EC tis-
sues of our hospital demonstated that high expression of 
ER-alpha and PR were positively correlated with FIGO 
Stages. Compared to those of EC from patients with 
advanced stage, ER-alpha and PR expression in EC from 
patients with early stage were significantly increased. 
Annexin 1 belongs to the annexin family, which plays 
important roles in inflammatory modulation and the 
immune response [32]. The loss of Annexin 1 expression 
in esophageal cancer, prostate cancer and breast cancer 
was correlated with metastasis and poor prognosis [33, 
34]. Therefore, our results may suggest that Annexin 1 
may serve as a negative biomarker in cancer development 
and in the progression of EC.

Studies based on immune infiltrating cell composition, 
immune microenvironment and immunotherapeutic 
targets have been applied and conducted in clinical tri-
als [35–37]. To obtain better insights into the functional 
roles of the immune cell infiltration of EC, the relation-
ships between the protein-based prognostic signature 
and immune cell infiltration were investigated. Our 
results showed that CD8 T cells, T follicular helper cells 
and regulatory T cells were higher in the low-risk group, 
which indicated that the high infiltration of immune 
cells may contribute to a good prognosis. The micro-
environment of EC cells settles in diverse cell types, 
including endothelial cells, fibroblasts, myofibroblasts, 
and immune and inflammatory components. Dynamic 
reciprocity between tumor cells and immune cells plays 
a crucial role in tissue homeostasis and tumor growth 
[38]. Several studies have demonstrated that tumor-
infiltrating immune cells are associated with prognosis 
in EC [39, 40]. Our results proved the upregulation of 
antitumor immune activity in the low-risk group, which 
partially explained the predictive value of the prognostic 
signature.

Cancer immunotherapy, which works by activating the 
systemic immune response or restoring tumor-induced 
immune deficiencies, has been successful in treat-
ing a variety of malignancies [41]. Immune checkpoint 

inhibitors targeting the PD-1/PD-L1 pathway were 
reported to be effective in advanced or metastatic EC 
patients in several case reports [42, 43]. A recent clini-
cal trial investigating the effect of pembrolizumab in 
advanced EC patients showed that partial response was 
achieved in 3 patients [44]. However, only a minority of 
patients benefited from immunotherapy. Findings in 
selected cancer types, including EC, suggested that TMB 
may predict the clinical response to immune checkpoint 
inhibitors [45, 46]. Budczies et al. reported that high TMB 
was positively correlated with MSI-H status and related to 
good survival in EC patients [47]. Consistent with these 
results, in this study, we found that the low-risk group 
had a higher TMB value, and EC patients with a high 
TMB had a significantly better prognosis. Furthermore, 
we found that MSI-H was negatively correlated with the 
risk score and improved survival outcome in EC patients. 
These results might partly explain why patients in the 
low-risk group possessed better survival than those in 
the high-risk group. In addition, our results implied that 
the risk score model may be a good predictor of immu-
notherapy. Cytotoxic chemotherapeutic agents including 
paclitaxel, doxorubicin and cisplatin were first line drugs 
for EC patients. In present study, we found that high-risk 
group exhibited more sensitive to chemotherapy in com-
parison to low-risk group by using the GDSC database. 
Recently, targeted therapies including PI3K/Akt/mTOR 
inhibitors and VEGF inhibitor have been confirmed to 
play an important role in the treatment of EC patients. 
Interestingly, our results also demonstrated that the 
low-risk group was more sensitive to the AKT inhibitor, 
mTOR inhibitor and VEGF inhibitor. These results further 
support the potential of the prognostic protein signature 
to predict treatment sensitivity for EC patients.

However, there were a few limitations in our study. 
First, this signature was developed based on publicly 
available datasets. The lack of external independent vali-
dation resulted in limited clinical value of our model. 
Future work needs to validate the signature using clini-
cal samples of our hospital. Second, molecular biology 
experiments should be carried out to explore potential 
functions of these proteins and clarify the underlying 
molecular mechanism of the proteomic signature.

Conclusions
In summary, we constructed a valid prognostic protein 
signature to predict the prognosis of EC patients. The 
prognostic signature was closely associated with high 
TMB and MSI-H status and provided potential thera-
peutic targets for the improvement in treatment in EC 
patients. We also demonstrated that the prognostic sig-
nature had reliable potential to predict the response to 
immunotherapy, chemotherapy and targeted therapy.
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