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Abstract: The increased level of hydrogen peroxide accompanies some modes of macrophage spec-
ification and is linked to ROS-based antimicrobial activity of these phagocytes. In this study, we
show that activation of toll-like receptors with bacterial components such as LPS is accompanied
by the decline in transcription of hydrogen peroxide decomposing enzyme-catalase, suppression of
which facilitates the polarization of human macrophages towards the pro-inflammatory phenotype.
The chromatin remodeling at the CAT promoter involves LSD1 and HDAC1, but activity of the first
enzyme defines abundance of the two proteins on chromatin, histone acetylation status and the CAT
transcription. LSD1 inhibition prior to macrophage activation with LPS prevents CAT repression by
enhancing the LSD1 and interfering with the HDAC1 recruitment to the gene promoter. The mainte-
nance of catalase level with LSD1 inhibitors during M1 polarization considerably limits LPS-triggered
expression of some pro-inflammatory cytokines and markers such as IL1β, TNFα, COX2, CD14, TLR2,
and IFNAR, but the effect of LSD1 inhibitors is lost upon catalase deficiency. Summarizing, activity
of LSD1 allows for the CAT repression in LPS stimulated macrophages, which negatively controls
expression of some key pro-inflammatory markers. LSD1 inhibitors can be considered as possible
immunosuppressive drugs capable of limiting macrophage M1 specialization.

Keywords: macrophages; pro-inflammatory markers; catalase; LSD1; gene transcription

1. Introduction

Elevated levels of hydrogen peroxide have been reported in various cell types inter
alia in some cancer cells and pro-inflammatory—M1 macrophages. In phagocytes, it acts
as a pathogen-killing agent when converted to hypochlorous acid by myeloperoxidase, as
an intra- and cell-to-cell signaling molecule promoting TNFα and nitric oxide release by
adjacent cells [1]. Excessive production of hydrogen peroxide (H2O2) in M1 macrophages
is majorly assigned to NADPH oxidase(s), which become active in response to stimulation
of toll-like receptors (TLRs). The hyperreactive superoxide anion released by NADPH
oxidese(s) is immediately converted to more stable and membrane permeable molecule—
H2O2. Some types of macrophage polarization, tumorigenesis, and also transformation of
healthy cells with T-antigen of SV40 or Ras lead to considerable decline in the catalase level,
which may help to maintain increased H2O2 concentration inside cells. Our previous re-
ports showed that stimulation of TLR4 in mouse bone marrow-derived macrophages with
LPS caused Cat repression, but increased transcription of Sod2, Gsr, Txnrd1, and Prdx1 [2].
A similar effect was also observed in a monocyte-to-macrophage differentiation model
of THP1 and Mono Mac 6, monocytic cell lines, where the cells were first differentiated
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with phorbol 12-myristate 13-acetate and then polarized with TLR1/2 ligand Pam3CSK4,
a synthetic triacylated lipopeptide (LP) that mimics the acylated amino terminus of bac-
terial lipopeptides [3]. Both TLR ligands act as potent activators of the pro-inflammatory
transcription factor NF-κB. As long as LPS triggers M1, the pro-inflammatory phenotype,
Pam3CSK4 is documented to stimulate the cells into a solid M1 or M2b—immunoregulative
subtypes of anti-inflammatory macrophages [4,5]. The meaning of catalase decline in the
(patho)physiology of macrophages was confirmed by genetic engineering that allowed for
overexpression of the enzyme. Transgenic mice with myeloid lineage cell-specific overex-
pression of catalase (TgCat-MLC mice) showed deficient neovascularization, decreased
macrophage infiltration of ischemic tissues and macrophage migration in vitro, and lower
mRNA levels of inflammatory markers, such as tumor necrosis factor-α, osteopontin,
and matrix mettaloproteinase-9, thereby indicating the role of the oxidant in regulating
macrophages’ ability to infiltrate ischemic tissues [6]. Redox-relevant enzymes also control
macrophage pro-inflammatory phenotype and M1 response to damaging agents, as was
reported in our recent paper, where inhibition of termination of SOD2 transcription upon
TLR4 activation increased the protein level of the enzyme and rendered pro-inflammatory
macrophages even more resistant to oxidative stress [7].

The intentional interference or enhancement of macrophage development and dif-
ferentiation, polarization, or response to damaging stimuli via up- or downregulation
of particular antioxidant enzymes might be of great importance for the future therapies
of diseases, where the initiation or propagation step involves innate immune responses.
These include but are not limited toatherosclerosis, rheumatoid arthritis, amyotrophic
lateral sclerosis, or multiple sclerosis [8–10]. To target expression of antioxidant enzymes
for immunomodulation the control of their turnover must be disclosed. The underlying
mechanisms of CAT downregulation during pro-inflammatory macrophage specializa-
tion are still unknown. In cancer cells, CAT repression has been shown to be linked to
hypermethylation of the CpG island in the gene promoter, to histone deacetylation, to the
expression of miR-30b, and to the high level of c-abl, which can lead to catalase protein
degradation via post-translational modifications [11]. The lack of any information on the
possible mechanism of CAT repression during macrophage M1 polarization prompted us to
study the epigenetic changes at the promoter of this gene upon stimulation of granulocyte–
macrophage colony-stimulating factor (GM-CSF)-differentiated macrophages (M0) with
pro-inflammatory TLR4 ligand—bacterial endotoxin (LPS).

In this paper, we described contribution of lysine-specific histone demethylase 1A
(KDM1A or LSD1) to LPS-induced catalase suppression. This allowed us to test the
LSD1 inhibitors as compounds capable of the catalase maintenance in pro-inflammatory
macrophages and to study the possible catalase involvement in the M1 polarization.
The two studied LSD1 inhibitors—SP2509 and GSK-LSD1—emerged as possible im-
munosuppressive and anti-inflammatory drugs capable of declining transcription of pro-
inflammatory cytokines and M1-relevant surface markers by preventing CAT repression in
LPS-stimulated macrophages. Moreover, we disclose a new regulatory mode of LSD1 and
HDAC1 functional interaction, where LSD1 activity orchestrates the recruitment of both
enzymes to the CAT promoter.

2. Materials and Methods
2.1. Chemicals and Reagents

RosetteSep™ Monocyte Enrichment Cocktail was purchased from STEMCELL Tech-
nologies (Grenoble, France), cell culture media were from Biowest (CytoGen, Zgierz,
Poland), granulocyte–macrophage colony-stimulating factor (GM-CSF) from PeproTech
(London, UK), anti-rabbit IgG (whole molecule) (A0545) and anti-mouse IgG (whole
molecule) (A4416) peroxidase-labeled antibodies produced in goat, BLUeye prestained
protein marker (#94964), SIGMAFAST™ Protease Inhibitor Tablets (PIC), sodium butyrate
(iHDAC), C646 (iEP300), ML385 (iNRF2) and oligonucleotides for real-time PCR were
from Sigma-Aldrich (Poznan, Poland). Dynabeads™ Protein G, High-Capacity cDNA
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Reverse Transcription Kit, Click-iT™ Nascent RNA Capture Kit, SuperSignal™ West Pico
Chemiluminescent Substrate, TRI Reagent™, PowerUp™ SYBR® Green Master Mix, and
anty-HDAC1 (PA1-860) were from Thermofisher Scientific (Thermofisher Scientific, War-
saw, Poland). Advanced TC™ culture plates, SP2509 (iLSD1a), GSK-LSD1 (iLSD1b) and
PBIT (iKDM5B) were from Greiner Bio-One and Cayman Chemical (Biokom, Janki/Warsaw,
Poland). KAPA HiFi™ HotStart ReadyMix (2×) from KapaBiosystems was purchased
from Polgen (Łódź, Poland), while EvaGreen® Dye, 20× in water, from Biotium (Corporate
Place, Hayward, CA, USA). Human Toll-like Receptor Signaling Primer Library (HTLR-I)
and Human Cytokine/Chemokine Receptor Primer Library I (HCCR-I) were purchased
from RealTimePrimers.com (Prospecta, Warsaw, Poland).

ChIP-grade antibodies: anti-LSD1 (#2139), anti-histone H3 (#4620), anti-H3K27ac
(#4353), anti-H3K4me3 (#9751), anti-H3K4me1 (#5326), anti-NRF2 (#12721) and normal
rabbit IgG (#2729) were purchased from Cell Signaling Technology (LabJOT, Warsaw,
Poland). Anti-CAT ((H-9): sc-271803) antibody, siCAT (sc-45330), siLSD1 (sc-60970) were
from Santa Cruz Biotechnology (AMX, Lodz, Poland).

2.2. Monocyte Isolation, Differentiation to Macrophages, and Stimulation with TLR Ligands

Buffy coats of healthy donors were purchased from Blood Bank in Lodz, Poland.
Monocytes were isolated using RosetteSep Monocyte Enrichment Cocktail as described pre-
viously, allowed to attach to Advanced TC™ culture plates in RPMI medium supplemented
with 10% FBS, penicillin/streptomycin (50 U/mL and 50 µg/mL, respectively), and then
differentiated into macrophages (M0) with GM-CSF (10 ng/mL) for 6 days. Macrophages
were treated with LPS (10 ng/mL) for 24 h.

The inhibitors of chromatin remodeling enzymes were added before stimulation at
the following doses: C646 (iEP300), 10 µM; sodium butyrate (iHDAC), 200 µM; SP2509
(iLSD1a), 0.1 µM; GSK-LSD1 (iLSD1b), 0.1 µM; and PBIT (iKDM5B), 5 µM.

2.3. Gene Silencing

Catalase and LSD1 were transiently silenced, as described previously [12]. In brief,
100,000 cells were incubated with siRNA:Lipofectamine RNAiMAX complexes in OptiMEM
for 28 h. A non-targeting siRNA was used as a control (siCTRL). The silencing was
confirmed by real-time PCR and/or Western blot.

2.4. Evaluation of CAT and M1 Markers Expression

Total RNA was isolated with TRI Reagent™ and reverse transcribed with the High-
Capacity cDNA Reverse Transcription Kit as described previously. mRNA of CAT and
other genes was quantified in real-time PCR reaction with the following primers (Table 1).

Table 1. Primers used in real-time PCR reaction.

Genes Forward (5′–3′) Reverse (5′–3′)

CAT ACTTTGAGGTCACACATGACATT CTGAACCCGATTCTCCAGCA
ACTB TGGCACCCAGCACAATGAA CTAAGTCATAGTCCGCCTAGAAGCA

GAPDH GGAGTCAACGGATTTGGTCGTA GGCAACAATATCCACTTTACCA
B2M GACTTGTCTTTCAGCAAGGA ACAAAGTCACATGGTTCACA
TNFα GGAGAAGGGTGACCGACTCA GAAACGGCTCAGACCCGT
COX2 GAATCATTCACCAGGCAAATTG TCATGTCTTTCATAGTGTCCGAAGGT
IL12A CTCCTGGACCACCTCAGTTTG TTACAAGGGTACGGAAGTGG
MIP2A CGCCCAAACCGAAGTCAT TTTCTACGACTTTTTACCGTTTAG

IL1β ACGAATCTCCGACCACCACT CAGTCAACAACACCGGTACC

Primers for CD14, TLR2, STAT1, CXCL9, IFNAR2, IL1RN were taken from Human
Toll-like Receptor Signaling Primer Library (HTLR-I) and Human Cytokine/Chemokine
Receptor Primer Library I (HCCR-I).

PowerUp™ SYBR® Green Master Mix was used according to the manufacturer instruction.
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Ongoing transcription/de novo synthesis of mRNA was monitored with the Click-iT™
Nascent RNA Capture Kit as described by Wiśnik et al. [13]. Ethylene uridine (0.25 mM)
was added to macrophages after LPS treatment for 6 h prior to cell lysis with TRI Reagent™.

In both approaches, CAT expression was normalized to the median of mRNA of ACTB,
GAPDH, and B2M.

For catalase protein detection by Western blot, macrophage lysates were separated by
SDS-PAGE, transferred to nitrocellulose membrane, blocked with 5% bovine serum albumin,
and stained overnight with primary antibody in 1% bovine albumin in PBS-0.1% Tween at
4 ◦C. After staining with HRP-conjugated secondary antibody, the signal was developed
using SuperSignal™ West Pico Chemiluminescent Substrate. Pictures were acquired by
ChemiDoc-IT2 (UVP, Meranco, Poznan, Poland), and H3 was used as loading control.

2.5. Chromatin Immunoprecipitation

Chromatin immunoprecipitation was carried out according to a previously described
protocol [13]. In brief, cells were fixed with 1% formaldehyde, and then lysed and sonicated
with Bandelin Sonopuls (HD 2070) to obtain chromatin fragments of ~250–300 bp. Cell
lysates were incubated with antibodies and Dynabeads protein G magnetic beads at 4 ◦C
overnight. Immunoprecipitates were washed, and DNA was isolated with UltraPure™
Phenol/Chloroform/Isoamyl Alcohol (25:24:1, v/v); 10% cell lysate was taken as an input.
For H3K27ac quantification, cells were added to with iHDAC (0.5 mM) prior to lysis, and
the HDAC inhibitor was present at the indicated concentration in cell lysates during sample
preparation. The CAT proximal promoter (region spanning the binding sites for transcrip-
tion factors and chromatin remodeling enzymes according to UCSC Genome Browser) was
amplified using KAPA HiFi™ HotStart ReadyMix supplemented with EvaGreen® Dye and
0.5% DMSO, and the following primers: Fwd 5′-CTGGGTATCTCCGGTCTTCA-3′ and Rev
5′- GACTTCAGGCTCAGCCAATC-3′.

To confirm the enrichment of RNA polymerase II pausing complex in response to macrophage
treatment with LPS we quantified the enrichment of HEXIM and NELF-E at the two CAT
exons with the following primers: Fwd 5′-GCCTTTGGCTACTTTGAGGTC-3′ and Rev 5′-
GTGGAGAACCGAACTGCGAT-3′ for exon 3, and Fwd 5′-TGCTCCAAATTACTACCCCAAC-3′

and Rev 5′-TGTTGAATCTCCGCACTTCTC3′ for exon 10.

2.6. Co-Immunoprecipitation

HDAC1 was immunoprecipitated with 5 µg of anti-HDAC1 antibody in the presence
of Dynabeads protein G at 4 ◦C for 3 h, as described in detail by Sobczak et al. [12]. After
washing on a magnetic stand, HDAC1-interacting proteins were separated by SDS-PAGE.
LSD1 and RelA were detected by Western blot. Rabbit normal IgG served as an isotypic
control in immunoprecipitation, and 10% cell lysate was taken as an input.

2.7. Statistical Analysis

Data are shown as mean ± standard deviation of the mean (SEM). One-way analysis
of variance (ANOVA1) was carried out in GraphPad Prism 5 to compare means in several
groups (marked with * when p < 0.05, ** when p < 0.01, *** when p < 0.001), and followed
by Tukey post hoc test (marked with * when p < 0.05, ** when p < 0.01, *** when p < 0.001).

3. Results
3.1. TLR Ligands Reduce CAT Total mRNA Levels in Human Macrophages

Bearing in mind that pro-inflammatory polarization of mouse macrophages isolated
from the bone marrow as well as monocytic THP1 and Mono Mac6 cancer cells cause
substantial reduction in catalase expression, we tested first if the same effects could be
observed in human macrophages derived from monocytes, which were incubated with
GM-CSF for 6 days. Activation of TLR2 with Pam3CSK4 and TLR4 with LPS resulted in
similar suppression of the mRNA level (Figure 1A,C) and in a decrease in the abundance
of the enzyme (Figure 1B,D, Figure S1).
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Figure 1. The decline in CAT total mRNA levels in human macrophages correlates with transcription of some
macrophage pro-inflammatory markers. Granulocyte–macrophage colony-stimulating factor (GM-CSF)-differentiated
human macrophages were quantified for CAT expression after their exposure to Pam3CSK4 (50 ng/mL; A and B) and LPS
(10 ng/mL; C and D). mRNA level in (A,C) was measured by real-time PCR, while catalase protein in (B,D) was visualized
by Western blot after 24 h of cell incubation with TLR ligands. To verify the possible effect of catalase deficiency on selected
pro-inflammatory features, CAT was targeted with siRNA and the silencing was confirmed by Western blot vs. siRNA
non-template control (siCTRL) 48 h after cell transfection (E). The mRNA level of M1 markers was quantified by real-time
PCR and shown in bar chart for IL1β as an example (F) and heat map for other genes (G). Bolded genes marked with the
star represent these substantially repressed by catalase in non-polarized cells. Western blots show representative images
from three independent experiments. Bars in the figures represent mean ± standard error of the mean (SEM). One-way
analysis of variance (ANOVA) was carried out in GraphPad Prism 5 to compare means in several groups and the differences
between each two groups were tested with the Tukey post hoc test (marked with * when p < 0.05, with ns when p > 0.05).

In search for physiological meaning of catalase decline during M1 polarization we
checked if this enzyme is involved in the transcription control of pro-inflammatory cy-
tokines and M1-specific factors. From the first group we chose for testing the typical
pro-inflammatory mediators such as IL1β, TNFα, COX2, MIP2A, and IL12A, whereas from
the second group: CD14, TLR2, IFNAR, CXCL9, IL1RN and STAT1, which were recently
documented to be overexpressed particularly in M1 macrophages in both in vivo and
in vitro models of macrophage specialization [14]. The transient silencing of catalase in
non-stimulated cells resulted in the substantial increase in transcription of most considered
genes (Figure 1E–G, Figure S1), whereas in combination with LPS only IFNAR responded
with the additional enhancement of mRNA, suggesting the synergistic effect of the catalase
silencing and M1 polarization. The lack of considerable LPS-induced augmentation of the
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expression of M1 markers, which are suppressed by catalase in non-specialized cells, may
indicate that M1 polarization-associated drop in catalase abundance possibly allows or at
least facilitates their increased transcription in response to LPS.

3.2. Repression of CAT Transcription in Response to TLR4 Activation Is Associated with the
Formation of RNA Polymerase Pausing Complex

Since the decline of the mRNA level may be caused by gene repression and degra-
dation of the transcript (miR-30b was reported to inhibit the expression of endogenous
catalase, at both the transcript and the protein levels in the human retinal pigment ep-
ithelial cell line exposed to a sublethal dose of hydrogen peroxide [15], we tested the rate
of catalase mRNA de novo synthesis at the two time points—1 and 9 after induction of
macrophage polarization with LPS. As shown in Figure 2A, activation of TRL4 caused an
immediate response from the CAT regulatory element and a substantial reduction in the
gene transcription, which was scarcely further inhibited at the later steps of macrophage
polarization. This suggests that the observed decline in the mRNA level might be majorly
regulated by the transcription yield.
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Figure 2. CAT repression is associated with the formation of POL2RA pausing complex in response to
macrophage activation with LPS. (A) Newly minted RNA of CAT was captured by Click-iT chemistry
after macrophage treatment with LPS for 1 and 9 h. (B,C) RNA polymerase II pausing in response
to TLR4 stimulation was monitored by measuring HEXIM and NELF-E recruitment to the CAT
promoter by ChIP-qPCR. Bars in the figures represent mean ± standard error of the mean (SEM).
One-way analysis of variance (ANOVA) was carried out in GraphPad Prism 5 to compare means in
several groups and the differences between each two groups were tested with the Tukey post hoc test
(marked with * when p < 0.05 and with ns when p > 0.05).

Previous reports have described at least two regulatory elements that regulate CAT
gene expression, in addition to proximal promoter [16]. To verify which of them is involved
in the gene repression in pro-inflammatory macrophages, we first paid attention to the
promoter adjacent to transcription start site, which is characterized by the presence of
a CpG island (CGI). Knowing that CAT transcription is relatively quickly inhibited by
LPS, and that RNA polymerase II (Pol II) elongation is terminated at the first few stable
nucleosomes flanking the CGIs in response to intra- and extracellular signaling [17], we
checked whether the TLR4 ligand induced formation of a Pol II pausing complex. As soon
as 1 h after TLR4 stimulation, the two classic components of the pausing complex—HEXIM
and NELF-E—were detected by ChIP real-time PCR at the CAT promoter (Figure 2B,C). No
HEXIM and NELF-E enrichment was observed in the CAT exons 3 and 10 (Supplementary
Figure S2; statistical analysis in Table S1). In the temporal aspect of gene repression,
this agrees with the observed decrease in de novo mRNA synthesis and suggests that the
proximal promoter might be involved in CAT repression in pro-inflammatory macrophages.

3.3. LSD1 Co-Operates with HDAC1 to Repress CAT in Macrophages Activated with LPS

Knowing that LPS induces alteration in the chromatin architecture at the CAT proxi-
mal promoter, we searched for the likely changes in the profile of histone post-translational
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modifications in the indicated region. We started analysis from the quantification of
transcription-promoting histone marks, which were expected to be decreased once gene
suppression was driven by the epigenetic mechanism. A substantial drop in histone acety-
lation was observed as soon as 1 h after macrophage stimulation with the TLR4 ligand,
and the low level was maintained until the later time points (Figure 3A). Surprisingly, the
removal of H3K4me3 and the emergence of H3K4me1 were transient (Figure 3B,C). This
suggests that the decline in histone acetylation, which favors polymerase pausing, take
place at the beginning of macrophage polarization to the pro-inflammatory phenotype [18].
However, paused Pol II maintains promoter regions in an accessible chromatin conforma-
tion due to the histone H3K4 methylation marks, which might be inserted, at least in part,
by the SET complexes associated with the Ser-5 phosphorylated CTD of Pol II [19].

In the search for chromatin remodeling enzymes, which are possibly involved in
CAT repression, we took advantage of the above-described observation on alterations
in histone acetylation and H4K4 methylation. First, we took into consideration EP300,
a histone acetyltransferase that activates transcription of a great majority of genes, and
the HDAC family of histone deacetylases—enzymes that determine histone acetylation
status. The inhibitor of EP300 (iEP300) alone declined CAT transcription comparably to LPS,
and the synergistic effect of the two CAT-repressing agents was not observed, suggesting
that EP300 acts as a CAT activator in M0 macrophages (Figure 3D). Pan-HDAC inhibitor
(iHDAC) effectively restrained gene suppression, indicating that at least one member
of the HDAC family contributed to LPS-induced limitation of transcription. The same
approach was employed in testing the role of H3K4 demethylases in the CAT promoter’s
response to TLR4 activation. Therefore, we pretreated macrophages with the inhibitor of
lysine-specific histone demethylase 1 (iLSD1a, 0.1 µM SP2905), which demethylates mono-
and dimethylated lysines 4 and 9, specifically at histone 3, and with the inhibitor of lysine
demethylase 5B (iKDM5B), which demethylates tri-, di-, and monomethylated lysine 4
of histone H3. iLSD1a—SP2905 attenuates the binding of LSD1 to corepressor protein
CoREST that is necessary for LSD1 to demethylate nucleosomes [20]. Since hydroxyphenyl
hydrazone moiety is well known to feature lots of non-specific effects [21], which arise
also by off-target, we employed another, irreversible, mechanism-based inhibitor of LSD1—
GSK-LSD1 (iLSD1b) that is >1000-fold selective over the closely related FAD-utilizing
enzymes LSD2, MAO-A, and MAO-B [22]. As shown in Figure 3E, iLSD1b acted equally
to iLSD1a and prevented CAT transcription from LPS-induced repression. The protective
activity of pan-HDAC and LSD1 inhibitors was also confirmed by Western blot, because all
three inhibitors comparably maintained high levels of the enzyme in the pro-inflammatory
macrophages (Figure 3F, Figure S1). Although KDM5B is, similarly to LSD1, involved in
the removal of methyl groups from histone H3, we did not observe any considerable effect
of KDM5B inhibition on the catalase transcription. This suggests that KDM5B might not be
responsible for the LPS-induced decrease in catalase expression.

The analysis of CAT promoter by ChIP real-time PCR supported the conclusions
arising from the previous inhibitor-based approach and disclosed the recruitment of LSD1
(Figure 3G) and HDAC1 (Figure 3H) as soon as 1 h after macrophage stimulation with LPS.
This observation agrees with previous reports, which described co-operativity between
LSD1 and HDAC1 within the CoREST complexes [23]. Bearing in mind that HDAC1 and
LSD1 occur at the promoter of the studied gene, we asked if such protein heterodimers are
formed in response to TLR4 activation. Immunoprecipitation of HDAC1 revealed a physical
interaction with demethylase in unstimulated cells (Figure 3I, Figure S1). The demethylase
was visibly reduced in HDAC1 pull-downs from LPS-stimulated cells, thereby suggesting
that (a) pre-existing HDAC1–LSD1 complexes disintegrate 24 h after macrophage stimu-
lation with LPS, or (b) LSD1 is selectively degraded in the above-mentioned complexes,
because the total intracellular level of the enzyme (Figure 3I—input) remains the same in
LPS-treated and -untreated cells.
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Figure 3. LSD1–HDAC1 complex suppresses CAT transcription during LPS-induced polarization
of macrophages. ChIP-qPCR revealed the alteration in acetylation of H3K27 (A), monomethylation
of H3K4 (B), and trimethylation of H3K4 (C) in the CAT promoter in response to macrophage
stimulation with 10 ng/mL of LPS for 12 h. (D) The contribution of EP300, HDACs, LSD1, and
KDM5B to LPS-induced CAT repression was studied by cell treatment with corresponding inhibitors
(iEP300, 10 µM C646; iHDAC, 200 µM sodium butyrate; iLSD1a, 0.1 µM SP2509; iKDM5A, 5 µM PBIT)
for 2 h prior to LPS. mRNA was collected after the next 24 h and CAT expression was quantified by
real-time PCR. (E) The functional involvement of LSD1 activity in the loss of catalase was tested with
one more inhibitor iLSD1b (0.1 µM GSK-LSD1). (F) iHDAC and iLSD1s protection from LPS-induced
catalase protein decline was visualized by Western blot under the same experimental condition as
in (D) and (E). The recruitment of HDAC1 (G) and LSD1 (H) to the CAT promoter was studied by
ChIP-qPCR after macrophage treatment with LPS for 1 and 9 h. (I) The impact of LPS added to cells
for 1 h on formation of LSD1–HDAC1 complexes was confirmed by immunoprecipitation of HDAC1,
followed by detection of the interacting partners by Western blot. Western blots show representative
images from three independent experiments. Bars in the figures represent mean ± standard error of
the mean (SEM). One-way analysis of variance (ANOVA) was carried out in GraphPad Prism 5 to
compare means in several groups and the differences between each two groups were tested with the
Tukey post hoc test (marked with * when p < 0.05, with ns when p > 0.05).
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3.4. HDAC Alone Maintains CAT Repression in M1-Polarized Macrophages

Knowing the profile of histone remodeling enzymes that bring about catalase defi-
ciency in LPS-stimulated macrophages, we tested whether their inhibitors can be used to
restore catalase expression after suppression. Therefore, we first allowed M0 macrophages
to polarize by incubating them with LPS for 24 h, and then treated them with the inhibitors
for another 24 h. iHDAC, but not iLSD1a, reverted gene repression in pro-inflammatory
macrophages developed after cell activation with the TLR4 ligand, as well as increased mRNA
and the enzyme protein to a level comparable to M0 macrophages (Figures 4A,B and S1). It
suggests that in LPS-induced pro-inflammatory macrophages, a decline in promoter acety-
lation plays a superior role in the reduction in CAT transcription and that LSD1 activity
promotes the gene repression only at the initial step. This also corresponds with the results
shown in Figure 3B,C, where the initial loss of transcription-promoting trimethylation
of H3K4 was reconstituted at a later step of macrophage polarization. Although LSD1
remained associated with the gene promoter in pro-inflammatory macrophages, its role in
gene suppression was taken over by HDAC1, which maintained deacetylated nucleosomes
in the CAT promoter (Figure 3A).
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Figure 4. The inhibition of HDACs, but not LSD1, reverses CAT suppression in pro-inflammatory
macrophages. iHDAC (200 µM sodium butyrate) and iLSD1a (0.1 µM SP2509) were used to restore
transcription of CAT in pro-inflammatory macrophages. The two inhibitors were added 24 h after
cell stimulation with LPS (10 ng/mL) for another 24 h. The mRNA level (A) was quantified by
real-time PCR, whereas protein level (B) by Western blot. (C) The scheme shows the difference in
the iLSD1 effect on the CAT expression depending on the macrophage phenotype. The treatment
of non-polarized phagocytes with both inhibitors prevents CAT repression induced by LPS (left
panel), but only iHDAC1 restores CAT transcription in M1 macrophages (right panel). Western
blots show representative images from three independent experiments. Bars in the figures represent
mean ± standard error of the mean (SEM). One-way analysis of variance (ANOVA) was carried out
in GraphPad Prism 5 to compare means in several groups and the differences between each two
groups were tested with the Tukey post hoc test (marked with * when p < 0.05, with ns when p > 0.05).
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3.5. LSD1 Inhibition Interferes with the HDAC1 Recruitment to the CAT Promoter and Protects
the Gene from LPS-Triggered Repression

To further study the role of LSD1 in the modification of the chromatin structure at the
catalase promoter we tested the impact of LSD1 protein deficiency at the mRNA level of
hydrogen peroxide decomposing enzyme. We transiently silenced LSD1 with siRNA and
stimulated cells with bacterial endotoxin after 48 h. Surprisingly, the lack of LSD1 protein
did not rescue suppression of catalase (Figure 5A,B, Figure S1). It suggests that upon inhibi-
tion of LSD1 activity the enzyme protein prevents CAT repression in an unknown fashion,
whereas the simultaneous deficiency of LSD1 activity and protein allows for the proper
signal transmission from TLR4 to the gene promoter. In search for the possible contribution
of LSD1 protein in the absence of its activity to the maintenance of CAT transcription we
first checked if LSD1 inhibition affects histone acetylation status since this modification
emerged responsible for the CAT repression in the polarized macrophages (Figure 4A,B).
Interestingly, both LSD1 inhibitors protected the gene promoter from acetylation decline in
LPS-treated cells (Figure 5C). This can be possibly explained by the reduced HDAC1 re-
cruitment to chromatin in the presence of LSD1 inhibitors (Figure 5D). The iLSD1-induced
chromatin alteration in LPS-treated cells were followed by the enhanced LSD1 occurrence
at the gene promoter (Figure 5E). Moreover, LSD1 silencing slightly enhanced HDAC1
recruitment to the CAT promoter (Figure 5F,G), thereby confirming the role of LSD1 in
HDAC1 interaction with the studied region of chromatin. The subtle increase in HDAC1
occupancy at the CAT promoter upon LSD1 protein deficiency in macrophages stimulated
with LPS may indicate near chromatin dissipation with histone deacetylase in cells with
physiological level of LSD1. The innate LSD1 recruitment to chromatin merely interferes
with HDAC1 occurrence and nucleosome deacetylation, but the iLSD1-induced increase
in chromatin occupancy by LSD1 inhibits HDAC1 interaction with the CAT promoter.
The possible functional link between LSD1 activity, its interaction with the CAT promoter,
the binding of HDAC1 and covalent modification of transcription-regulating histones are
presented in Figure 5H.

3.6. The Maintenance of Catalase Level in Polarizing Macrophages Lessens Expression of Some
Pro-Inflammatory Markers

To verify the hypothesis on the possible suppressive role of catalase in the transcription
control of some LPS-induced pro-inflammatory cytokines and M1 surface markers in polar-
izing cells, we made use of LSD1 inhibitors to prevent catalase decline (Figures 6A and S1).
Since LSD1 directly affects transcription of NF-κB-dependent genes by demethylating and,
thus, enhancing p65 protein stability [24], we compared the effect of LSD1 inhibitors on the
M1 marker transcription in the siCTRL and siCAT background. Western blot in Figure 6A
confirmed that the transient catalase silencing preserved catalase increase in iLSD1-treated
cells. Cells activated by LPS in the presence of iLSD1a and iLSD1b were characterized by
the reduced mRNA level of genes negatively controlled by catalase in LPS non-stimulated
cells (Figure 1F,G). Transcription of IL1β, TNFα, COX2, CD14 and TLR2 lost sensitivity to
LSD1 inhibition in catalase deficient cells (Figure 6B,C). The silencing of catalase prevented
the decline in the LPS-induced gene transcription caused by iLSD1a/b. These results
indicate that LSD1 activation after TLR4 interaction with bacterial ligand facilitates the
obtention of pro-inflammatory phenotype by suppressing catalase transcription.
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Figure 5. LSD1 activity allows for HDAC1 recruitment to the CAT promoter and the gene repression in cells stimulated
with LPS. The impact of LSD1 deficiency on the CAT transcription was studied in LSD1 transient knock downs (siLSD1)
and corresponding control cells (siCTRL) by real-time PCR (A) and Western blot (B) 48 h after cell transfection. The effect
of LSD1 inhibition on chromatin composition (C,D) and histone acetylation (E) in cells activated with LPS for 12 h was
studied by ChIP-qPCR. iLSD1a (0.1 µM SP2509) and iLSD1b (0.1 µM GSK-LSD1) were added for 2 h prior to cell treatment
with 10 ng/mL LPS. The recruitment of LSD1 and HDAC1to the CAT promoter in normal and LSD1-deficient macrophages
stimulated with LPS was monitored by ChIP-qPCR (F,G). (H) Graphical presentation of the possible cross-talk between
LSD1 activity, HDAC1 recruitment to the CAT promoter, chromatin structure (histone acetylation) and the CAT transcription.
Inhibition of LSD1 activity enhances the binding of demethylase but interferes with the recruitment of HDAC1 upon
macrophage stimulation with LPS. Western blots show representative images from three independent experiments. Bars in
the figures represent mean ± standard error of the mean (SEM). One-way analysis of variance (ANOVA) was carried out in
GraphPad Prism 5 to compare means in several groups and the differences between each of the two groups were tested
with the Tukey post hoc test (marked with * when p > 0.05, with ns when p > 0.05).
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Figure 6. LSD1-induced suppression of catalase facilitates the obtention of some pro-inflammatory
markers in M1-polarizing cells. To test the possible role of catalase in M1 polarization the LSD1-
induced CAT repression was prevented with iLSD1a and iLSD1b (0.1 µM SP2509, 0.1 µM GSK-LSD1,
respectively; added for 2 h prior to LPS), and the mRNA of some M1 markers was quantified
(real-time PCR) and compared between cells with the maintained and decreased level of catalase
(siCTRL vs. siCAT). (A) The efficiency of catalase silencing by siCAT in the presence and absence
of iLSD1a/b was tested by Western blot 48 h after cell transfection with siRNA. Inhibitors were
added 46 h after cell transfection and for 2 h prior to LPS (10 ng/mL). Cell lysates were collected 24 h
after cell stimulation with LPS. (B,C) The same experimental setting were applied to testing some
cytokines and other M1 markers. (B) IL1β is shown as an example. (C) Bolded gene names marked
with stars indicate genes repressed by catalase during M1 polarization (significant difference in the
mean when p < 0.05 between siCTRL + iLSD1a/LPS and siCAT + iLSD1a/LPS, as well as between
siCTRL + iLSD1b/LPS and siCAT + iLSD1b/LPS). Western blots show representative images from
three independent experiments. Bars in the figures represent mean ± standard error of the mean
(SEM). One-way analysis of variance (ANOVA) was carried out in GraphPad Prism 5 to compare
means in several groups and the differences between each two groups were tested with the Tukey
post hoc test (marked with * when p > 0.05, with ns when p > 0.05).

4. Discussion

Lysine-specific histone demethylase 1A (LSD1) demethylates both “Lys-4” (H3K4me)
and “Lys-9” (H3K9me) of histone H3, thereby acting as a transcriptional corepressor or
coactivator, respectively [25]. The nature of the catalytic activity of LSD1 makes this enzyme
directly involved in the regulation of intracellular redox processes since flavin adenine din-
ucleotide (FAD)-dependent amine oxidation mediated by this enzyme generates detectable
ROS as a byproduct of its chromatin remodeling activity during, for example, the initial
DNA damage response [26]. Our current and previous papers describe the contribution of
the demethylase to the adjustment of the enzymatic redox response during the polarization
of human macrophages. Upon their stimulation with TLR4 ligand, LSD1 represses both
SOD2 and CAT, which decompose the mitochondrial superoxide anion and hydrogen
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peroxide, respectively [7]. Despite their repression, pro-inflammatory macrophages reveal
relatively strong resistance to oxidative stress, and LSD1 inhibition merely increases their
viability [7]. Although the effect of enzyme inhibition on macrophages’ response to toxic
doses of exogenous hydrogen peroxide is still considerable, the major role of shifting redox
balance to a pro-oxidative condition rather renders M1 macrophages to pathogen killing
and regulates inflammatory responses. The superoxide anion, together with the iNOS-
derived NO, serves as a substrate for the synthesis of the powerful oxidant peroxynitrite,
whereas hydrogen peroxide is utilized by myeloperoxidase to generate hypochlorous acid.
Pro-inflammatory cytokines and ROS stimulate the production of each other [27]; therefore,
by targeting SOD2 and CAT transcription, the LSD1 inhibitors may affect various intra-
cellular processes and may unveil immunomodulatory effects in polarized macrophages.
Additionally, by directly modulating the transcription of IL1β, TNFa, and IL6, LSD1 acts as
a critical regulator of mammalian hematopoiesis and as a negative regulator of the response
to inflammation in hematopoietic stem cells during endotoxic shock [28,29]. The demethy-
lation of p65 by LSD1 was shown to be critical for the inflammatory response in vivo
since it enhances p65 protein stability [24]. In line with above-described findings, our
current paper describes another aspect regarding LSD1 role in pro-inflammatory response,
namely repression of catalase that serves as a negative regulator of some M1-specific genes,
including pro-inflammatory cytokines. Thus, LSD1 can possibly promote dually the M1
macrophage specialization by directly modifying p65 and by reducing catalase abundance.

The co-occurrence of LSD1 and HDAC1 at the gene promoters and the following gene
suppression is assigned in the literature to the formation of CoREST-based multi-subunit
co-repressive complexes, where RE1 silencing transcription factor (REST) cooperates with
the corepressor of REST (CoREST), LSD1, and HDAC1/2. The precise composition of
these complexes differs depending on cell type, but other core subunits, such as CtBP1,
ZNF217, BHC80, and BRAF35, were identified [30]. As long as HDAC1 can be recruited to
chromatin with other proteins to remove acetyl groups from chromatin-bound factors and
nucleosomes, the interaction with CoREST was deemed necessary for LSD1 to demethylate
H3K4. Indeed, TRL4 stimulation with LPS led to co-recruitment of LSD1 and HDAC1 to
the CAT promoter, and simultaneous histone demethylation and deacetylation. However,
the inhibition of LSD1 activity led to substantial enrichment of the enzyme at the gene
promoter and prevented HDAC1 binding, thereby rescuing nucleosome acetylation and
catalase transcription in cells treated with LPS. Activity of LSD1 turns out as a factor
limiting the physical interaction of the enzyme with chromatin. Even more surprising
was the LSD1 enrichment at the CAT promoter after attenuation of LSD1 binding to
CoREST with SP2509, particularly when the CoREST SANT2 domain was proposed to
function as a molecular bridge that connects LSD1 to its nucleosomal substrates [31]. Very
recent findings paid attention to nonenzymatic functions of LSD1 that emerged critical for
its activities [32]. In the referred model of retinoic acid-induced differentiation of acute
myeloid leukemia cells LSD1 played a scaffolding role, and LSD1 inhibition impeded
the interaction between LSD1 and GFI1, but not with HDAC1/2 and RCOR1. Moreover,
LSD1 inhibitors were shown to target catalytic and noncatalytic functions of LSD1. The
question on the mechanism that drives HDAC1 recruitment to the CAT promoter during
pro-inflammatory macrophage polarization remains open. In LSD1 deficient cells HDAC1
binds and represses CAT promoter, but it equally occurs in LSD1 proficient cells as long
as the enzyme is active and removes the methyl groups from histone tails. Therefore,
the status of histone methylation does not seem to be crucial for HDAC1-mediated gene
inactivation. The considerable increase in LSD1 occurrence on the chromatin upon the
enzyme inhibition may suggest the possible interference with the HDAC1 binding, but
further experiments are needed to conclude on the mutual interdependence between LSD1
and HDAC1 activity and recruitment to the chromatin.
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5. Conclusions

In conclusion, LSD1 promotes the macrophage pro-inflammatory specialization by re-
pressing catalase in response to activation of TLR4 receptors with LPS. Hydrogen peroxide-
decomposing enzyme impedes transcription of the subset of pro-inflammatory cytokines
and M1-specific surface markers; therefore, targeting of LSD1 activity may be considered
as the immunosuppressive treatment for some pathological conditions associated with
hyperactivation of pro-inflammatory macrophages.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/cells10092465/s1, Figure S1: Full Western blot images, Figure S2: The occurrence of POLR2 pausing
complex in the CAT exons, Table S1: Raw data and statistical analysis.
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30. Mačinković, I.; Theofel, I.; Hundertmark, T.; Kovač, K.; Awe, S.; Lenz, J.; Forné, I.; Lamp, B.; Nist, A.; Imhof, A.; et al. Distinct
CoREST complexes act in a cell-type-specific manner. Nucleic Acids Res. 2019, 47, 11649–11666. [CrossRef]

31. Chen, Y.; Yang, Y.; Wang, F.; Wan, K.; Yamane, K.; Zhang, Y.; Lei, M. Crystal structure of human histone lysine-specific demethlase 1
(LSD1). Proc. Natl. Acad. Sci. USA 2006, 103, 13956–13961. [CrossRef]

32. Ravasio, R.; Ceccacci, E.; Nicosia, L.; Hosseini, A.; Rossi, P.L.; Barozzi, I.; Fornasari, L.; Zuffo, R.D.; Valente, S.; Fioravanti, R.; et al.
Targeting the scaffolding role of LSD1 (KDM1A) poises acute myeloid leukemia cells for retinoic acid-induced differentiation.
Sci. Adv. 2020, 6, eaax2746. [CrossRef] [PubMed]

http://doi.org/10.1038/s41598-017-10307-z
http://www.ncbi.nlm.nih.gov/pubmed/28842672
http://doi.org/10.3389/fimmu.2019.01084
http://www.ncbi.nlm.nih.gov/pubmed/31178859
http://doi.org/10.1371/journal.pone.0042542
http://www.ncbi.nlm.nih.gov/pubmed/22880027
http://doi.org/10.1093/oxfordjournals.jbchem.a022830
http://doi.org/10.1016/j.molcel.2018.01.006
http://doi.org/10.1074/jbc.M117.802074
http://doi.org/10.1073/pnas.1805129115
http://doi.org/10.1016/j.molcel.2020.04.019
http://doi.org/10.1038/513481a
https://www.thesgc.org/chemical-probes/GSK-LSD1
http://doi.org/10.1093/jmcb/mjy021
http://www.ncbi.nlm.nih.gov/pubmed/29741645
http://doi.org/10.1016/j.molcel.2018.01.002
http://doi.org/10.1186/s13045-019-0811-9
http://doi.org/10.1371/journal.pone.0201907
http://www.ncbi.nlm.nih.gov/pubmed/30096172
http://doi.org/10.1161/CIRCRESAHA.117.311401
http://doi.org/10.1073/pnas.1718759114
http://doi.org/10.1016/S1001-9294(13)60027-9
http://doi.org/10.1093/nar/gkz1050
http://doi.org/10.1073/pnas.0606381103
http://doi.org/10.1126/sciadv.aax2746
http://www.ncbi.nlm.nih.gov/pubmed/32284990

	Introduction 
	Materials and Methods 
	Chemicals and Reagents 
	Monocyte Isolation, Differentiation to Macrophages, and Stimulation with TLR Ligands 
	Gene Silencing 
	Evaluation of CAT and M1 Markers Expression 
	Chromatin Immunoprecipitation 
	Co-Immunoprecipitation 
	Statistical Analysis 

	Results 
	TLR Ligands Reduce CAT Total mRNA Levels in Human Macrophages 
	Repression of CAT Transcription in Response to TLR4 Activation Is Associated with the Formation of RNA Polymerase Pausing Complex 
	LSD1 Co-Operates with HDAC1 to Repress CAT in Macrophages Activated with LPS 
	HDAC Alone Maintains CAT Repression in M1-Polarized Macrophages 
	LSD1 Inhibition Interferes with the HDAC1 Recruitment to the CAT Promoter and Protects the Gene from LPS-Triggered Repression 
	The Maintenance of Catalase Level in Polarizing Macrophages Lessens Expression of Some Pro-Inflammatory Markers 

	Discussion 
	Conclusions 
	References

