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The current treatment strategy for HIV-1 involves prolonged and intensive combined 
antiretroviral therapy (cART), which successfully suppresses plasma viremia. It has 
transformed HIV-1 infection into a chronic disease. However, despite the success of 
cART, a latent form of HIV-1 infection persists as integrated provirus in resting memory 
CD4+ T cells. Virus can reactivate from this reservoir upon cessation of treatment, and 
hence HIV requires lifelong therapy. The reservoir represents a major barrier to eradica-
tion. Understanding molecular mechanisms regulating HIV-1 transcription and latency 
are crucial to develop alternate treatment strategies, which impact upon the reservoir 
and provide a path toward a “functional cure” in which there is no detectable viremia 
in the absence of cART. Numerous reports have suggested ncRNAs are involved in 
regulating viral transcription and latency. This review will discuss the latest developments 
in ncRNAs, specifically short interfering (si)RNA and short hairpin (sh)RNA, targeting 
molecular mechanisms of HIV-1 transcription, which may represent potential future 
therapeutics. It will also briefly address animal models for testing potential therapeutics 
and current gene therapy clinical trials.

Keywords: Hiv-1 transcription, latency, non-coding RnA, siRnA, shRnA, humanized mouse model, gene therapy, 
clinical trials

introduction

Non-coding RNAs (ncRNAs) are widely accepted as important regulators of cellular processes 
acting through post-transcriptional control of protein expression. The coding regions translated 
into protein of the human genome account for ~2%, while over 90% of the non-coding genome 
is reported to be utilized for transcription (1–4). Consequently, ncRNAs make up the majority of 
the mammalian transcriptome (2) and are reported to function in the transcriptional regulation 
of gene expression during embryogenesis, cell differentiation (5) and in response to external 
stimuli, particularly virus infection (6). NcRNAs are classified as regulatory or infrastructural 
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H3K9me2, histone 3 lysine 9 di-methylation; HSPC, hematopoetic stem progenitor cell; LTR, long terminal repeat; LV, lentiviral 
vector; NF-κB, nuclear factor kappa B; NFAT, nuclear factor of activated T cells; SP1, specificity protein 1; TCR, T cell receptor; 
TGS, transcriptional gene silencing; WT, wild-type; ZFN, zinc finger nucleases.
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(ribosomal and transfer RNAs). The regulatory class can be 
divided into small ncRNAs (<200 nucleotides) and long ncR-
NAs (>200 nucleotides) (7), with small ncRNAs being further 
categorized into microRNA (miRNA), short interfering RNAs 
(siRNAs), and antisense RNAs (asRNAs). This review will 
primarily focus on siRNAs and short hairpin RNAs (shRNAs) 
as there have been several recent reviews of the roles of long 
ncRNAs and other small ncRNAs (8, 9).

The HIV-1 5′ long terminal repeat (LTR), which acts as the 
promoter for integrated virus, consists of ~450 base pairs. It 
includes multiple binding sites for host transcription factors, 
including NF-κB, NFAT, SP1, and AP-1, which act to enhance 
viral transcription. HIV-1 transcription from integrated pro-
virus is a highly controlled process, regulated by a number of 
epigenetic modifications, with recent studies identifying the 
involvement of ncRNAs. The major HIV-1 transactivation pro-
tein, Tat, dramatically enhances viral transcription by binding 
to a dynamic stem loop structure in viral RNA, the transactiva-
tion response element (TAR), which is also coded within the 
5′LTR. In contrast, in cells harboring latent HIV-1, transcrip-
tion is severely restricted and the 5′LTR promoter region carries 
a specific epigenetic profile, which includes increased histone 
methylation, decreased histone acetylation, which follows the 
recruitment of histone deacetylases (HDACs). These biochemi-
cal changes involve the histones of two nucleosomes (nuc0 
and nuc1) that associate with specific regions of the 5′LTR. In 
particular, these changes are associated with repositioning of 
nuc1 (10–15). In latent virus, nuc1 overlies the transcription 
start site, whereas in actively transcribing virus, the demethyl-
ated/acetylated nucleosome slides upstream of the transcription 
start site (13).

This review aims to highlight a highly innovative approach 
to current HIV-1 therapies that utilizes small RNAs, which may 
represent an alternative strategy to eradication through a func-
tional cure. We will discuss the latest developments in ncRNAs, 
specifically siRNA and shRNA, for targeting the molecular 
mechanisms of HIV-1 transcription as well as briefly address 
humanized murine models, which provide a vehicle to assess 
potential therapeutics, current gene therapy clinical trials, and 
future directions of promising therapeutics.

Limitations of Hiv-1 Therapy

Combined antiretroviral therapy (cART) has revolutionized 
the treatment of HIV-1 infection in the developed world, 
changing a fatally acute disease into a manageable chronic 
condition. However, there are significant caveats accompany-
ing lifelong cART therapy, which is currently necessary to 
control HIV-1 replication. These include the ongoing burden 
of compliance, drug toxicities, and residual excess morbidity 
and mortality, mostly due to serious non-AIDS events (16). 
Whilst effective cART rapidly suppresses the plasma viral load 
(pVL) to near undetectable levels (17) and permits reconsti-
tution of immune cells (18), the integrated HIV-1 provirus 
DNA remains essentially unaffected, and therefore provides 
a viral reservoir, from which recrudescence can occur upon 
interruption of cART (19, 20). The current barrier to HIV 

eradication is this reservoir that persists in resting memory 
CD4+ T cells and cells of myeloid lineage (17, 21–24). While 
multiple approaches have been explored to surmount this 
obstacle, including early intervention with cART (25), cART 
intensification (18, 26–30), and purging of the reservoir using 
reactivation strategies (31–35), the fundamental limitation 
remains that in the overwhelming majority of patients, the 
virus rebounds with cessation of cART (36).

Current Therapeutic Approaches to 
Achieve a Functional Cure

While the ultimate goal is often stated to be the eradication of 
HIV, that is achieving a sterilizing cure, recent studies have sug-
gested a more realistic approach might be to achieve a functional 
cure, whereby therapeutic interventions mediate a clinical state 
of undetectable pVL in the absence of cART. So far, the “Kick 
and Kill Approach” to eradication is the most studied to date, 
with the objective of reactivating the latent reservoir while the 
patient continues cART. The expected outcome is that infected 
cells would be killed either directly by virus reactivation or 
through the cytotoxic T-lymphocyte immune response as viral 
proteins are expressed on the cell surface following reactiva-
tion. The presence of cART should prevent new cells becoming 
infected. The desired result is reduction in or elimination of the 
latent reservoir. However, despite various interventions includ-
ing pan T cell activation through OKT3 (37), recombinant IL-2 
(38), or IL-7 (34, 39), and activation of the protein kinase C 
(PKC) or protein kinase B pathways using prostatin, bryostatin, 
or disulfram, respectively (40), these approaches have had only 
limited or no success in achieving a reduction in the size of the 
latent reservoir.

Most “kick and kill” approaches have focused on driving virus 
reactivation by modifying the epigenetic profile of the virus in 
latent reservoir by using HDAC inhibitors (HDACi). These have 
included valporic acid (VPA), suberoylanilide hydroxamic acid 
(SAHA, vorinostat), romidepsin, and panobinostat (41–46). 
In vitro studies have shown substantial reactivation of integrated 
virus in cells from certain patients. However, in vivo the extent 
of viral reactivation has been limited and these drugs induce 
substantial off-target effects with significant non-specific host 
gene activation (47, 48). This has been most clearly demonstrated 
for SAHA, which was observed to inhibit CTL function (49), 
and would therefore impede CTL mediated “kill” of previously 
latently infected cells following the HDACi-induced “kick” (49). 
These findings all point to the need to dissect more precisely the 
molecular mechanisms involved in HIV-1 latency, particularly 
reactivation, to develop a more specific and targeted approach in 
manipulating the viral reservoir.

Post-Transcriptional Gene Silencing of 
Hiv-1 by si/shRnAs

A major limitation of the post-transcriptional gene silencing 
(PTGS) approach is the opportunity for viral escape due to 
targeting at the mRNA level, which allows the transcription 
process to potentially incorporate resistance mutations in the 
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targeted sequence. To address this limitation, a similar strategy 
to combat HIV-1 drug resistance has been adopted, using dual or 
triple combination therapy of anti-HIV-1 shRNAs and/or other 
anti-HIV-1 gene therapeutics (50–52).

The first Phase 2 cell-modified gene therapy clinical trial using 
a combination approach involved a tat-vpr-specific anti-HIV 
ribozyme, termed OZ1, delivered in autologous CD34+ HPSCs 
(53). Although there were no significant viral load differences 
reported between the OZ1 and placebo groups, this study dem-
onstrated cell-modified gene therapy was safe and biologically 
active, with no adverse events and higher CD4+ cell counts in the 
OZ1 group (53). A substantially decrease in the blood therapeutic 
gene level throughout the 100-week trial (53) may provide an 
explanation for the lack of effect.

A combinatorial approach uses three anti-HIV-1 shRNAs, each 
specifically targeting highly conserved regions of the HIV Integrase, 
Protease and tat-rev genes, delivered in a single LV construct termed 
R3A (52). This study first demonstrated multiple shRNAs being 
efficiently expressed in a single LV construct, if expression is driven 
by different promoters for each shRNA, e.g., the human H1, 7SK, 
or U6 polymerase III promoters and the human U1 polymerase II 
promoter each driving one of four shRNAs (52). Potent inhibition of 
HIV-1 was reported in vitro, with combined LV shRNAs constructs 
showing greater inhibition compared to single LV shRNA constructs 
(52). More recently, a preclinical in vivo study demonstrated safety 
of the R3A, triple shRNA expressing construct, using a Balb/c 
Rag2(−/−) IL-2Rγc(−/−) (BRG) humanized mouse model (54). 
Future clinical trials are planned to develop this potential therapeutic.

Another combinatorial HIV-1 approach involves shRNA 
targeting the ccr5 gene and the C46 peptide fusion inhibitor in 
a LV construct termed LV sh5/C46 (or Cal-1), which has been 
developed by Calimmune Inc. It will be discussed further in the 
humanized murine model section.

Transcriptional Gene Silencing of Hiv-1 by 
si/shRnAs

The transcriptional gene silencing (TGS) approach has several 
distinct advantages over a PTGS approach; first, it directly targets 
the integrated virus, locking transcription, thus the opportunity 
for virus escape is minimized; second, epigenetic changes induced 
during TGS are heritable resulting in daughter cells maintaining 
the suppressive phenotype, providing a prolonged therapeu-
tic response; and third, the exquisite sequence specificity of 
promoter-targeted si/shRNAs reduces the chance of non-specific 
off-target effects and toxicities.

Following the first identification of small interfering RNA-
induced TGS in tobacco plants just over 10 years ago (55), the 
field has rapidly developed with multiple studies now identifying 
the phenomena in other plant species (Arabidopsis) (56, 57), fis-
sion yeast (Schizosaccharomyces pombe) (58), flies (Drosophila) 
(59), and nematode worms (Caenorhabditis elegans). Most 
recently, we and others have demonstrated TGS also occurs in 
human cells (60–66). We were the first group to report TGS could 
be induced in active HIV-1 infection through siRNA targeting the 
tandem NF-κB binding motifs in the 5′LTR viral promoter region 
(67). Subsequently, several studies have also identified targets 

for siRNAs that induce TGS in the HIV-1 promoter, specifically 
LTR-247, LTR-362, LTR-366 (68), and S4-siRNA (69). Of note, 
promoter-targeted siRNAs LTR-366 and S4-siRNA also target 
sequences in the NF-κB binding motif.

Our extensive investigations have demonstrated TGS of 
HIV-1 using the promoter-targeted si/shRNA PromA sequence 
complementary to the 5′LTR tandem NF-κB motifs initially 
in vitro using cell lines (64, 67, 70–72) and more recently in an 
in vivo humanized murine model (73). Characterization of the 
effects of si/shPromA revealed prolonged and profound TGS 
with up to a 1000-fold decrease in viral replication after a single 
siRNA transfection or retroviral-delivered shRNA construct. 
We also reported si/shPromA suppressed viral mRNA expres-
sion and de novo virion formation, while proviral DNA was still 
detected, indicating that virus suppression occurs post-integra-
tion. In further studies, we confirmed si/shPromA-mediated 
suppression of HIV-1 occurred via the TGS pathway using 
nuclear run-on assays to confirm transcription initiation rates, 
which clearly distinguished transcriptional suppression in si/
shPromA treated HIV-1 infected nuclei from potential post-
transcriptional effects (67, 72). Similarly, our investigations 
using a 3′LTR HIV-1-driven luciferase reporter construct also 
confirmed a limited contribution of PTGS to the observed virus 
suppression (72). Finally, chromatin immunoprecipitation 
(ChIP) analyses provided insight into the mechanism underly-
ing the TGS, demonstrating that silencing was associated with 
increased histone methylation (H3K9me2 and H3K27me3), 
decreased histone acetylation, and recruitment of HDAC1 in 
the 5′LTR promoter region (64, 67, 72, 74). These structural 
histone changes are consistent with epigenetic-induced latent 
HIV infection (10–15, 72).

A recent study by Singh et al. using S4-siRNA targeted to the 
unique triple repeat of NF-κB binding motifs found in subtype 
C virus demonstrated long-term suppression of HIV-1 (69). 
The mechanism of silencing was shown in vitro to act through 
TGS, as determined by ChIP analysis of histone methylation, 
which revealed enrichment of H3K9me2 and H3K27me3 
in S4-siRNA-transfected reporter cell lines (containing the 
subtype C LTR, luciferase reporter, and subtype C Tat protein 
expression cassette), but no enrichment in mock- or control 
siRNA-transfected cells (69). The suppressive effect was con-
firmed ex vivo in human PBMCs using four different subtype C 
isolates, which were shown to produce significantly lower p24 
levels when transfected with S4-siRNA compared to mock- or 
control siRNAs (69). Interestingly, while a single mismatch at 
position 15 of the S4-siRNA sequence and a double mismatch 
at positions 1 and 15 were sufficient to disrupt the suppressive 
effect, one particular single mismatch at position 1 of the target 
sequence showed no disruption of the suppressive effect (69). 
This is intriguing considering the highly sequence specific 
nature of siRNAs and our experience of single mismatches dis-
rupting any prolonged suppressive effect with loss of responses 
by ~6  days (75). Nevertheless, the unique S4-siRNA presents 
an interesting potential therapeutic approach in the specific 
targeting of subtype C, which is present in ~50% of the world’s 
HIV-positive population and demonstrates that much is still 
to be learnt regarding the properties of a targeted sequence 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


September 2015 | Volume 6 | Article 4744

Ahlenstiel et al. Non-coding RNA gene therapy approaches

Frontiers in Immunology | www.frontiersin.org

that allows effective induction of viral silencing by promoter-
targeted siRNAs.

We have also recently discovered another novel highly 
conserved sequence in the 5′LTR promoter region (including 
subtype C), upstream of siPromA, which when targeted by an 
si/sh RNA dubbed 143, induces potent transcriptional suppres-
sion of HIV associated with epigenetic modifications similar 
to those induced by siPromA (75). ChIP analyses revealed 
that the epigenetic changes induced by siRNA143 consisted of 
increased levels of both H3K27me3 and H3K9me3, reduction 
in H3K9Ac, and recruitment of Argonaute-1 (75), which are all 
characteristic heterochromatin marks observed during shRNA-
induced TGS. Further, these changes in histone methylation and 
acetylation are consistent with epigenetic modifications found 
in latent HIV-1 infection. Following both siRNA PromA and 
143 transfections, we observed that silencing can be partially 
reversed by highly potent, but also highly toxic, HDACi, such 
as trichostatin A (TSA), but not by those undergoing clinical 
trial evaluation, such as vironostat (SAHA) (75). Further, TNF 
at supra-physiological concentrations partially reduced the 
silencing. Additionally, using the J-Lat 9.2 cell latency model 
transduced with shPromA and/or sh143, we also observed 
robust resistance to viral reactivation by various stimuli, includ-
ing SAHA and/or TNF, used at pharmacological or physiologi-
cal concentrations (75). These observations are important in the 
context of the proposed gene-therapy applications as successful 
therapy will require sustained viral silencing despite activation 
of CD4+ T cells by inflammatory, homeostatic, or immune 
response proteins.

Identification of a second effective TGS target provides the 
opportunity to combine the shRNA targets (shPromA and sh143) 
in a single therapeutic. This combinatorial approach addresses 
concerns of any sequence-based target by covering HIV sequence 
variability. The PromA and si143 sequence targets are both highly 
conserved, however where variability does occur, the two con-
structs are complementary; e.g., subtype C viruses have a single 
nucleotide deletion at position 14 of the PromA target, while the 
sh143 sequence target has minimal subtype C variability. Thus, a 
multiplexed approach, delivered by a single LV construct expressing 
multiple shRNAs simultaneously, would likely provide increased 
viral coverage and more entrenched enforcement of epigenetic 
changes, which more robustly resist viral reactivation from altera-
tions in the host’s inflammatory or immunological status. We are 
currently testing these constructs in humanized mouse models, 
described below.

Humanized Mouse Models for Assessing 
Potential Hiv-1 Therapeutics

Animal models for assessing HIV-1 therapeutics include various 
humanized murine models and non-human primates. Although 
the latter species contain host-restriction factors that impede 
HIV-1 replication and experiments performed using this model 
must instead use the closely related Simian immunodeficiency 
virus or chimeric Simian/HIV (SHIV) (76). We recently utilized a 
(NOD)/SCID/Janus kinase 3 (NOJ) knockout humanized mouse 

model to demonstrate in vivo TGS activity of shPromA, delivered 
via a LV (Figure 1) (73). NOJ knockout mice were reconstituted 
with human PBMCs transduced with the shPromA carrying 
lentiviral construct, which was processed into mature siPromA 
by cellular ribonucleases (77). HIV-1JRFL challenge of mice recon-
stituted with the PromA-M2 inactive control transduced PBMCs 
showed acute HIV-1 infection (Figure 1A) as determined by high 
pVL, CD4+ T cell depletion and extensive immunodeficiency 
(78, 79). In stark contrast, mice reconstituted with shPromA-
transduced PBMCs demonstrated significantly lower pVL and 
normal human CD4+ to CD8+ T cell ratios in mononuclear 
cells recovered from the peritoneal cavity and spleen at sacrifice 
14 days post HIV-1 challenge (Figure 1B) (73). This corresponds 
to a protective effect in the form of an induced HIV-1 “latent-like” 
state, which locks down active virus transcription even in this 
acute model of HIV-1 infection.

Our aim is to generate sufficient data using the humanized 
mouse model to merit further therapeutic development of these 
TGS-inducing constructs. An alternative humanized murine 
model, which circumvents the highly acute infection reported 
in NOJ knockout mice, is the humanized BLT murine model. 
This model uses the non-obese diabetic (NOD)/SCID, common 
gamma chain −/− (NSG) mouse, humanized with implanted 
bone marrow, fetal liver, and thymus tissue (BLT) and results in 
systemic repopulation with human T cells, B cells, monocytes/
macrophages, and dendritic cells (76, 80). This system has been 
used to perform in  vivo studies of autologous CD34+ HSPCs 
transduced with the H1-CCR5 shRNA 1005 vector and showed 
effective down-regulation of the HIV-1 co-receptor, CCR5, which 
protected mouse-derived human splenocytes ex vivo (80) and 
CD4+ T cells in vivo (81) from CCR5-tropic HIV-1 infection. This 
CCR5-shRNA vector has also been analyzed in non-human pri-
mates by delivery through HSPC transplantation (82). Although 
this required a single nucleotide mutation in the human CCR5 
shRNA 1005 sequence to match the rhesus macaque CCR5 target 
sequence, this analysis successfully showed specific inhibition of 
rhesus macaque CCR5 expression, with no modulation of human 
CCR5 expression observed (82).

The H1-CCR5 shRNA 1005 vector has been further devel-
oped to include an additional anti-HIV target in the form of a 
sequence that encodes for the C46 fusion inhibitor. This HIV-1 
entry inhibitor is a mimetic derived from the peptide sequence 
of the C-terminal heptad repeat of HIV-1 gp41, which interacts 
with the N-terminal coiled-coil domain of the intermediate 
HIV-1 gp41 to block the six-helix bundle formation and 
subsequent fusion between HIV-1 envelope and the host cell 
membrane. C46 has been tested in Phase 1 clinical trials with-
out any adverse effects in HIV-1 positive patients infused with 
autologous T cells transduced with C46 expressing retrovirus 
vector (83). Combination of H1-CCR5 shRNA 1005 and C46 
into a single LV termed LVsh5/C46 (or Cal-1) has been tested 
in a preclinical trial discussed below and is currently being 
assessed in a Phase 1 trial in patients with chronic HIV-1 
infection (NCT01734850). We are planning to assess the new 
sh143 target in combination with shPromA contained within 
the Cal-1 lentivirus construct backbone in the BLT model 

FiGURe 1 | Schematic representation of the in vivo effects of a promoter-targeted siRnA approach in a humanized mouse model and envisaged 
gene therapy approach. Replication-incompetent lentivirus carrying (A) the inactive control shPromA-M2 or (B) active shPromA is transduced into healthy 
control human CD4+ T cells. Transduced CD4+ T cells are transplanted into (NOD)/SCID/Janus kinase 3 (NOJ) knockout mice and engraftment ensues. The 
humanized mice are then challenged with HIV-1 and sacrificed 14 days post challenge. The shPromA antisense strand (red), associates with Ago1 (purple) and 
other RITS-like complex components (HDAC – yellow and EZH2 – pink) and induces heterochromatin formation with methylation marks (H3K9me2, indicated 
by stars) in the targeted HIV-1 promoter region. This process suppresses HIV-1 transcription and results in protection of CD4+ T cells, which results in lower 
pVL in mice transplanted with shPromA compared to control shPromA-M2 lentivirus-transduced PBMCs. (C) Our envisaged gene therapy approach with the 
future shPromA and/or sh143 TGS-inducing targets involves initial apheresis to obtain and select CD34+ HSPC and/or CD4+ T cells, which are then cultured ex 
vivo and transduced with the multiplexed shRNAs. The transduced cells are then infused back into the patient, whereby HIV-1 will be locked down in a 
latent-like state.
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model to demonstrate in vivo TGS activity of shPromA, delivered 
via a LV (Figure 1) (73). NOJ knockout mice were reconstituted 
with human PBMCs transduced with the shPromA carrying 
lentiviral construct, which was processed into mature siPromA 
by cellular ribonucleases (77). HIV-1JRFL challenge of mice recon-
stituted with the PromA-M2 inactive control transduced PBMCs 
showed acute HIV-1 infection (Figure 1A) as determined by high 
pVL, CD4+ T cell depletion and extensive immunodeficiency 
(78, 79). In stark contrast, mice reconstituted with shPromA-
transduced PBMCs demonstrated significantly lower pVL and 
normal human CD4+ to CD8+ T cell ratios in mononuclear 
cells recovered from the peritoneal cavity and spleen at sacrifice 
14 days post HIV-1 challenge (Figure 1B) (73). This corresponds 
to a protective effect in the form of an induced HIV-1 “latent-like” 
state, which locks down active virus transcription even in this 
acute model of HIV-1 infection.

Our aim is to generate sufficient data using the humanized 
mouse model to merit further therapeutic development of these 
TGS-inducing constructs. An alternative humanized murine 
model, which circumvents the highly acute infection reported 
in NOJ knockout mice, is the humanized BLT murine model. 
This model uses the non-obese diabetic (NOD)/SCID, common 
gamma chain −/− (NSG) mouse, humanized with implanted 
bone marrow, fetal liver, and thymus tissue (BLT) and results in 
systemic repopulation with human T cells, B cells, monocytes/
macrophages, and dendritic cells (76, 80). This system has been 
used to perform in  vivo studies of autologous CD34+ HSPCs 
transduced with the H1-CCR5 shRNA 1005 vector and showed 
effective down-regulation of the HIV-1 co-receptor, CCR5, which 
protected mouse-derived human splenocytes ex vivo (80) and 
CD4+ T cells in vivo (81) from CCR5-tropic HIV-1 infection. This 
CCR5-shRNA vector has also been analyzed in non-human pri-
mates by delivery through HSPC transplantation (82). Although 
this required a single nucleotide mutation in the human CCR5 
shRNA 1005 sequence to match the rhesus macaque CCR5 target 
sequence, this analysis successfully showed specific inhibition of 
rhesus macaque CCR5 expression, with no modulation of human 
CCR5 expression observed (82).

The H1-CCR5 shRNA 1005 vector has been further devel-
oped to include an additional anti-HIV target in the form of a 
sequence that encodes for the C46 fusion inhibitor. This HIV-1 
entry inhibitor is a mimetic derived from the peptide sequence 
of the C-terminal heptad repeat of HIV-1 gp41, which interacts 
with the N-terminal coiled-coil domain of the intermediate 
HIV-1 gp41 to block the six-helix bundle formation and 
subsequent fusion between HIV-1 envelope and the host cell 
membrane. C46 has been tested in Phase 1 clinical trials with-
out any adverse effects in HIV-1 positive patients infused with 
autologous T cells transduced with C46 expressing retrovirus 
vector (83). Combination of H1-CCR5 shRNA 1005 and C46 
into a single LV termed LVsh5/C46 (or Cal-1) has been tested 
in a preclinical trial discussed below and is currently being 
assessed in a Phase 1 trial in patients with chronic HIV-1 
infection (NCT01734850). We are planning to assess the new 
sh143 target in combination with shPromA contained within 
the Cal-1 lentivirus construct backbone in the BLT model 

FiGURe 1 | Schematic representation of the in vivo effects of a promoter-targeted siRnA approach in a humanized mouse model and envisaged 
gene therapy approach. Replication-incompetent lentivirus carrying (A) the inactive control shPromA-M2 or (B) active shPromA is transduced into healthy 
control human CD4+ T cells. Transduced CD4+ T cells are transplanted into (NOD)/SCID/Janus kinase 3 (NOJ) knockout mice and engraftment ensues. The 
humanized mice are then challenged with HIV-1 and sacrificed 14 days post challenge. The shPromA antisense strand (red), associates with Ago1 (purple) and 
other RITS-like complex components (HDAC – yellow and EZH2 – pink) and induces heterochromatin formation with methylation marks (H3K9me2, indicated 
by stars) in the targeted HIV-1 promoter region. This process suppresses HIV-1 transcription and results in protection of CD4+ T cells, which results in lower 
pVL in mice transplanted with shPromA compared to control shPromA-M2 lentivirus-transduced PBMCs. (C) Our envisaged gene therapy approach with the 
future shPromA and/or sh143 TGS-inducing targets involves initial apheresis to obtain and select CD34+ HSPC and/or CD4+ T cells, which are then cultured ex 
vivo and transduced with the multiplexed shRNAs. The transduced cells are then infused back into the patient, whereby HIV-1 will be locked down in a 
latent-like state.
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TABLe 1 | Current Hiv-1 gene therapy clinical trials.

Hiv-1 therapeutic target Sponsor Phase Trial status Reference

Autologous T cells genetically modified at the CCR5 gene by ZFN Sangamo Biosciences 1/2 Completed NCT01252641

WT-gag-TCR modified T cells or α/6-gag-TCR modified T cells UPENN/Adaptimmune 1 Completed NCT00991224

CD34+ HSPC transduced with two ribozyme sequences “L-TR/Tat-neo” Ribozyome 2 Completed NCT00002221

Autologous CD34+ HSPC transduced with anti-HIV-1 ribozyme (OZ1) targeting  
Tat/Vpr

Janssen-Cilag Pty Ltd. 2 Completed NCT00074997
(52)

CD34+HSPC transduced with dual shRNAs targeting Tat/Rev and TAR decoy and 
CCR5 ribozyme

City of Hope Medical Center/NCI Pilot Active NCT00569985
NCT01153646

(53)

Busulfan drug
LVrHIV7-shI-TAR-CCR5RZ-transduced HSPC

City of Hope Medical Center/NCI 1 Recruiting NCT01961063
(51, 54)

Autologous CD4+ T cells genetically modified at the CCR5 gene by ZFN SB-728mR UPENN/NIAID 1 Recruiting NCT02388594

Busulfan drug
LVsh5/C46 (known as Cal-1) transduced HSPC or CD4+ T cells

Calimmune Inc. 1
2

Recruiting NCT01734850
(85)

Long-term safety follow-up of Cal-1 recipients Calimmune Inc. Recruiting NCT02390297

ZFN, zinc finger nucleases; HSPC, hematopoetic stem progenitor cell; LV, lentiviral vector; NCI, National Cancer Institute; NIAID, National Institute of Allergy and Infectious Diseases; 
WT, wild-type; TCR, T cell receptor; NCT ID, National Clinical Trials Identifier; UPENN, University of Pennsylvania.
Accessed in https://clinicaltrials.gov April 2, 2015.
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to determine whether a multiplexed approach can entrench 
enforced HIV-1 lockdown at the transcriptional level.

Gene Therapy Approaches to Hiv-1 
Treatment

In 2009, the extraordinary success of utilizing bone marrow 
transplant to deliver HPSC from a CCR5-Δ32 homozygous 
donor opened the door for gene therapy approaches to HIV-1 
treatment. The “Berlin patient” effectively received a functional 
cure for HIV-1, and currently 6 years post-transplantation, does 
not require ART and has no detectable pVL or proviral DNA (84, 
85). Although this truly represents a modern day medical suc-
cess, the circumstances of aggressive malignant disease and the 
rarity of matching HLA/CCR5-Δ32 homozygous donors present 
a formidable challenge in repeating this feat [reviewed in Ref. (50)] 
Further, this approach has been tried in six other patients without 
success (86). There are, however, several gene therapy clinical trials 
in various stages of completion involving HIV-1 infected patients 
with non-malignancies using constructs aimed at knocking down 
CCR5 to protect cells from HIV-1 infection. These current gene 
therapy clinical trials are summarized in Table 1.

One of the preclinical studies assessing safety and efficacy of 
an anti-HIV-1 lentiviral vector containing CCR5 shRNA and the 
C46 fusion inhibitor, termed Cal-1, has recently been reported 
(87). Effective delivery of LVsh5/C46 (Cal-1) was demonstrated 
in human T cell lines, PBMCs, CD4+ T cells, and CD34+ HSPCs, 
with both the CCR5-shRNA and C46 peptide being stably 
expressed in the target cells (87). Importantly, the study showed 
the Cal-1 construct was able to effectively protect gene-modified 
cells from both CXCR4- and CCR5-tropic HIV-1 strains (87). 
Further, the Cal-1 construct treatment was shown to be non-
toxic, non-inflammatory, and had no adverse effect on HSPC 
differentiation (87). These encouraging data have led to the Cal-1 
construct currently being tested in a Phase 1/2 clinical trial for the 
treatment of HIV-1 (Table 1).

Our envisaged future application of the TGS-inducing PromA 
and 143 sequences as a proposed therapeutic strategy is outlined 
in Figure  1C. The approach would be to use shPromA/sh143 
TGS-inducing constructs to enforce latency in HIV-1 positive 
individuals who have cART-suppressed pVL and latent viral 
reservoirs. This strategy may provide a functional cure, by 
inducing and enforcing HIV-1 latency, thereby maintaining 
transcriptionally inactive virus and effectively render patients 
free from cART.

Conclusion

In terms of approaches to a functional cure for HIV-1, ncRNA-
mediated transcriptional regulation of HIV-1, particularly in 
the context of the viral reservoir, is starkly juxtaposed to current 
activation approaches, which rely on pan T-cell activation or 
extensive histone acetylation modification and are associated with 
substantial off-target responses. Instead, the ncRNA approach 
relies on sequence specificity to provide a highly focused approach 
in manipulation of the latent reservoir. Developing ncRNA-
therapeutic approaches to control HIV-1 may have the potential 
to enforce HIV-1 latency and block initial infection, allowing 
control of the viral reservoir, free from traditional antiretroviral 
therapies.
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