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Abstract: This paper presents a novel method to compensate for hysteresis nonlinearities 

observed in the response of a tactile sensor. The External Loop Adaptation Method (ELAM) 

performs a piecewise linear mapping of the experimentally measured external curves of the 

hysteresis loop to obtain all possible internal cycles. The optimal division of the input 

interval where the curve is approximated is provided by the error minimization algorithm. 

This process is carried out off line and provides parameters to compute the split point in real 

time. A different linear transformation is then performed at the left and right of this point 

and a more precise fitting is achieved. The models obtained with the ELAM method are 

compared with those obtained from three other approaches. The results show that the ELAM 

method achieves a more accurate fitting. Moreover, the involved mathematical operations 

are simpler and therefore easier to implement in devices such as Field Programmable Gate 

Array (FPGAs) for real time applications. Furthermore, the method needs to identify fewer 

parameters and requires no previous selection process of operators or functions. Finally, the 

method can be applied to other sensors or actuators with complex hysteresis loop shapes. 

Keywords: tactile sensors; asymmetrical hysteresis nonlinearity compensation 

 

OPEN ACCESS 



Sensors 2015, 15 26171 

 

 

1. Introduction 

Tactile sensors are arrays of force sensing units or taxels. They are used in robotics to detect contact 

with objects [1–3], for instance in handling applications to improve the dexterity of artificial robotic 

hands [4,5]. Many different approaches have been proposed to make these sensors. Most of them are 

based on piezoresistive [6–8] or capacitive principles [9–11], although other transduction principles such 

as optical [12] or piezoelectric [13] have also been exploited. However, all these sensors show common 

errors in its operation such as hysteresis, nonlinearity and mismatching [14,15], so it is necessary to 

compensate these errors to obtain a more precise response. In addition, this compensation has to be 

carried out in highly demanding real time tasks, so smart tactile sensors with local electronics powerful 

enough to process the large amount of data from the sensor array in real time are required. The authors 

have proposed smart tactile sensors with local electronics based on FPGAs [16,17]. These devices 

consist of logic blocks and dedicated modules that allow the implementation of complex arithmetical 

operations, and their main advantage is the parallel execution of processes [18]. Therefore, this approach 

seems suitable to implement the compensation algorithms in real time control tasks. However, the 

complexity of the involved mathematical operations affect the speed and consumption of power and 

system resources, so another significant goal is to reduce both as much as possible. 

Virtually all sensors and actuators based on smart materials present undesired complex hysteretic 

nonlinearities when driven with sufficiently high amplitudes. To compensate for these nonlinearities, as 

in piezoelectric actuators, many efforts have been made including the feed-forward control as the most 

common approach [19,20]. The main idea of this compensation is to develop a mathematical model of 

the hysteresis that can be inverted; the inverted model can then be connected in cascade before the 

actuator input in order to obtain a linearized response. Likewise, in the case of using a tactile sensor, the 

inverted model can be placed after the sensor output to compensate the hysteretic behavior and obtain a 

linearized output. In the case of working with a sensor array, it is also possible to reduce the mismatching 

between different taxels, since all their outputs are equilibrated at the same time as the hysteresis is 

compensated. Therefore, the goal is to obtain an accurate model of hysteresis of the sensor and 

compensate for all these errors. 

The hysteresis modeling methods commonly used are phenomenological. Other physics-based 

models require complex differential equations which need high computing power and a long resolution 

time, so they are more difficult to implement in the local electronics of smart sensors [21]. However, the 

phenomenological methods are built from experimental data without considering the physical properties 

of the actuators or sensors [22]. The most common method to compensate for hysteresis in actuators and 

sensors is the Preisach model [23,24]. This model is difficult to implement due to the large amount of 

data required to achieve a good approximation. The Prandtl-Ishlinskii model (PI) [25,26] is a subclass 

of the Preisach model that has become popular because, unlike the Preisach, its inverse can be calculated 

analytically and its implementation is much simpler. The classical model of Prandtl-Ishlinskii (CPI) 

approaches the sensor response with a weighted sum of hysteresis play operators [27] but it can only be 

used to model symmetrical hysteresis curves. In order to model asymmetrical hysteresis loops, different 

alternatives have been proposed such as the generalized model of Prandtl-Ishlinskii (GPI) [28], which is 

based on the use of two different envelope functions to combine with play operators. As a special case 

of this GPI model, a Prandtl-Ishlinskii model that combines two different asymmetrical play operators 
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is proposed in [29] to independently characterize the ascending and descending branches of a 

piezoelectric actuator hysteresis loop. Another alternative for the modeling and compensation of the 

asymmetrical hysteresis nonlinearities is a modified Prandtl-Ishlinskii model (MPI) described in [30], 

which replaces the linear input function of the classical play operator by a generalized input function 

based on a third-order polynomial. We can also find hysteresis compensation methods based on the use 

of two dominant continuous functions, one ascending and another descending, which converge to a 

turning point without memory saturation [31,32]. The dominant functions here are built from high order 

polynomials, and the whole model is built from these functions through a nonlinear transformation of 

the coordinate axis (herein we call it POLY model). 

This paper presents a new method to model and compensate hysteresis nonlinearities based on the 

adaptation of the external loop (herein we call it ELAM). It is a phenomenological model, which builds 

two continuous and monotonic curves, one increasing and the other decreasing, from linear interpolation 

of the experimentally measured hysteresis external loop. From these two curves, all internal hysteresis 

loops are approximated using a different procedure depending on whether it is in an increasing or 

decreasing branch. Moreover, the approximation is made in two intervals defined by a so called split 

point, with different adaptations of the external loop in each interval. In order to evaluate the 

effectiveness of the method, the accuracy of the proposed model is compared with that achieved by other 

methods referred to above. The methods used for this purpose are the generalized model  

of Prandtl-Ishlinskii (GPI), the modified model of Prandtl-Ishlinskii (MPI) and that based on  

polynomial fitting [28,30,31]. 

A discussion about the number of parameters to be estimated in each model, the computational 

complexity, and the achieved accuracy is undertaken. The ELAM model is shown as the most accurate 

method, so its inverse is calculated and the hysteresis nonlinearities of the complete tactile sensor array 

are compensated. The results confirm that it is a very efficient method to be implemented in real-time 

control systems using smart tactile sensors. The ELAM method is also applicable to all types of 

hysteresis loops obtained from other sensors or actuators, and it can provide more accurate models than 

other methods when the hysteresis loops show complex shapes. 

The remainder of this paper is organized as follows. Section 2 shows the tactile sensor and the set-up 

used to obtain the experimental data. Section 3 explains the different modeling hysteresis methods used 

to compare with that proposed. Section 4 introduces the so called ELAM method. Section 5 deals with 

the parameter identification of the models. Section 6 shows the results and related discussions. Finally, 

some concluding remarks are provided in Section 7. 

2. Experimental Section 

2.1. PCB Based Sensor 

The tactile sensor used in this article consists of a set of electrodes and addressing tracks fabricated 

on a flexible printed circuit board (PCB). Atop of these electrodes, a thin film of conductive polymer, 

such as piezoresistive material is placed. Specifically, a conductive water-based ink of this polymer is 

deposited by spin-coating technique on a flexible plastic sheet, obtaining a smooth, homogeneous and 

conductive thin film [33,34]. The most interesting thing about this process is that it is cheap and allows 
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the manufacturing of flexible and low cost tactile sensors. The sensor consists of 16 × 16 taxels and a 

spatial resolution of 2.54 mm. Figure 1 shows a section view and a top view of a taxel, besides a picture 

of the complete array of the tactile sensor. The resistance between two electrodes associated to each taxel 

changes when the exerted force against the taxel changes. The readings of the whole tactile array are 

registered by means of well-known interface electronics [33] designed to achieve a good static 

performance, so electro-mechanic relays are used to implement the switches to select the rows as the 

array is scanned. The data acquisition is achieved with the NI-USB 6259 device from National 

Instruments (National Instruments Corporation, Austin, TX, USA). Sixteen analog inputs are 

multiplexed to scan up to 16 × 16 taxels in our testing platform. 

 

Figure 1. Tactile sensor based on a flexible printed circuit board. 

In order to measure the hysteresis of the tactile sensor based on a PCB, a sequence of uniform 

pressures on the entire matrix of the tactile sensor is exerted. Six consecutive loading-unloading cycles 

with different points of return for the same ascending curve (see Figure 2a), and with different starting 

points to rise from the same descending curve (see Figure 2b), are applied. Thus, the descending and 

ascending behavior of the sensor are respectively characterized. The cycles are performed with an 

increase of 2 psi between pressures, and in Table 1 the pressure sequences are shown. These hysteresis 

curves represent the average of the output produced by all of the tactile sensor taxels after repeating each 

cycle five times. The time interval between the new pressure level being exerted and voltage  

output being registered by the acquisition board is 2 s. The platform of pneumatic calibration  

Tekscan PB100E (Teckscan Inc., South Boston, MA, USA) (Figure 3a) is used to apply the uniform 

pressures over the tactile sensor matrix. In order to quantify the hysteresis exhibited by the sensor, the 

hysteresis error as the difference in sensor output voltage to the same applied pressure is identified when 

these pressures are exerted on the ascending and descending branches of the cycles. The maximum and 

average hysteresis errors are referenced to the highest output value to obtain a percentage of the error 

relative to full scale. The maximum error due to hysteresis is 25.3% of full scale output, while the average 

error is 10.0% of full scale out. In Figure 2c, the frame obtained at a pressure of 40 PSI is shown as an 

example to illustrate the mismatching of the output obtained with the taxels of the tactile sensor. 
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Table 1. Pressure sequences to measure hysteresis loops of the tactile sensor based on a 

printed circuit board (PCB). 

Pressure Sequence to Measure Descending Curves (see Figure 2a): 

PSI: 0 60 0 50 0 40 0 30 0 20 0 10 0         

Pressure Sequence to Measure Ascending Curves (see Figure 2b): 

PSI: 0 60 10 60 0 60 20 60 0 60 30 60 0 60 40 60 0 60 50 60 0 

 

Figure 2. (a) Descending behavior of hysteresis curves; (b) Ascending behavior of 

hysteresis curves; (c) Mismatching presented by the tactile sensor at a pressure of 40PSI. 

2.2. Measurement Setup 

In order to analyze the behavior of the tactile sensor output two different measurement platforms are 

used. The first is based on a pneumatic commercial equilibration/calibration device (Tekscan PB100E 

Teckscan Inc., South Boston, MA, USA [35]) (see Figure 3a) to obtain readings of the whole tactile 

matrix under the same uniform pressure. The sensor is placed in a slot of a chamber where one side is 

rigid and the other is a flexible wall. When the chamber is pressurized the wall exerts an even pressure 

on the sensor. An electro-valve Pneumax 171E2N.T.D.0009 (Pneumax S.p.a., Milano, Italy) [36], which 

allows the flow from a compressor, is added to set the desired pressure selected in a computer software.  

The second platform is used to register the sensor response to pressure exerted by an object with a 

known shape on the sensor surface. A piece of fabric between the object and the sensor was added to 

improve the contact. With the purpose of applying a force on the object, a motorized platform is used, 

which is composed of a T-NA08A50 linear actuator ( Zaber, Vancouver, BC, Canada) and two T-LA60A 

actuators of Zaber Technologies (Zaber, Vancouver, BC, Canada) [37] (see Figure 3b). The T-NA08A50 

actuator (Zaber, Vancouver, BC, Canada) allows a force to be exerted on the z-axis, while the T-LA60A 

actuators allow movement of the platform along the x and y axes. One sensor Nano17 from ATI Industrial 

Automation (ATI Industrial Automation, Apex, NC, USA) [38] was added at the tip of the motor in the 

vertical direction to register the actual force exerted on the objects and then on the sensor. 
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Figure 3. (a) Pneumatic commercial setup Tekscan PB100E; (b) Motorized stage. 

3. Hysteresis Models 

Figure 4 illustrates the procedure to compensate the hysteresis followed by the four methods that are 

compared in this paper. The pressure exerted against a taxel is identified by p(t), and v(t) is its output 

voltage. H(p(t)) represents the output with the corresponding measured hysteresis at the sensor. The goal 

is to find a model Hm(p(t)) which fits the experimental data H(p(t)) with the greatest possible accuracy, 

low computational cost, and which can be inverted to obtain Hm
−1(v(t)). Once this model is inverted, it 

is possible to obtain pm(t) which ideally is equal to p(t). Each of the four methods to compare uses a 

different mathematical expression of Hm(p(t)) and employs a number of parameters which must be 

identified by an error minimization method (see Section 5). 

 

Figure 4. Hysteresis compensation scheme for a tactile sensor. 

The parameter identification process will identify the set of parameters that configure each of the 

hysteresis models Hm(p(t)) which are compared in this study. Due to the fact that they are 

phenomenological models, a set of M samples of measured output values of the tactile sensor {y(t1),…, 
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y(tj),…y(tM)} are used to computationally derive the vector of parameters X minimizing the following 

error function [39]. 

      
2

1

M

m j j

j

J X y t y t


   (1) 

where ym are the samples of the output of each hysteresis model Hm(p(t)) with 1 j M  . In the next 

sections the models for Hm(p(t)) are called HGPI(p(t)), HMPI(p(t)), HPOLY(p(t)) and HELAM(p(t)), and their 

output values are named  GPIy t ,  MPIy t ,  POLYy t  and  ELAMy t  respectively. 

3.1. Generalized Prandtl-Islinskii Model (GPI) 

The generalized model of Prandtl-Ishlinskii (GPI) [28] provides a model for H(p(t)) in the scheme of 

Figure 4, which we call HGPI(p(t)). This model is derived from a weighted superposition of a set of 

generalized play operators with different threshold values r with 
 0Rr . Since the hysteresis curve of 

the sensor (see Figure 2a) is asymmetrical, it is necessary to use these generalized operators  

(see Figure 5a) instead of classical play operators (see Figure 5b). Note that an increase of input 

corresponds to an increase of output along the curve l , while a decrease of input corresponds to a 

decrease of output along the curve r . Both curves can be different, so that asymmetrical loops have to 

be modeled. The only conditions are that these so called envelope functions, l  and r , be monotone 

and continuous functions with l rr r    . 

 

Figure 5. (a) Generalized play operator; (b) Classical play operator; (c) OSP operator;  

(d) Dominant curves. 

If a finite number n of operators is used [28], the output of the generalized Prandtl-Ishlinskii model 

can be approximated, by the expression. 

where p(r) is the density function and H is the generalized play operator in Figure 5a defined from the 

envelope functions l  and r  as 

          , , max ,min ,
ir i l i r iH x t H x y r x r x r y      (3) 

with y as the output value of the generalized play operator for the previous value of x. 

      
0

( ( ))
i

n

GPI GPI i r

i

H p t y t p r H x t


    (2) 
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Therefore, the generalized Prandtl-Ishlinskii model will be obtained from the set of parameters X that 

define the envelope functions l  and r , the density function p(r) and the threshold values of the  

play operators r. The GPI model output  GPIy t  is used in Equation (1) to obtain the parameters X  

(see Section 5). 

3.2. Modified Prandtl-Ishlinskii Model (MPI) 

The modified Prandtl-Ishlinskii model (MPI) uses the classical play operators for modeling 

asymmetrical hysteresis such as the one presented by our tactile sensor (see Figure 2a). Although the 

classical Prandtl-Ishlinskii model (CPI) can only model symmetrical hysteresis curves, this MPI model 

proposes replacing the linear input function of the CPI model by a generalized input function. Thus, the 

asymmetric hysteresis nonlinearities can be determined, not only by the weighted superposition of a set 

of classical play operators but also by the generalized input function [30]. The main advantages of this 

model relative to the GPI are, as it continues using the classical play operators, that the mathematical 

description is simpler, the number of parameters to be identified is smaller and its inverse can be 

calculated analytically from the inverse of CPI model. 

The classical Prandtl-Ishlinskii model (CPI) [27] is based on the combination of classical play 

operators (see Figure 5b) with different thresholds r. The modification of the play operator by a one-side 

operator (OSP) is proposed in [30] when the sensor or actuator only works with positive excitation 

signals. Then, the play operator (OSP) (see Figure 5c) is expressed as 

       , , max ,min ,
iOSPr OSP i iH x t H x y r x r x y    (4) 

Using a finite number n of OSP operators the output of the MPI model is 

      
0

( ( )) ( ( ))
i

n

MPI MPI i OSPr

i

H p t y t g x t b r H x t


     (5) 

where   1( )( )i i i ib r p r r r  , p(r) is a density function and the function g(x(t)) replaces the linear input 

function 0 ( )p x t  in the CPI model to achieve the modeling of asymmetric hysteresis [30]. 

3.3. Polynomial Based Model (POLY) 

Methods have been proposed to compensate the hysteresis using mathematical structures that are not 

built with play operators. This is the case of the model described in [31], which is based on the 

construction of the model of hysteresis of a piezoelectric actuator from the external curves of the 

hysteresis data. This external loop consists of an ascending dominant curve when the input values 

increase, and a descending dominant curve when the input values decrease. All ascending curves 

converge at one point called upper target point, while all descending curves converge on the same lower 

converging point (see Figure 5d). The rest of the hysteresis curves can adopt their shape from these 

dominant curves, which can be expressed as two monotonically continuous functions, fra(x) and frd(x), 

respectively. Third-order polynomials to implement these dominant functions are proposed in [31], so 

in this paper, we call this model POLY. 

The ascending curve function for any ascending trajectory starting from point 1 1( , )x y  and ending at 

point 2 2( , )x y , is 
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1
_ 1 0

0

( ) ( ( (1 ) )) ( ))
( ) ( )

u
POLY a ra u ra

ra u ra

y y
y x y f m x m x f x

f x f x


       


 (6) 

where 0 1( ) / ( )u um x x x x   , 0 0( , )x y is the lower converging point and ( , )u ux y  is the upper 

converging point of the dominant curves (see Figure 5d). 

Similarly, the descending curve for any trajectory starting point 1 1( , )x y  and ending at point 2 2( , )x y , is 

0 1
_ 1 0

0

( ) ( ( (1 ) )) ( ))
( ) ( )

POLY d rd rd u

rd rd u

y y
y x y f n x n x f x

f x f x


       


 (7) 

where 0 0 1( ) / ( )un x x x x   . 

The output of the model can be expressed as 

_ 1

_ 1

( ( )) ( ) ( )
( ( )) ( (t))

( ( )) ( ) ( )

POLY a i i

POLY POLY

POLY d i i

y x t if x t x t
H p t y x

y x t if x t x t






  


 (8) 

4. External Loop Adaptation Model (ELAM) 

The analysis of the GPI, MPI and POLY methods exposed in the latter sections, shows the presence 

of play operators, exponential functions, logarithmic, hyperbolic tangent, exponentiation and high 

degree polynomials, which anticipate a complicated implementation in devices such as FPGAs. 

Therefore, development of a method based on simple mathematical operations is essential to achieve 

fast and efficient real time tactile sensors. Furthermore, if one considers the possibility of working with 

arrays with a large number of taxels (for example, 16 × 16 = 256), each of which must be compensated 

in real time with its own model of hysteresis, depending on the application, compensation should be 

performed as fast as possible or with minimal resource consumption and high accuracy. 

4.1. Direct External Loop Adaptation Model 

The newly proposed approach is based on an adaptation of the external loop of the hysteresis curves 

to build all the inner hysteretic cycles. Linear interpolation of experimental data from this external loop 

(see Figure 2) is done to obtain the so called pattern curves, one for the ascending external trajectory and 

another for the descending external trajectory, so we call them aP  and dP  respectively. The adaptation 

is made by piecewise linear mapping of the pattern curves into the input interval of the internal target 

curves. Figure 6 illustrates the linear mapping of a generic pattern curve P between ( , )iP iPx y  and 

( , )fP fPx y  into the target interval defined by the points ( , )iT iTx y  and ( , )fT fTx y  to obtain the target curve T. 

For each input value Tx  in [ , ]iT fTx x , the corresponding value Px  in [ , ]iP fPx x  obtained by linear 

mapping is: 

( ) ( )
( , , , , )

( )

fP iP T iT

P P T iT fT iP fP iP

fT iT

x x x x
x X x x x x x x

x x

  
  


 (9) 

Now ( )P Py P x  in [ , ]iP fPy y  is mapped into Ty  in [ , ]iT fTy y  as 

( ) ( )
( ) ( , , , , )

( )

P iP fT iT

T T T P iT fT iP fP iT

fP iP

y y y y
y T x Y y y y y y y

y y

  
   


 (10) 
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Figure 6. General linear mapping of a pattern curve P into a target curve T. 

A key aspect of the ELAM model is that the target curve is split into pieces and the mapping in 

Equations (9) and (10) is done in each piece. It has been split into two segments in this work that are 

defined by the split point ( , )s sx y  with iT s fTx x x   and iT s fTy y y  . As a first simple approach, we 

propose the following linear expressions to find the split point: 

( )s fT iT iTx x x x     (11) 

( )s fT iT iTy y y y     (12) 

where 0 1   and 0 1  . The location of this point is determined by an error minimization 

algorithm as explained below, and the parameters   and   are the same for all target curves. This 

strategy allows different mappings to be performed at the left and right of the split point to achieve a 

more accurate fitting of the curve. 

Figure 7a,b illustrate the construction of the descending and ascending trajectories respectively of the 

hysteresis loops with the ELAM method. As shown in Figure 2a, all descending hysteresis curves 

converge at the same point ( 0 0( , )x y  in Figure 7). Similarly, all ascending curves in Figure 2b converge 

at the same target point ( ( , )u ux y  in Figure 7). The target subcycles are formed by one descending curve, 

dT  in Figure 7a, and another ascending curve, aT  in Figure 7b. For the construction of internal hysteresis 

loops, it is necessary to know the starting points of aT  and dT , which we call ( , )m mx y  and  

( , )M Mx y , respectively. 
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Figure 7. (a) Construction of descending curves for ELAM model; (b) Construction of 

ascending curves for ELAM model. 

Moreover, the split point divides each trajectory into two segments. Specifically, the descending curve 

dT  is composed of _d rT  and _d lT  (see Figure 7a) as 

 
 

 
_

_ 0

d r sd M

d

d l sd

T x x x x
T x

T x x x x

 
 

 

 (13) 

The coordinates of the split point ( , )sd sdx y  can be expressed from Equations (11) and (12) as 

sd d Mx x   (14) 

sd d My y   (15) 

with 0[ , ]sd Mx x x  

In order to obtain _ ( )d rT x  and _ ( )d lT x  in Equation (13), the linear mapping in Figure 6 is carried out 

by replacing the initial and final values of the pattern curve P and of the target curve T in the  

Equations (9) and (10) (see Figure 6), by the initial and final values corresponding to the pattern curve 

and the target curve used in the construction of each of the segments. To do this, another split point has 

to be established in the pattern curve. From inspection of the experimental curves, it is set to 

( , ( ))sd d sdx P x  for the descending curve, i.e., the split points of both the pattern and target curves share 

the x coordinate. 

Therefore, since the descending curve begins at the returning point ( , )M Mx y , and converge to the 

point 0 0( , )x y  in Figure 7a, if sd Tr Mx x x  , dP  is mapped to the trajectory _d rT  and the output value is 

obtained from Equations (9) and (10) respectively through the expressions. 

( ) ( )
( , , , , )

( )

u sd Tr sd
Pr P Tr sd M sd u sd

M sd

x x x x
x X x x x x x x

x x

  
  


 (16) 

and 
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   _

( ) ( ( ) ( ))
( ), , , ( ),

( ( ))

M sd d Pr d sd
Tr d r Tr T d Pr sd M d sd u sd

u d sd

y y P x P x
y T x Y P x y y P x y y

y P x

  
   


 (17) 

On the other hand, if 0 Tl sdx x x   the curve dP  is mapped to the trajectory _d lT  from the  

Equations (9) and (10) to obtain (see Figure 7a) 

and 

Note that the operation to the left of the split point is simply the scaling of the pattern curve. 

The output values in Equations (17) and (19) depend on the coordinates of the split point ( , )sd sdx y  , 

which depend on d  and d  in Equations (14) and (15). An error minimization algorithm can fit the 

experimental data of the internal cycles in the values provided by Equations (17) and (19) using d  and 

d  as parameters to estimate. This is done as explained in Section 5, and once d  and d  are estimated, 

the coordinates of the split point are readily obtained from Equations (14) and (15) for any other possible 

descending curve in an internal cycle and the whole descending trajectory is given by Equations (17) 

and (19). 

Similarly, the ascending curve aT  begins at the point of return ( , )m mx y  and converge to the point 

( , )u ux y  (see Figure 7b), and it is composed by _a rT  and _a lT  as 

 
 

 
_

_

a r sa u

a

a l m sa

T x x x x
T x

T x x x x

 
 

 

 (20) 

In this case, the adaptation of the curve aP  from the external loop to the desired trajectory aT  is 

performed. The split point ( , )sa sax y  is calculated as 

with [ , ]sa m ux x x . Note that the parameter 1a  introduces here a quadratic dependence of the split point 

location on the length of the interval [ , ]m ux x  that improves the fitting of the target ascending curves. In 

this trajectory, the linear dependence given in Equation (11) does not provide an accurate enough model, 

so the next level of complexity to try is the quadratic dependence. Moreover, the split points of the 

pattern curve aP  and the target curve aT  are ( , )saP sax y  and ( , )sa sax y  respectively, where saPx  is 

obtained from ( )a saP saP x y , as Figure 7b illustrates. Therefore, both split points do not now share the 

same x coordinate as in Figure 7a, but the same y coordinate. 

For sa Tr ux x x  , the pattern curve aP  is mapped into the target curve _a rT  (see Figure 7b) from the 

Equations (9) and (10) respectively, so we obtain 

( ) ( )
( , , , , )

( )

u saP Tr sa
Pr P Tr sa u saP u saP

u sa

x x x x
x X x x x x x x

x x

  
  


 (23) 

0 0( , , , , )Pl P Tl sd sd Tlx X x x x x x x   (18) 

    0 0
_ 0 0 0

0

( ( ) ) ( )
( ), , , , ( )

( ( ) )

d Pl sd
Tl d l Tl T d Pl sd d sd

d sd

P x y y y
y T x Y P x y y y P x y

P x y

  
   


 (19) 

2

1 0( ) ( )sa a u m a u m mx x x x x x         (21) 

( )sa a u m my y y y     (22) 
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and 

   _ ( ), , , ( ), ( )Tr a r Tr T a Pr sa u a saP u a Pry T x Y P x y y P x y P x    (24) 

On the other hand, if m Tl sax x x  , the pattern curve aP  is mapped into the target curve _a lT  (see 

Figure 7b) from the Equations (9) and (10) respectively, so we obtain 

( ) ( )
( , , , , )

( )

saP mP Tl m
Pl P Tl m sa mP saP mP

sa m

x x x x
x X x x x x x x

x x

  
  


 (25) 

and 

   _ ( ), , , ( ), ( ) ( )Tl a l Tl T a Pl m sa a mP a saP a Ply T x Y P x y y P x P x P x    (26) 

where mPx  is obtained from ( )a mP mP x y . 

Taking into account that 
1( )saP sax P y , the output values in Equations (24) and (26) depend on the 

coordinates of the split point ( , )sa sax y , which depend on 1a , 0a and a  in Equations (21) and (22). 

Again, the error minimization algorithm can fit the experimental data of the internal cycles in the values 

provided by Equations (24) and (26) using 1a , 0a  and a  as parameters to estimate. Once 1a , 0a  

and a  are estimated, the coordinates of the split point are readily obtained from Equations (21) and (22) 

for any other possible ascending curve in an internal cycle and the whole ascending trajectory is given 

by Equations (24) and (26). 

Summarizing, once the set of parameters  1 0, , , ,d d a a aX       is obtained from the error 

minimization algorithm, the output of the complete ELAM model is given by 

 
 

 

 
 

 

_

1

_ 0

_

1

_

( ) ( )

( ( )) ( )

( ) ( )

d r sd M

d i i

d l sd

ELAM

a r sa u

a i i

a l m sa

T x x x x
T x x t x t

T x x x x
y x t T x

T x x x x
T x x t x t

T x x x x





     
   

   
  

    
  

    

 (27) 

where _ ( )d rT x , _ ( )d lT x , _ ( )a rT x  and _ ( )a lT x  are given by Equations (17), (19), (24) and (26), 

respectively, and replacing ym(t) by yELAM(t) in Equation (1), the HELAM(p(t)) model for Figure 4 is: 

 ( ( )) ( )ELAM ELAMH p t y x t  (28) 

4.2. Inverse External Loop Adaptation Model 

The purpose of building a model of the hysteresis of the sensor is that the inverse model can be applied 

in cascade with the sensor output to compensate its hysteretic behavior. It is, therefore, necessary to 

invert the ELAM model proposed in this paper in such a way that for any output value of the tactile 

sensor ( )out Ty T x  we can calculate the input value Tx . The inverse model construction is performed 

similarly to the direct model described in the previous section. The following procedure is actually the 

same that is described in the previous section but with a swap of the coordinate axes. Since the split point 

is the same, the inverted curves are obtained just inverting the mapping in each piece. The inverted 

mapping is readily performed from Equations (9) and (10) as follows. Firstly, the output value of the 
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pattern curve P that corresponds to the value of the sensor output ( )out Ty T x  is obtained from the 

Equation (10) as 

1
( ( ) ) ( )

( ( ), , , , )
( )

T iT fP iP

P T T it ft ip fp iP

fT iT

T x y y y
y Y T x y y y y y

y y


  

  


 (29) 

Then, the value Px  is obtained through inverse linear interpolation as 
1( )P Px P y , and the value of 

Tx  is obtained from the Equation (9) as 

1
( ) ( )

( , , , , )
( )

P iP fT iT

T P P iT fT iP fP iT

fP iP

x x x x
x X x x x x x x

x x


  

  


 (30) 

The Equations (29) and (30) define the linear mapping for the inverse model ELAM, so the equations 

of the ascending or descending curves in the inverse model can be obtained from them in a similar way 

as that followed to build the direct model. 

 

Figure 8. (a) Construction of descending curves for inverted ELAM. (b) Construction of 

ascending curves for inverted ELAM. 

Figure 8a shows a schematic of the construction of the inverse model for descending curves. These 

curves, as in the direct model, are determined by the return point ( , )M Mx y  and the split point ( , )sd sdx y . 

For input values sd Tr My y y  , the pattern curve 
1

dP
 is mapped to the target trajectory 

1

_d rT 
. For this 

process, it is necessary to know the point sdPy  such that 
1( )d sdP sdP y x  . Note that since the split point 

is the same as in the direct model, sdPy  can be obtained as ( )sdP d sdy P x . For each value of Try  in 
1

_d rT 
 

there is an associated value ( )Pr Pry P x  in 
1

dP
 which can be deduced from Equation (29) as 

1 ( ) ( )
( , , , , )

( )

u sdP Tr sd
Pr T Tr sd M sdP u sdP

M sd

y y y y
y Y y y y y y y

y y

   
  


 (31) 

The value of 
1

_d rT 
 is deduced from the Equation (30) knowing that 

1( )Pr Prx P y  and its value is 

 1 1

_

( ) ( )
( ) , , , ,

( )

M sd Pr sd
Tr d r Tr P Pr sd M sd u sd

u sd

x x x x
x T y X x x x x x x

x x

    
   


 (32) 
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For input values 0 Tl sdy y y  , the 
1

dP
 curve is mapped to the 

1

_d lT 
 trajectory, so it is necessary to 

determine the value Ply  in 
1

dP
 corresponding to each value of Tly . From Equations (29) and (30) we obtain: 

1

0 0( , , , , ) sdP Tl
Pl T Tl sd sdP

sd

y y
y Y y y y y y

y

 
   (33) 

   1 1 1

_ 0 0( , , , , )Tl d l Tl P Pl sd sd Pl d Plx T y X x x x x x x P y       (34) 

Figure 8b shows a schematic of the construction of the inverse model for ascending trajectories 

starting at the return point ( , )m my x  and which converge at the point ( , )u uy x . 

For input values m Tl say y y  , a mapping of the external curve 
1

aP
 to the internal trajectory 

1

_a lT 
 is 

performed. To do so, from the general Equations (29) and (30) we obtain: 

1( , , , , )Pl T Tl m sa mP saP Tly Y y y y y y y   (35) 

and 

 
    

 

1

1 1 1

_ ( ( ), , , , )
a Pl mP sa m

Tl a l Tl P a Pl m sa mP saP m

saP mP

P y x x x
x T y X P y x x x x x

x x



  
  

   


 (36) 

where the point in the pattern curve which corresponds to each value Tly  in the target curve has the same 

y value and it is called ( )Pl Ply P x . 

For input values sa Tr uy y y  , a mapping of the external curve 
1

aP
 is performed along the y axis to 

the internal trajectory 
1

_a rT 
. From the general Equations (29) and (30), the resulting expressions are 

1( , , , , )Pr T Tr sa u saP u Try Y y y y y y y   (37) 

and 

 
   

 

1

1 1 1

_

( )
( ( ), , , , )

a Pr saP u sa

Tr a r Tr P a Pr sa u saP u sa

u saP

P y x x x
x T y X P y x x x x x

x x



  
  

   


 (38) 

where the point in the pattern curve which corresponds to each value Try  in the target curve has the 

same y value and it is called ( )Pr Pry P x . 

Summarizing, the complete inverse ELAM model is expressed as 

 
 

 

 
 

 

1

_1

11

_ 01

1

_1

11

_

( ) ( )

( )

( ) ( )

d r sd M

d i i

d l sd

a r sa u

a i i

a l m sa

T y y y y
T y y t y t

T y y y y
T y

T y y y y
T y y t y t

T y y y y















    
   

   
 

    
  

    

 (39) 

5. Parameter Identification 

The four methods explained in the previous section are used to model hysteresis loops (see  

Figure 2a,b) of the tactile sensor. As a step prior to the construction, the validation and the comparison 

of the proposed models, it is necessary to carry out the identification of the parameters to adapt the 
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models to the experimental data as accurately as possible. Many identification algorithms have been 

proposed for this purpose such as the least squares method, genetic algorithms and the particle swarm 

optimization method [40–42]. In this paper, we use genetic algorithms because they implement a parallel 

procedure able to simultaneously explore a wide range of solutions using probabilistic operators [43]. 

This feature allows them to discard local minima that do not correspond to an optimal solution. In the 

following, the different methods to obtain the parameters for the results in Section 6 are described. 

5.1. GPI 

The GPI model obtained from Equation (2) is completely defined by the number of generalized play 

operators used, the thresholds of the operators, the density function and the envelope functions. 

Regarding of the number of operators n, from a theoretical point of view, the selection of a larger 

number of operators should obtain a more accurate approximation of the hysteresis loops. However, in 

real applications, it is found that further increase of the number of operators does not improve the fitting 

accuracy significantly. Since the complexity of the model is increased with the number of operators 

employed, it is advisable to use the smallest number of operators. According to the experiments reported 

in [44] for the same tactile sensor of this paper, it is enough to use a number of n = 4 play operators to 

obtain a good approximation. 

For the results of this paper, the thresholds of the operators and the density function are obtained  

from [28] and their equations are 

ir i   (40) 

where i = 0,1,2,…,n and α is a positive real constant, and 

where ρ > 0 and τ are real constants.  

Note that the density function p(r) vanishes for high values of the thresholds r and that there is no 

general criterion for its selection. Generally, it is completely selected by the designer. Once the structure 

of the density function p(r) is fixed, the parameters involved in the density function shall be determined 

by identification from experimental data. 

The choice of the envelope functions used in the Equation (3) is decisive for a good fitting. Based on 

the results reported by other studies [44], which analyze and compare the use of different envelope 

functions, these functions have been chosen according to the following expressions in this paper: 

2 1( )

3 0( )
a a x

l x a a e  
    (42) 

2 1( )

3 0( )
b b x

r x b b e  
    (43) 

where 0 1 2 3 0 1 2 30, 0, , , 0, 0, ,a a a a b b b b     are real constants. 

These envelope functions based on exponential functions provide a good fitting with a medium 

computational complexity compared to other alternatives such as those based on hyperbolic  

tangent functions. 

  

( ) irp r e
  

   (41) 
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5.2. MPI 

The MPI model is also based on play operators, but of classical type in this case. Therefore, as with 

the model GPI, it will be necessary to select a number of operators n to use, thresholds for such operators, 

and a density function. The selection criteria for these items in the GPI model are also valid for the MPI 

model. In this article, we chose these elements according to what is proposed in [30], so a number of  

10 classical play operators is selected. The expressions of the threshold operators ri and the density 

function p(r) are 

1
( )i

i
r v t

n 


  (44) 

with i = 1,2,…,n and ( ) 1v t

  in the normalized case, and 

where ρ > 0 and τ are real constants. 

To achieve the asymmetry observed in the hysteresis loop of the tactile sensor, it is necessary to define 

the generalized function g(x(t)) of the Equation (5). According to the proposal option in [30], this 

generalized function is chosen as a third-order polynomial 

3 2

3 2 1( ( ))g x t a x a x a x       (46) 

The selection of the generalized input function is not unique and other forms can also be chosen, but 

the use of a third-order polynomial seems a good choice to approximate curves of different shapes. 

Furthermore, third-degree polynomials are generally recognized as an effective choice to describe the 

hysteresis loops [45,46]. Actually, this polynomial is the one that achieves the best fitting to the 

hysteresis curve of the tactile sensor in this paper. 

5.3. POLY 

Regarding the POLY model, the only necessary parameter identification corresponds to the choice of 

coefficients of the polynomials fra and frd. Although third-order polynomials are proposed in [31] to be 

used in the model, sixth-order polynomials have been selected for the results of this paper. Therefore, 

the polynomials are 

6
6

0

( ) i

ra i

i

f x a x 



   (47) 

6
6

0

( ) i

rd i

i

f x b x 



   (48) 

Better results were achieved with tenth-order polynomials, but the choice of sixth-order polynomials 

seems most appropriate taking into account the balance between precision and the number of  

parameters required. 

  

2( 1)
( ) ir

ip r e
   

   (45) 



Sensors 2015, 15 26187 

 

 

5.4. ELAM 

The identification process for the ELAM model consists of determining the αd0, βd0, αa1, αa0 and βa0 

parameters that allow the split points to be obtained in the Equations (14), (15), (21) and (22), 

respectively. The number of parameters to be identified is much lower than in the other models, so this 

identification process has a lower computational cost and the time employed is significantly shorter in 

this model. 

It is remarkable that the GPI, MPI and POLY models require a prior step to choose the suitable 

envelope functions or polynomials to be used in the construction of the hysteresis loops. Moreover, in 

the case of models based on the Prandtl-Ishlinskii method, it is necessary to select the number of play 

operators and the structure of the density function. All this work is performed by the designer based on 

the results obtained in a selection process in order to find the best fit to the experimental data. Depending 

on the complexity of the hysteresis curve of the sensor, this process may be more or less costly. The 

proposed ELAM model does not require this previous step, because the pattern curves are obtained by 

linear interpolation of experimental data. In addition, the model provides the output from piecewise 

linear mapping of the pattern curves. Therefore, if the number of pieces to perform linear mapping or 

interpolation grows, the error always decreases and the model is robust against overfitting [47]. 

The parameters identified for each model that allow the best adaptation of the models to hysteresis 

data obtained experimentally for the descending and ascending curves are shown in Tables 2 and 3, 

respectively (see Figure 2a,b). 

Table 2. Parameters of the models for the descending hysteresis curves of the tactile sensor. 

GPI MPI POLY ELAM 

n 4 b1 0.0825 n 10 a0 1.36e-9 b0 9.04e−10 αa1 −0.0072 

a0 0.5754 b2 −1.9648 ρ 1.6492 a1 −2.74e-7 b1 −1.44e−7 αa0 0.6031 

a1 0.0524 b3 0.2972 τ 0.1942 a2 2.13e-5 b2 6.93e−6 βa0 0.3382 

a2 1.1216 α 1.7531 a1 3.96e−5 a3 −7.69e-4 b3 5.29e−6 αd0 0.7957 

a3 1.6350 ρ 4.4935 a2 0.1410 a4 0.0109 b4 −0.0100 βd0 0.9991 

b0 13.0421 τ 1.5428 a3 −0.0049 a5 0.0704 b5 0.3132   

      a6 −0.0244 b6 −0.1864   

Table 3. Parameters of the models for the ascending hysteresis curves of the tactile sensor. 

GPI MPI POLY ELAM 

n 4 b1 0.1168 n 10 a0 1.65e−9 b0 1.20e−9 αa1 −0.0072 

a0 1.9620 b2 −0.1206 ρ 3.0226 a1 −3.37e−7 b1 −2.08e−7 αa0 0.6031 

a1 0.0477 b3 −3.2440 τ 0.2255 a2 2.66e−5 b2 1.21e−5 βa0 0.3382 

a2 −0.1324 α 3.4384 a1 3.68e−5 a3 −9.93e−4 b3 −2.05e−4 αd0 0.7957 

a3 3.7234 ρ 0.8893 a2 0.1502 a4 0.0157 b4 −0.0057 βd0 0.9991 

b0 1.6743 τ −0.1617 a3 −0.0047 a5 0.0281 b5 0.2762   

      a6 −0.0108 b6 −0.1651   
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6. Results and Discussion 

6.1. Results for the Output of a Single Average Taxel 

The hysteresis loop in Figure 2a,b is really challenging to model because it is clearly asymmetrical, 

with high nonlinearity, and quite different ascending and descending external curves. Furthermore, the 

ascending curves inside the hysteresis loop do not have a similar shape to the external ascending curves, 

as can be seen in Figure 2b. 

Figures 9a–d and 10a–d show the models of the descending and ascending hysteresis curves, 

respectively obtained with the four methods implemented in this work. In addition, Tables 4 and 5 show 

the values of the average and maximum errors for each model with respect to the experimental data,  

both in absolute value and in percentage of the full scale. The error is evaluated according to the 

following expression. 

_

1

1
( )

N

m i i

i

error y y
N 

    (49) 

where ym_i are the model samples, yi are the experimental samples and N is the number of samples. The 

column labeled Best refers to the minimum error value obtained after J(X) in Equation (1) is minimized 

during the parameter identification process. 

 

Figure 9. Models for descending curves. (a) GPI model with n = 4 play operators; (b) MPI 

model with third-order polynomial and n = 10 OSP operators; (c) POLY model with  

sixth-order polynomial; (d) ELAM model. 

Table 4. Average errors and maximum errors of hysteresis models for descending curves. 

Model Best Average Error (V) Average Error % FS Max. Error (V) Max. Error % FS 

GPI 0.53 0.04 1.15 0.15 4.34 

MPI 2.82 0.09 2.63 0.35 10.05 

POLY 4.14 0.07 1.99 0.70 19.98 

ELAM 0.33 0.031 0.89 0.12 3.57 

The first thing that can be observed in Figures 9 and 10 is that the worse fit to the experimental data 

was obtained with the MPI model. This model, as explained in Section 3.2, consists of a set of symmetric 

classical play operators and a generalized function to model the asymmetry of the hysteresis loop. It is 

very difficult to find a single generalized function that fit to both external curves efficiently. Tests have 

been done with polynomial of different degrees, and the best result was achieved with the third-order 
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polynomial in Equation (46). Since the results from this model are not good for the hysteresis curves in 

Figure 2, probably because classical play operators were primarily intended for adjustment of 

symmetrical loops, no further comment will be made about it. 

 

Figure 10. Models for ascending curves. (a) GPI model with n = 4 play operators; (b) MPI 

model with third-order polynomial and n = 10 OSP operators; (c) POLY model with  

sixth-order polynomial; (d) ELAM model. 

Table 5. Average errors and maximum errors of hysteresis models for ascending curves. 

Model Best Average Error (V) Average Error % FS Max. Error (V) Max. Error % FS 

GPI 1.21 0.04 1.12 0.30 8.47 

MPI 7.45 0.10 2.94 0.35 9.77 

POLY 2.27 0.06 1.64 0.22 6.15 

ELAM 0.37 0.020 0.58 0.11 3.16 

The GPI model shows a very good performance for the descending curves, although some significant 

deviations are observed and circled in Figure 9a. The model is saturated for high values of the input 

signal, so that the adjustment in this area is not good. This behavior is repeated at the start of each inner 

descending curve. Regarding the ascending curves, the model shows a poor performance in fitting them, 

as Figure 10a depicts. The main reason behind these deviations is the difficulty in finding envelope 

functions that fit precisely to the external curves in the complete input range. 

With respect to the POLY model, it shows a great difficulty in adjusting the descending curves  

(see Figure 9c). It is noted that the descending curves of the model are shifted to the left with respect to 

the experimental data. This is because it is not possible to find the polynomial in Equation (48) to fit the 

external descending curve of the tactile sensor. As for the ascending curves (see Figure 10c), the model 

cannot adjust the internal curves well for the same reason. 

The ELAM models for the ascending and descending curves, are shown in Figures 9d and 10d 

respectively. It can be observed that the adjustment of the descending curves is better than with the other 

methods. The curves do not saturate as with the GPI model (see Figure 9a). The split point introduced 

in the ELAM model provides a larger flexibility than that of the POLY model to approximate highly 

nonlinear curves. Regarding the ascending curves, the ELAM model is also the one that achieves the 

best fitting, even in the internal ascending branches, where other models have large errors. 

Figure 11a shows the output voltage from samples measured and obtained with the ELAM method 

for different descending trajectories (see Figure 2a), as well as the error, whose zoom is displayed at 

Figure 11b. Figure 12 shows the same data for different ascending curves (see Figure 2b). The error is 
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below 0.1% of the full scale sensor output in both cases. Therefore, the ELAM method provides the 

model that achieves the best fitting of the experimental data. The samples are the output voltage values 

obtained every two seconds. The number of measured samples is 211 for the descending curves and 451 

for the ascending curves. 

 

Figure 11. (a) Measured data, ELAM model and absolute value of the error; (b) Error zoom. 

 

Figure 12. (a) Measured data, ELAM model and absolute value of the error; (b) Error zoom. 

Furthermore, regarding the interest stated in the introduction in implementing the compensation 

algorithms in the local electronics based on an FPGA, the ELAM model is the most suitable because its 

complexity is similar to the POLY model but lower than that of the other two models based on  

Prandtl-Ishlinskii operators. Specifically, the GPI model shows a fit to the experimental curves close to 

that achieved with the ELAM model, but the mathematical operators involved are much more complex. 

The ELAM method is based on simple mathematical operations such as additions and multiplications, 

while the GPI and MPI models use exponential functions for the density function and for the envelope 

functions. These operations are more difficult to implement and require the use of more logical resources 

in devices such as FPGAs. The parameter identifying process in Section 5 is also simpler in the ELAM 

method. Finally, the GPI, MPI and POLY methods require of a prior selection step of the functions to 

be used in the construction of the models, while the ELAM method does not need it because it uses the 

experimental data for the construction of the hysteresis loops. Only the way to obtain the split point has 

to be determined, and simple linear (see Equations (11) and (12)) or quadratic (see Equation (21)) 

expressions provide good results. 

Therefore the ELAM model is inverted according to equations set out in Section 3.5 and it is used for 

compensating hysteresis nonlinearities presented by the experimental curves of Figure 2a,b. Figure 13 

shows the output of the sensor for a set of loading-unloading cycles when it is compensated with the 

ELAM method. Figure 13a shows the direct ELAM model and the curves measured experimentally. 

Figure 13b displays the inverse ELAM model, wherein the pressure calculated by the model associated 

to the sensor output voltage is represented. Figure 13c displays the pressure calculated by the ELAM 
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model versus the real exerted pressure, i.e., it shows the compensation of the descending cycles of the 

sensor hysteresis. The same data are shown in Figure 14 for the ascending curves. It is noteworthy that 

the performance of the ELAM model has been assessed from experimental data instead of using other 

simulated input that could provide artificially good results. In this respect, the errors observed in  

Figures 13c and 14c are due to noise in the flat areas of the experimental curves (note that the descending 

curves are saturated for high input pressure values). These errors limit the useful range of the sensor for 

a given resolution of the measurement. 

 

Figure 13. Compensation for descending curves with ELAM method (a) ELAM direct 

model; (b) ELAM inverse model; (c) Sensor output pressure versus real pressure after 

ELAM compensation. 

 

Figure 14. Compensation for ascending curves with ELAM method (a) ELAM direct model; 

(b) ELAM inverse model; (c) Sensor output pressure versus real pressure after  

ELAM compensation. 

6.2. Results with Tactile Sensor Matrix 

This section shows the application of the ELAM method to compensate the hysteresis of a tactile 

sensor composed of 256 taxels distributed in 16 rows and 16 columns. Each taxel is an independent 

sensing unit that must be modeled individually, and its hysteresis nonlinearity has to be compensated 

with its ELAM model. Table 6 shows the frames obtained for different uniform pressures exerted on the 

sensor. A large mismatching between taxels is observed. Two frames measured for the same input 

pressure are compared in the same column of the table, one for an ascending sequence (top) and the 

other for a descending sequence (bottom). Table 7 shows the same frames once the compensation with 

the ELAM method is applied. It can be observed that not only the hysteresis nonlinearities but also the 

mismatching between different taxels are compensated. The value of the relative standard deviation with 
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respect to the full scale output is shown for each frame to quantify the improvement regarding the 

mismatching after the compensation process. In addition, the difference between the frames in the 

ascending and descending paths is displayed, and its mean value with respect to the full scale output 

illustrates the improvement regarding the hysteresis. 

Table 6. Hysteresis loop frames measured before compensation. 

UP  4.01 PSI 10.25 PSI 20.20 PSI 30.06 PSI 40.21 PSI 49.93 PSI 59.93 PSI 

       

 

( ) / FSstd x : 0.09 0.16 0.18 0.15 0.13 0.12 

DOWN  4.01 PSI 10.05 PSI 19.86 PSI 30.01 PSI 40.02 PSI 49.59 PSI 

       

( ) / FSstd x : 0.13 0.18 0.16 0.13 0.12 0.11 0.11 

Absolute 

Distance 

      

 

/ FSx : 0.08 0.17 0.14 0.11 0.07 0.04  

Table 7. Hysteresis loop frames after compensation with ELAM method. 

UP  4.01 PSI 10.25 PSI 20.20 PSI 30.06 PSI 40.21 PSI 49.93 PSI 59.93 PSI 

       

 

( ) / FSstd x : 0.02 0.03 0.04 0.03 0.03 0.04 

DOWN  4.01 PSI 10.05 PSI 19.86 PSI 30.01 PSI 40.02 PSI 49.59 PSI 

       

( ) / FSstd x : 0.06 0 0.01 0.02 0.04 0.06 0 

Absolute 

Distance 

      

 

/ FSx : 0.02 0.02 0.03 0.03 0.04 0.07  
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In addition, Tables 8 and 9 show the sensor output when the force is exerted with a ring-shaped object. 

Table 8 shows the frames corresponding to the measured sensor output, while Table 9 shows the 

compensated frames with the ELAM method. 

Table 8. Hysteresis loop frames measured before compensation with Ring object. 

UP  2.08 N 5.99 N 9.91 N 19.85 N 29.82 N 

      

( ) / FSstd x : 0.05 0.11 0.16 0.25 0.31 

DOWN  2.03 N 6.00 N 10.04 N 20.04 N 30.09 N 

      

( ) / FSstd x : 0.07 0.14 0.20 0.30 0.34 

Absolute Distance 

     

/ FSx : 0.04 0.07 0.09 0.09 0.07 

Table 9. Hysteresis loop frames with Ring object after compensation with ELAM method. 

UP  2.08 N 5.99 N 9.91 N 19.85 N 29.82 N 

      

( ) / FSstd x : 0.03 0.06 0.09 0.16 0.22 

DOWN  2.03 N 6.00 N 10.04 N 20.04 N 30.09 N 

      

( ) / FSstd x : 0.03 0.05 0.07 0.14 0.21 

Absolute Distance 

     

/ FSx : 0.06 0.05 0.05 0.07 0.05 
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7. Conclusions 

This paper presents a novel method to compensate for hysteresis nonlinearities observed in the 

response of a tactile sensor. The sensor shows a very pronounced hysteresis with high nonlinearity, and 

a large mismatching between the responses of different taxels. The proposed method builds a model that 

accurately fits the experimental data obtained in the characterization process. This so called ELAM 

method carries out a linear mapping of the external curves of the measured hysteresis loop to the curves 

of the inner cycles. Its main feature is the introduction of a split point in the curves to produce a different 

mapping to the left and right of this point, whose location is provided by an error minimization algorithm. 

The ELAM model is compared with the models obtained from three other approaches, the generalized 

Prandtl-Ishlinskii model (GPI), the modified Prandtl-Ishlisnkii model (MPI), and a model based on 

dominant curves built with polynomials (POLY). The results show that the ELAM model fits the 

measured data more accurately than the other three methods, especially in the ascending curves, where 

the other methods perform worse. Another very remarkable advantage of the ELAM method versus the 

other three methods is that the involved mathematical operations are simpler, so they can be implemented 

more easily in FPGA devices in order to cope with real-time applications. For instance, the ELAM 

method does uses neither play operators nor exponential functions that may require the use of additional 

computational resources. Moreover, the number of parameters to be identified by the error minimization 

algorithm is higher in the other methods, and they also require a prior selection of the appropriate 

functions to build the model. The performance of the proposed method is shown with data obtained from 

measurements of the sensor output when a uniform pressure is exerted on the entire matrix, and also 

when the force is exerted by objects with different shapes. The output of each taxel is compensated with 

its own ELAM hysteresis model and a significant reduction of the hysteresis, nonlinearity and 

mismatching errors, is observed. The ELAM method fits very well to complex and asymmetrical 

hysteresis curves, which cannot be characterized by mathematical functions in a direct way. This allows 

the application of the strategy followed by the ELAM method to other types of sensors or actuators. 

Moreover, it is a flexible method, since more split points can be added to divide the curves into a larger 

number of segments, so different mappings can be done for each segment and a good fitting can be 

achieved despite the complexity of the hysteresis loops. 
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