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ABSTRACT: In this paper, a multilayer stochastic optimization approach
is implemented to solve a dynamic optimization problem under
uncertainties for an acrylic acid reactor. The proposed methodology
handles different sources of uncertainties (internal, external, process),
being a novel approach to obtain more realistic solutions in the context of
process optimization. A comparison against deterministic dynamic
optimization, single-layer stochastic optimization, and typical PI control
loops is carried out. The results show the efficacy of the multilayer
stochastic optimization approach for handling different sources of
uncertainties, improving the economic profitability of the process while
fulfilling the safety constraints in all of the scenarios analyzed.

1. INTRODUCTION

Optimization involves decisions to obtain the best solution,
finding the maximum/minimum of an objective function
subject to some constraints. If there are constraints, the
problem is called constrained optimization; otherwise, it is
called unconstrained optimization.1 Other types of optimiza-
tion problems include continuous and discrete, single and
multiobjective, and deterministic and stochastic problems.2

Selection of algorithm for solving the optimization problem is
also crucial. Numerical methods are classified as deterministic
and stochastic.3 Deterministic methods usually require
gradient and Hessian information and they have a theoretical
proof of convergence to the optima. In stochastic methods,
random decisions are taken to look for the optima, and
gradient/Hessian information is not required. The random
nature of the stochastic methods is to improve the exploration
of the search space.
Nowadays, rapid changes in the markets worldwide are

pushing the chemical industry toward transformation. These
include bringing into consideration the different sources of
uncertainties affecting the manufacturing processes to
determine optimal and feasible solutions. Stochastic program-
ming is the field of optimization where uncertainties are
explicitly taken into account. For finding optimal operating
points, deterministic optimization is commonly used, in which
the nominal value of the uncertain parameters is used to get a
solution. Nevertheless, such approximation could lead to a
conservative solution that might be infeasible since un-
certainties can differ highly from these nominal values.
Different techniques have been applied to incorporate
uncertainties into dynamic optimization problems (DyOPs).
These techniques have been classified into two categories:

multistage and chance constraint programming. The multistage
scheme represents the uncertainty evolution by a scenario tree,
and decisions are taken considering that the uncertainty is
revealed after a certain period of time. This strategy is known
as wait and see4 since a deterministic dynamic optimization
problem is solved at each scenario or random sample. This
approach was initially applied in stochastic programming of
linear systems5,6 and then extended to process design and
nonlinear systems with random variables.7−14

On the other hand, chance constraint optimization was
initially introduced by Charnes and Cooper.15 In this
approach, decisions are taken here and now and constraints
are relaxed using probabilistic functions with a certain level of
confidence. After its introduction, several works in process
optimization and control have been published.16−26

Model predictive control (MPC) and its nonlinear part
(NMPC) have been widely used in process control engineer-
ing. Due to model uncertainties, process output predictions are
also uncertain and a robust MPC is required to obtain
adequate control performances. There are three approaches to
handle uncertainties in MPC: the constant, min−max, and the
stochastic approach.27 In the constant approach, the model
mismatch is unchanged during the prediction horizon, which
implies a more aggressive control strategy. In the min−max
approach, a sequence of control actions are applied to
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minimize a cost function satisfying constraints for the worst-
case realization of uncertainty.28 This approach is very
conservative and it may lead to infeasibilities since only the
boundaries of the uncertain variables are considered without
taking into account all possible scenarios. The stochastic
approach or chance constraint handles the uncertain variables
in the prediction horizon as stochastic variables with known
probability distribution functions. Predicted probability out-
puts over the control horizon are constrained in a certain
degree of confidence.22,29,30 The propagation of random
variables and disturbances through the system model and the
reformulation of probabilistic constraints to computationally
tractable expressions are key issues in the stochastic approach.
It is possible to classify the different stochastic MPC methods
nowadays available in two main classes: analytic approxima-
tions and the randomized or scenario generation method. The
first one is based on the reformulation of probabilistic chance
constraints and cost function into deterministic expressions to
facilitate the solution of the optimal control problem. In these
works, computation of multivariable integrals is achieved for
calculating chance constraints.21,31−33 These approaches are
restrictive and limited to certain classes of probability
distributions and convex problems, resulting in likely
conservative solutions. The second is based on sampling
techniques, which solve convex chance-constrained optimiza-
tion problems.34−37 Nevertheless, these approaches can be
computationally expensive by the large number of samples
required for uncertainty propagation. An improvement in the
second approach is the use of polynomial chaos (PC)
expansion. The PC theory38−40 provides computationally
efficient spectral tools to replace or accelerate sampling
techniques. In the PC formulation, the implicit mappings
between the random variables and output constraints are
replaced with explicit functions in the form of a series of
orthogonal polynomials, whose statistical moments can be
computed from the expansion coefficients. This approach has
been used in several works for the solution of stochastic
nonlinear MPC with probabilistic constraints,33,41−50 where
the model is necessary for relating process outputs and
uncertain parameters, which means it is not applicable to
consider external sources of uncertainty.
Application of chance constraint algorithms for the solution

of optimization problems under uncertainties is still a difficult
issue. High computing time demands the calculation of
probabilistic constraints and the danger of finding infeasible
solutions when the number of chance constraints increases
limits its applicability in some industrial applications.23

Furthermore, the application of the chance constraint method
for considering external sources of uncertainty is still an open
issue. Therefore, the multistage approach is considered for
solving the case study addressed in this work.
In this work, a promising framework for solving dynamic

optimization problems (DyOPs) under uncertainties is
presented. A CSTR reactor for acrylic acid (AA) production
is used as a case study. A multilayer optimization-based control
strategy is proposed for economic optimization, fulfillment of
safety constraints, and improvement of control performance
under three types of uncertainties: internal (model mis-
matches), external (costs variations), and an unknown process
disturbance. Until now, multistage approaches51−53 have been
presented for being used in the one-layer control architectures,
for handling uncertainties. These approaches, based on a
centralized structure, use a purely economic objective function

(direct optimizing control), a pure tracking objective function,
or a mix of both. Although the pure economic multistage
NMPC structure improves process profitability in comparison
with deterministic approaches, the stability of this single-layer
structure has not yet been proved,52,54 and the use of PID
controllers in the regulatory layer may not be sufficient for
tracking optimal trajectories for some important process states.
The proposed multilayer architecture for handling uncertain-
ties guarantees stability by the use of robust NMPC algorithms
in the control layer, providing a good balance between the
economic and control performance of the process.
Contributions in this work include the proposal of a

multilayer optimization-based approach for handling different
sources of uncertainties, providing a more realistic way of
treatment of uncertainties in the context of dynamic
optimization. Most of the studies applied to chemical processes
in stochastic optimization (chance constraint or multistage
optimization) consider mainly single-layer architectures and
the uncertainty related to the model. The multilayer
architecture used here for handling different sources of
uncertainties (model mismatches, market conditions, process
disturbances) guarantees stability using a robust NMPC
algorithm in the regulatory layer, providing a good balance
between the process profitability and the performance of the
control system.
Due to the importance of acrylic acid (AA) in the chemical

industry, some works have improved the steady-state and
dynamic process operation.55−57 However, in addition to the
steady-state and deterministic dynamic optimization, it is
important to consider the possible sources of uncertainties that
affect the acrylic acid process to obtain a more robust solution.
In this work, stochastic dynamic optimization of the AA
process is addressed for achieving maximum profitability while
fulfilling safety constraints keeping good behavior of the
control system for tracking the optimal state trajectories. The
solution of the problem is achieved in acceptable computing
time, which opens the possibility of applying this strategy to
large-scale systems from a plantwide perspective.
The remaining of this work is organized in the following

way. Section 2.1 presents an introduction and review of the
main works in the field of multistage programming. Section 2.2
presents the multistage−multilayer approach proposed for
solving DyOPs under uncertainties. Section 3 shows the
application of the proposed methodology to a reactor for
acrylic acid production. Finally, conclusions and future work
are stated in Section 4.

2. OPTIMIZATION UNDER UNCERTAINTY

Many sources of uncertainty can affect process operation and
optimization. When deterministic computed solutions are
applied to the real process, the value of the economic objective
function might be lower than the expected, and/or process
constraints could not be satisfied in the complete time horizon.
This situation motivates the use of stochastic programming
formulations to tackle the inclusion of uncertainties in process
optimization. This type of stochastic programming problem is
formulated in the following way

ξ

ξ
ξ

ξ

̇ =
̇ ≥

∈ ∈ ∈Ξ

f x u tmin ( , , , )
u
st
h x x u t
g x x u t
x X u U

.:
( , , , , ) 0
( , , , , ) 0

, , (1)
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where x is the vector of state variables, ẋ are the time
derivatives of states, u is the vector of decision variables, ξ is
the set of uncertain variables, and t is the time. f is the objective
function, h is the equality constraints, and g is the inequality
constraints. Random variables can have three possible sources
of uncertainties:58 internal, external, and process. Internal
uncertainties are related to model errors caused by parameters
(i.e., kinetic constants, physical properties, transfer coeffi-
cients) obtained using experimental methods. External
uncertainties are events that affect the performance of the
process, such as prices of the obtained products, cost of raw
materials, weather conditions, quality of raw materials, etc.
Process uncertainties are disturbances that affect process
operation. Variations in streams composition, temperatures,
pressures, etc., are some examples. Selection of the main
sources of uncertainties that affect a process must be carried
out by knowledge of the process and sensitivity analysis. These
types of uncertainties are relevant for industrial purposes to
apply stochastic dynamic optimization solutions in a more
realistic way.
2.1. Multistage Optimization. In this approach, there are

stages of decisions for the manipulated variables depending on
the evolution of uncertainties. Uncertainty is represented
through a scenario tree, and future manipulated variables act as
recourse variables to counteract the uncertainty.59 Typical
formulation of multistage optimization is written as eq 2

∑ ξ

ξ
ξ

ξ

̇ =
̇ ≥

∈ ∈ ∈Ξ

=
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where uk, xk, hk, and gk represent the decision variables, states,
equality, and inequality constraints in stages k, respectively.
The objective function f k must be minimized for each decision
stage, depending on the value of the random variables ξϵΞ.
This problem has been solved in some works using nested
numerical integration methods59 and the scenario ap-
proach.60−63 Multistage optimization also has been extended
to solve the robust model predictive control (MPC) problems.
The performance of MPC controllers deteriorates in the
presence of uncertainties. The first effort to improve MPC

performance against uncertainties was min−max MPC
approach,28 which uses the worst scenario for minimization
of the objective function while constraints are fulfilled for all
possible scenarios. This strategy produces conservative results
since it uses the worst scenario for objective function
evaluation and future uncertainty evolution is not considered.
An improvement of the min−max MPC approach includes the
tube-based linear MPC64 and its nonlinear version.65 Both
approaches use an ancillary controller to force the evolution of
uncertainty around a tube-based nominal solution. Many
adjustments and changes have been presented to improve the
performance of linear and nonlinear tube-based MPC
approaches,66−69 which include improvement in cross sections
and ancillary controller calculation, resulting in diverse
computation time demands and levels of conservatism. To
deal with the problem of conservatism, a multistage NMPC
scheme was proposed in Lucia et al.’s work51 In this approach,
the uncertainty is represented in different stages, and decisions
are taken at each stage depending on the realization of the
uncertainty. This method takes advantage of the dynamic
nonlinear model of the process to make future predictions and
take decisions in real-time according to the plant behavior.
This approach was extended in Lucia et al.’s52 work, with the
inclusion of a pure economic term, and mixed tracking and
economic terms in the objective function. Comparison of the
proposed approach against a typical NMPC formulation
showed the effectiveness of the multistage NMPC for rejecting
uncertainties while satisfying constraints for all of the scenarios
under consideration.
The main drawback of the multistage approach is the

increased size of the scenario tree by the number of stages or
uncertainties, which produces high computing time solutions
and difficult real-time applications. This problematic issue can
be tackled by the use of the robust horizon approach
(modeling of the scenario tree until a certain stage) or using
parallelizable decomposition methods for simplification of the
scenario tree.59 Different works51−53,60 have shown that a
multistage optimization is a promising approach for the
solution of dynamic optimization problems under uncertain-
ties. This approach allows including different types of
uncertainties and assuming a robust horizon to be applied
for real-time industrial applications.

Figure 1. Framework for solving dynamic optimization problems under uncertainties.
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2.2. Multistage−Multilayer Framework. To tackle the
problem of stochastic dynamic optimization, a framework
based on multistage−multilayer optimization is proposed.
Although there are other methodologies to handle uncertain-
ties, the proposed multilayer architecture provides a good
balance between the economic, control, and safety objectives.
Robust optimization (min−max NMPC) produces conserva-
tive solutions since the optimization problem is solved using
the worst scenario.51 Application of chance constraint
optimization is still a difficult problem due to the high
computing time demanded in the calculation of probabilistic
constraints, and the danger of finding infeasible solutions when
the number of chance constraints increases.23 Furthermore, it
is inapplicable for handling external uncertainties. With respect
to the selection of a single-layer architecture as an economic
multistage NMPC, the stability of this single-layer structure has
not yet been proved,52,54 and the use of a multilayer
architecture provides more robustness due to the presence of
an MPC layer.70

The proposed structure considers that different sources of
uncertainties can be present in process operation and search
for a more realistic treatment of the problem. The general
implementation scheme proposed involves three main layers
(Figure 1): a stochastic dynamic real-time optimization layer
(SDRTO), a regulatory layer, and the real plant. In the
SDRTO layer, the solution of a dynamic real-time optimization
problem under uncertainties is achieved to maximize the
economic profitability of the process. The optimal manipulated
variables and optimal state trajectories are given by the
SDRTO layer are sent to the regulatory layer (composed of a
multistage NMPC). The multistage NMPC makes predictions
about future process operations and applies optimal decisions
in the real plant. Figure 1 shows the multilayer framework
proposed in this work. A description of the layers composed of
the framework is presented in the following. The multilayer
stochastic optimization strategy proposed is advantageous to
be implemented in processes facing different sources of
uncertainties, where the profitability or the process safety
could be compromised due to such uncertainties. The main
disadvantage of the proposed strategy lies in the higher
computational costs in comparison with deterministic dynamic

optimization approaches. The use of parallel computing could
reduce the disadvantages of the proposed strategy.

2.2.1. Stochastic Dynamic Real-Time Optimization Layer
(SDRTO). In this layer, a dynamic real-time optimization
problem under uncertainties is solved for calculating the
optimal decision variables. The available manipulated variables
(after closing local control loops) and the states’ trajectories
are selected as decision variables of the stochastic dynamic
optimization problem. An economic objective function that
represents process profitability for all of the scenarios is
maximized over a finite moving horizon. This function must
include prices of products, cost of raw materials, energy wastes,
and economic losses of the process. Optimal set-point
trajectories are sent to the regulatory layer to satisfy optimal
economic conditions for all of the scenarios. Internal and
external sources of uncertainties are represented by a scenario
tree, as shown in Figure 2. Extreme and nominal values of
uncertain variables are used for the construction of the
scenario tree. A robust horizon of one is considered for
simplicity and reduction in computing time. This means
branching the tree until stage one and then constant values are
considered for the uncertainties. The nomenclature used for
explaining the proposed algorithm is based on the work in
refs51, 52, 71. Future states and decision variables depend on
previous values of node variables and the realization of the
uncertainty

ξ=+x f x u( , , )k
j

k
p j

k
j

k
r j

1
( ) ( )

(3)

where each state xk+1
j is a function of the previous state xk

p(j), the
value of the previous state within the same decision stage, the
control input uk

j , and the realization r of the uncertainty at
stage k, ξk

r(j). j are the nodes in each decision stage and p(j)
denotes the index of the previous (also called parent) node in
the tree, which is a function of its position j and of the stage k.
The realization r of the uncertainty at stage k represents the
possible values that uncertainty can take for each stage, being a
function of the position j in the scenario tree.
The scenario tree (see Figure 2) has the same number of

branches at all nodes, given by ξk
r(j) ϵ{ξk

1, ξk
2, ξk

3, ..., ξk
v} at

stage k for v different possible values of the uncertainty. The
set of occurring indices (j, k) in the scenario tree is denoted I.

Figure 2. Representation of the uncertainty evolution used in this work.
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Each path from the root node x0 to a leaf node xNp
i is called a

scenario and is denoted Si, which contains all of the states xk
j

and control inputs uk
j that belong to scenario i
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where n is the number of scenarios (or leaf nodes) and Np is
the prediction horizon. The set of states that belong to
scenario i is given by eq 5

= { } ∀ =− −X x x x x i n, , , ... , 1, ...,i Np
i

Np
p i

Np
p p i

1
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2
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0
1

(5)

In a similar way, the set of control inputs that belong to
scenario i is given by eq 6

= { } ∀ =− − −U u u u u i n, , , ..., , 1, ...,i Np
i

Np
p i

Np
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1 2
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2
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The cost of each scenario Si with probability θi is denoted by Ji
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where Li is the stage cost for each scenario i, which represents a
general cost function. To enforce that decision variables do not
anticipate uncertainties, nonanticipative constraints are in-
cluded in the optimization formulation. This means that the
decision variables with the same parent node xk

p(j) must be the
same uk

j = uk
l . The process decision variables uk

j (opt) and
optimal controller outputs yset,k

j calculated in this layer are sent
to the regulatory layer for optimal trajectory tracking. The
solution of the resulting SDRTO problem can be achieved by
sequential, simultaneous, or multiple shooting approaches. In
this work, a sequential approach is used. Decision variables are
discretized using the following polynomial approximation

∑ ψ=
=

u t a t( ) ( )k
j

l

z

lk l
1 (8)

where uk
j (t) is the discretized decision variable, z is the

number of discrete time steps in the prediction horizon Np, alk
are the decision variables parameters resulting from the NLP
(nonlinear programming) problem, and ψl (t) is a pulse
function used to obtain a piecewise constant parametrization in
the decision variables.
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2.2.2. Regulatory Layer. This layer is composed of a
multistage NMPC controller that tracks set-points trajectories
given by the SDRTO layer. The mixed tracking objective
includes three different terms weighted with three different
tuning parameters (Q, R, P)

∑ ∑θ= − +

− + Δ
= =

−

+J X U Q y y R

u u P u
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j

k
j

k
j
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j
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1 0

1

1 set,
2

2 2

p

(10)

The first term penalizes deviation in important state variable
trajectories resulting from the SDRTO problem solution. The
second term represents deviations in optimal decision variables
with respect to reference trajectories, and the third penalizes
control movements between stages k and k + 1 to obtain
smooth solutions and avoid oscillatory behavior. The mixed
tracking objective function Jtrack is calculated as the sum over all
of the n scenarios Si along the prediction horizon Np. The
constraints presented in the multistage NMPC layer have the
same meaning as the SDRTO layer, except for the initial
conditions of decision variables, which take the values given by
the SDRTO layer.
For both layers, the sampling time was Ts = 0.1 h with a

prediction horizon of Np = 4 steps.
2.2.3. Real Plant. The real plant is represented by the

dynamic nonlinear model shown in Appendix A. In this work,
only simulation studies are carried out, considering a
completely observable process.

Figure 3. P&ID diagram for acrylic acid production.
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3. CASE STUDY: A CSTR ACRYLIC ACID REACTOR

The proposed multistage−multilayer framework presented in
Section 2 is tested on a CSTR reactor for acrylic acid
production. Acrylic acid and its ester derivatives are very
important raw materials in the textile and polymer industries.
Market predictions have shown that it is expected to have an
acrylic acid (AA) worldwide production of about 9 million
tons per year in 2025.72 Due to the importance of the AA for
the chemical industry, process simulation, and design have
been addressed in previous works. In Luyben et al.’s56 work,
the use of a CSTR for achieving optimal design and the
economic tradeoff for acrylic acid production was achieved. A
reduction in operating and energy costs are obtained at a
steady state. Finally, the authors concluded that the
controllability performance of a CSTR for producing acrylic

acid is excellent, in contrast to the use of a tubular reactor,
which appears to be problematic.56 A comparison of the
performance of three different control structures for control-
ling the acrylic acid reactor was achieved from a dynamic point
of view.57 This work has shown the effectiveness of using an
Economic Nonlinear model predictive controller (E-NMPC)
for improving economic profitability and control performance
of the process. Despite the progress in acrylic acid process
design and optimization of the reaction section in the steady
state and dynamics, the consideration of process uncertainties
is essential to obtain a more realistic solution to the problem.
Handling uncertainties in an acrylic acid reactor opens the
possibility of applying real solutions in industrial reactors and
extend its application in large-scale systems such as controlling
and optimizing a complete plant.

Table 1. Global Sensitivity for Uncertain Activation Energy Parameters

description EA1 (kJ/kmol) profit (USD/h) EA2 (kJ/kmol) profit (USD/h) EA3 (kJ/kmol) profit (USD/h)

lower limit 13 927.02 12 300.00 16 718.90 4537.30 18 602.80 4664.50
nominal value 15 000.00 9248.20 20 000.00 9248.20 25 000.00 9248.20
upper limit 16 072.97 1186.70 23 281.07 9769.20 30 397.20 10 680.54
average 15 000.00 7578.30 19 999.99 7851.57 24 666.67 8197.75
slope −5.18 0.80 0.52
global sensitivity index 10.25 2.03 1.55

Table 2. Global Sensitivity for Uncertain Kinetic Constant Parameters

description k01 (kJ/kmol·s) profit (USD/h) k02 (kJ/kmol·s) profit (USD/h) k03 (kJ/kmol·s) profit (USD/h)

lower limit 3.09 × 10−5 8679.82 1.72 × 10−4 10 591.45 0.04 11 524.28
nominal value 4.42 × 10−5 9248.20 2.45 × 10−4 9248.20 0.05 9248.20
upper limit 5.74 × 10−5 11 510.91 3.19 × 10−4 10 363.33 0.07 9475.43
average 4.42 × 10−5 9812.98 2.45 × 10−4 10 067.66 0.05 10 082.64
slope 106 752 654.31 −1 513 891.22 −67 842.72
global sensitivity index 0.48 0.04 0.34

Table 3. Global Sensitivity Analysis for External Uncertain Parameters

description AAprice (USD/kmol) profit (USD/h) ACEprice (USD/kmol) profit (USD/h) C3H6 price (USD/kmol) profit (USD/h)

lower limit 121.233 4382.7 62.958 9094.6 389.130 11 402.5
nominal value 173 9248.2 89.94 9248.2 55.59 9248.2
upper limit 225.147 14 222.5 116.922 9473.8 72.267 7166.2
average 115 517.67 9284.47 59 989.98 9272.20 153 817.53 9272.30
slope 0,02 1.81 × 10−3 7.90 × 10−3

global sensitivity index 0.25 0.01 0.13

Figure 4. Stochastic multilayer strategy implemented in MATLAB.
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Figure 5. Decision variable profiles for internal uncertainty; optimistic scenario EA1 = EA1min.

Figure 6. Reactor temperature, the oxygen molar fraction inside the reactor, and economic profitability for internal uncertainty; optimistic scenario
EA1 = EA1min.
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The main route for producing acrylic acid is the partial
oxidation of propylene. The conventional process scheme is
shown in Figure 3. Two side reactions occur with the
production of subproducts as acetic acid (ACE) and carbon
dioxide.
Main reaction

+ → +R : C H
3
2

O C H O (AA) H O1 3 6 2 3 4 2 2

Side reactions

+ → + +

+ → +

R

R

: C H
5
2

O C H O (ACE) H O CO

: C H
9
2

O 3CO 3H O

2 3 6 2 2 4 2 2 2

3 3 6 2 2 2

The oxygen mole fraction must be kept below 5% all the
time for avoiding reactor explosion.56,73 This constraint must
be assured during stochastic dynamic optimization, without
any level of constraint violation during the whole prediction
horizon. In the presence of uncertainties, this safety constraint
might not be fulfilled if a deterministic solution is applied in
the real process. In Figure 3, two simple PI control loops are
used for controlling the pressure and temperature in the
reactor. The vapor mass flow rate at the reactor outlet and the
jacket utility fluid mass flow rate are used as control actions for
controlling pressure and temperature. In deterministic and
stochastic DyOP approaches, the reactor pressure is estab-
lished as a basic control loop for the safe operation of the
process, while reactor set-point temperature is stated as a

decision variable of the optimization problem, which increases
the acrylic acid production and improves the economic
profitability of the process. The nominal AA operating
conditions were taken from Luyben56 and Turton73 works.
The NRTL-HOC model was used for the phase equilibrium.
The selection of the thermodynamic model was achieved
according to the decision trees of Carlson’s work.74 Low
pressures (P < 10 bar) in the reaction section, and liquid−
liquid equilibrium for acetic acid (ACE), acrylic acid (AA), and
water (H2O) suggest the use of the NRTL thermodynamic
model for the calculation of activity coefficients in the liquid
phase. To describe the vapor phase, which contains polar
compounds, the Hayden−O’Connell model is used. When the
vapor phase association is observed (as in the case of acetic
acid) the Hayden−O’Connell equation of state is suggested to
be used.74

The main sources of uncertainties that affect a process can
be internal, external, or process.23 The main internal
uncertainties that affect acrylic acid production can be
condensed into six variables: the activation energies for the
three reactions (EA1, EA2, EA3) and the pre-exponential kinetic
factors (k01, k02, k03). These parameters are derived from
experimental studies and have a great effect on AA production
and the economic objective function. External uncertainties
with a major effect on the economic objective function are the
prices of acrylic acid, acetic acid, and propylene. Tables 1 and 2
show a global sensitivity analysis for the internal uncertainties.
Extreme values for activation energies and pre-exponential
parameters are taken from acrylic acid kinetic studies.75 Table
3 shows sensitivity analyses for external uncertainties. Extreme

Figure 7. Decision variable profiles for internal uncertainty; pessimistic scenario EA1 = EA1max.
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values for prices of acrylic acid, propylene, and acetic acid are
taken from the chemical market’s website.76 The temperature
of air at the reactor inlet is used as the unknown process
uncertainty. These three sources of uncertainties are employed
to evaluate the performance of the proposed framework. The
global sensitivity index quantifies the effect of uncertainty on
the economic profitability of the process. The calculation
considers the mean value for each input factor Zi (uncertainty)
and output model Y (profit), and a derivative of the output
model Y with respect to each input factor Zi

= ̅
̅

Z
Y

Y
Z

global index
d
d

i

i

i
k
jjjjj

y
{
zzzzz (11)

where Z̅i is the mean value for each type i of uncertainty and Y̅
is the main value of profit (output of the model).
From Tables 1 and 2 we can observe that the activation

energy (EA1) for the first reaction presents a major impact on
the total economic profitability of the process. Similarly, Table
3indicates that the price of the main product (acrylic acid)
generates a major impact on the economic objective function.
Therefore, these two parameters are selected to be considered
in the set of random variables Ξ. Uncertainty evolution (Figure
2) is represented using nominal and extremes values, while
decision variables must counteract the effects of uncertainties
in the considered interval. With respect to the scenario tree,

Figure 8. Reactor temperature, the oxygen molar fraction, and economic profitability for internal uncertainty; pessimistic scenario EA1 = EA1max.

Table 4. Cumulative Profitability Comparison for Variation
in the Activation Energy

tested architecture
cumulative profitability

(USD) EA1min

cumulative profitability
(USD) EA1max

simple PI control loops −1.2177 × 105 −1.5121 × 104

deterministic DyOP
approach

−1.2780 × 105 −2.4394 × 104

stochastic DyOP
approach (two layer)

−1.3659 × 105 −2.7838 × 104

stochastic DyOP
approach (one layer)

−1.3348 × 105 −2.5837 × 104

Table 5. CPU Time Comparison for the Internal
Uncertainty Case

tested architecture simulation time (h)

deterministic approach 0.159
stochastic single-layer approach 0.264
stochastic multilayer approach 0.448

Table 6. CPU Time Comparison for the Multilayer
Stochastic Approach

tested architecture simulation time (h)

economic layer 0.259
regulatory layer 0.189
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extreme values are selected from experimental kinetic studies
and real market conditions, and optimal computed solutions
are only valid for values within the limits of the scenario tree.
Robust constraint satisfaction cannot be guaranteed for
uncertainty values that are not in the scenario tree.51,52

3.3. Mathematical Formulation. In this section, we apply
the framework presented in Section 2.2 to a CSTR acrylic acid
reactor. The SDRTO problem solved in the optimization layer
is given by eq 12

∑ θ

ξ

∀ ∈
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The vector of states xk
j for each scenario position j is given by

the species concentration inside the reactor (AA = acrylic acid;
B = oxygen; C = acetic acid; D = propylene; E = water; F =
carbon dioxide; N = nitrogen), reactor temperature (Tk

j ),
reactor pressure (Pk

j ), and utility fluid temperature (TJ,k
j ).

= [

]

x C C C C C C C T P

T

, , , , , , , ,

,

k
j

A k
j

B k
j

C k
j

D k
j

E k
j

F k
j

N k
j

k
j

k
j

J k
j

, , , , , , ,

, (13)

The vector uk
j (opt) is the solution of the SDRTO problem and

provides optimal decision variables for each scenario. The air
molar flow rate (Fair,k

j ), propylene molar flow rate (FC3H6,k
j ),

steam molar flow rate (Fsteam,k
j ) at the reactor inlet, and the

mass flow rate of the utility fluid (ṁj,k
j ) are selected as decision

variables in the SDRTO formulation. Volumetric flow rate
(qout,k

j ) is selected as the local manipulated variable for
controlling the reactor pressure. The reactor pressure is
selected as a local controlled variable to assure safe process
operation. qout is the local manipulated variable used to
maintain the reactor pressure at its predefined set-point. The
manipulated variables that are not used in the design of the
local control loops remain available for being used as decision
variables (plantwide manipulated) in the stochastic and
deterministic DyOP to improve economic profitability.
Selection of the local manipulated variables is achieved by
knowledge of the process and following the suggestion
reported by Suo55 and Luyben.56

= [ ̇ ]u F F F m(opt) , , ,k
j

k
j

k
j

k
j

j k
j

air, C3H6, steam, , (14)

The first constraint xO2,k
j is related to the oxygen molar

composition inside the reactor, which must remain below 5%
kmol/kmol to avoid reactor explosion. The second constraint
Tk
j establishes an upper limit for the reactor temperature. The

next five constraints correspond to the search space of
manipulated variables during the optimization. Finally, the
last one is the nonanticipative constraint, which establishes that
states with the same parent node share equal decision variables
profiles. The cost function of each scenario Ji represents the
economic profitability of the process. This objective function is
represented by eq 15

Figure 9. Decision variable profiles for external uncertainty; pessimistic scenario cAA = cAAmin.
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where wj are economic price factors taken from the chemical
market’s website.76 Nominal prices are taken as follows: acrylic
acid (w1) $173 per kmol, acetic acid (w2) $89.94 per kmol,
propylene (w4) $55.59 per kmol, steam (w5) $0.336 per kmol,
cooling water (w6) $2.654 × 10−5 per kmol, and compressor
work (w3) $16.8 per GJ.
The first and second terms in eq 15 consider the acrylic acid

and acetic acid production at stage k + 1 for each scenario
position j. The following three terms (weighted by w3, w4, w5)
consider the cost of raw materials (air, propylene, and steam)
at stage k + 1 for each scenario position j. Finally, the term
weighted by w6 penalizes energy consumption by the use of
utility fluid in the reactor.
Equation 16 shows the optimization problem formulation

given by the multistage NMPC layer
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where θi is the probability of occurrence for each scenario i,
xk+1
j is the vector of prediction states, and constraints have the
same sense of eq 12 except the last one, which is assigned as
initial conditions for the decision variables of the NMPC layer
and the optimal profiles calculated by the SDRTO layer (uk

j

(opt)). The cost function of each scenario Jtracki represents a

Figure 10. Reactor temperature, the oxygen molar fraction, and economic profitability for external uncertainty; pessimistic scenario cAA = cAAmin.
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tracking objective function that penalizes the state variable’s
deviation from their optimal values calculated in the SDRTO
layer and penalization in control movements to guarantee
smooth operation.
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As stated in eq 17, the variables penalized from their optimal
values are the reactor temperature and optimal decision
variables given by the SDRTO layer, which correspond to
molar flow rates of air, propylene, steam, and mass flow rate of
the utility fluid. The tuning parameters used in the tracking
objective function were Q1 = 1, R1 = 0.05, R2 = 0.05, R3 = 0.05,
R4 = 0.05, P1 = 0.01, P2 = 0.01, P3 = 0.01, and P4 = 0.01.

For solving the stochastic dynamic optimization problems
state in eqs 12 and 16, a sequential approach was implemented.
The selected decision variables are discretized using eqs 8 and
9, and a metaheuristic algorithm (simulated annealing) is used
for solving the resulting NLP problem. This stochastic
algorithm does not need information about states derivatives,
reducing computing time. Hybrid algorithms such as particle
swarm optimization with genetic algorithms (PSO-GA),77 GA-
GSA using uncertain data,78 and time-varying acceleration
coefficient particle swarm, optimization with mutation
strategies (TVAC-PSO-MS),79 could be also used for solving
the resulting NLP problem.
The model of the process used in the SDRTO and

multistage NMPC layers is solved in MATLAB using the
stiff.Rosenbrock (ode 23 s) solver. The SDRTO layer model
uses a prediction horizon of 2 h and is called when (i) a known
disturbance occurs, (ii) there is deterioration in the economic
objective function, and/or (iii) every 0.5 h. The multistage
NMPC layer model uses a prediction horizon of 2 h and is
called periodically every 0.2 h or when there is deterioration in
the tracking objective function. Figure 4 shows the framework
for the implemented stochastic multilayer strategy. Decision
variables given by the solution of the optimization problem in
the SDRTO layer are sent to the regulatory layer to satisfy

Figure 11. Decision variable profiles for external uncertainty; optimistic scenario cAA = cAAmax.
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optimal economic conditions for all of the scenarios. Decision
variables given by the solution of the optimization problem in
the NMPC layer are applied in the real plant.

3.4. Results. This section presents results for the acrylic
acid reactor control problem under uncertainties. The problem
is solved using a multilayer stochastic DyOP approach, and the

Figure 12. Reactor temperature, the oxygen molar fraction, and economic profitability for external uncertainty; optimistic scenario cAA = cAAmax.

Table 7. Cumulative Profitability Comparison for Changes
in the Acrylic Acid Price

tested architecture
cumulative profitability
(USD): lower AAprice

cumulative profitability
(USD): higher AAprice

simple PI control
loops

−4.5667 × 104 −1.4024 × 105

deterministic DyOP
approach

−5.1085 × 104 −1.4940 × 105

stochastic DyOP
approach (two
layer)

−5.1746 × 104 −1.5033 × 105

stochastic DyOP
approach (one
layer)

−5.1255 × 104 −1.4933 × 105

Table 8. CPU Time Comparison for the External
Uncertainty Case

tested architecture simulation time (h)

deterministic approach 0.128
stochastic single-layer approach 0.216
stochastic multilayer approach 0.392
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Figure 13. Decision variables for the unknown process uncertainty.

Figure 14. Reactor temperature, the oxygen molar fraction, and economic profitability for the unknown process uncertainty.
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results are compared against a single-layer stochastic DyOP
approach (which uses simple PI control loops instead of a
multistage NMPC in the regulatory layer), a deterministic
DyOP approach that solved the DyOP problem using nominal
values for uncertainty, and a typical simple PI control loop
structure (shown in Figure 3). The simple PI control loop
structure is composed of two PI controllers. The reactor
temperature and pressure are selected as control objectives.
The manipulated variables are the mass flow rate of the utility
fluid in the jacket (ṁj) and the volumetric flow rate at the
reactor output (q̇out). These local manipulated variables are
calculated using the basic PI control laws shown in eqs 18 and
19

∫Δ ̇ = − + −m K T T K T T t( ) ( )dj c I
t

1 sp 1

0

sp (18)

∫Δ = − + −q K P P K P P t( ) ( )dc I
tout 2 sp 2

0

sp (19)

where Tsp and Pspare the respective set-points. The tuning
parameters were obtained using the Ciancone correlations80
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Tree layers compose the deterministic and multilayer
stochastic DyOP approaches: an optimization layer, a
regulatory layer, and the real plant. In the first, maximization
of the economic profitability function (15) is carried out. The
solution of this layer results in the calculation of the air molar
flow rate (Fair), propylene molar flow rate (FC3H6), steam molar
flow rate (Fsteam), the utility fluid mass flow rate (ṁj), and the

optimal set-point value for the temperature (Tsp). The reactor
temperature, deviations of decision variables around the
references trajectories given by the DRTO layer, and
penalizations in control movements for ensuring smooth
operation are tracked by the NMPC controller. Optimal
decision variable trajectories given by the NMPC are applied
to the real plant. The deterministic DyOP approach does not
consider uncertainty evolution. Therefore, the optimization
problem is solved using nominal values for external and
internal uncertainties. In the stochastic DyOP approach, the
uncertainty evolution is modeled using the scenario tree
representation shown in Figure 2. Three sources of
uncertainties are evaluated to compare the tested approaches:
variations in the acrylic acid price (external uncertainty),
changes in the activation energy in the main reaction (internal
uncertainty), and changes in the temperature of the air feed to
the reactor (unknown disturbance). For simulation purposes,
uncertainty is revealed after 0.4 h in the scenario tree for
comparison of the four analyzed structures.
Figures 5−8 show results for simple PI control loops,

deterministic DyOP, and single and multilayer stochastic
DyOP approaches, when there is a model mismatch (variation
in the activation energy). Figures 5 and 6 show results for the
optimistic scenario; the minimum activation energy EA1 =
13927.02 kcal/kmol. This condition favors the reaction rate of
the first reaction and disfavors the third reaction, increasing the
acrylic acid production and leading the process to higher
economic profitability. This condition also drives the reactor to
a lower temperature by a decrease in carbon dioxide
production. From Figure 6, we can observe that the stochastic
multilayer DyOP approach reaches the highest economic
profitability, with second place occupied by the single-layer
stochastic DyOP approach, third place by the deterministic
DyOP approach, and the last by the simple PI control loop
structure. The optimal air/propylene molar flow rate ratio to
maximize acrylic acid production was the strategy implemented
for the multilayer stochastic approach to improve economic
profitability. The simple PI control loop structure occupied the

Table 9. CPU Time Comparison for the Unknown Process
Uncertainty Case

tested architecture simulation time (h)

single-layer approach 0.228
multilayer approach 0.319

Figure 15. Economic profitability for the uncertainty Monte Carlo simulations.
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worst place since its unique objective is maintaining the
control objectives at their set-points, without taking into
account the profitability of the process. Good control
performance is observed for the stochastic multilayer and the
simple PI control loop structures, unlike for the stochastic
single-layer and deterministic DyOP approaches, where the
regulatory controller is unable of tracking adequately the
reactor temperature trajectory. In the case of the deterministic
DyOP approach, this behavior is caused by the inability of the
optimizer for handling model mismatches, calculating inad-
equate decision variables as a consequence of considering
nominal model parameters. For the stochastic single-layer
structure, the inability of PI controllers is evident for tracking
optimal trajectories given by the optimization layer, unlike
when a multistage NMPC is used in the regulatory layer, which
uses a rigorous dynamic nonlinear model of the process to
predict its future behavior.
A violation of the safety constraint (oxygen molar fraction in

the reactor is higher than 5% after 4 h) took place for the
deterministic DyOP approach, caused by inadequate calcu-
lation of optimal operation conditions by the optimizer. No
constraint violation occurred in the simple PI control loops
and stochastic approaches.
Figures 7 and 8 show the results for the pessimistic scenario;

the maximum activation energy EA1 = 16072.967 kcal/kmol.
The increase of activation energy for the main reaction reduces
acrylic acid production and drives the process to lower
economic profitability. This condition also produces a higher
reactor temperature by increasing carbon dioxide production.
From Figure 8, we can observe higher economic profitability
for the stochastic multilayer DyOP approach, with the second
place occupied by the stochastic single-layer approach, the
third place occupied by the deterministic DyOP approach, and
the worst behavior for the simple PI control loop structure. An

increase in acrylic acid production by optimal air/propylene
molar flow rate ratio was the strategy implemented by the
multilayer stochastic approach for counteracting negative
effects on the process profitability, caused by a higher value
of activation energy. An increase in the steam flow rate was
another strategy used by the stochastic approach to cool the
reactor and favor acrylic acid production. Bad control
performance was obtained for the simple PI control loop
scheme, deterministic approach, and stochastic single-layer
structure, unlike the multilayer stochastic approach where the
multistage NMPC controller follows adequately the optimal
temperature trajectory given by the optimization layer. No
safety constraint violation occurs for any of the analyzed
control structures.
Table 4 shows the cumulative profitability comparison for

internal uncertainty. For minimum and maximum values of
activation energy, the stochastic multilayer approach reached
higher profitability, showing its ability for counteracting
internal uncertainty, driving the process to optimal economic
conditions.
Table 5 shows the CPU time required for solving the

stochastic and deterministic approaches. All proposed
optimization problems were solved in MATLAB on a standard
Asus laptop with an Intel i-7 processor at 2.59 GHz with four
cores and 8 GB of RAM. Higher computing time is obtained
by the multilayer stochastic approach since a robust solution of
the DyOP implies increasing its mathematical complexity with
higher computing demands. Table 6 shows the CPU time
required for solving optimization problems in upper and
regulatory layers for multilayer stochastic optimization. The
calculation optimization time for the upper layer is higher than
the regulatory layer due to the higher complexity of the
economic objective function with respect to the tracking
objective function used in the regulation layer.

Figure 16. Reactor temperature for the uncertainty Monte Carlo simulations.
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Figures 9−12 show results for simple PI control loops,
deterministic, and stochastic approaches, when there is an
external uncertainty (variation in the acrylic acid price).
Figures 9 and 10 show results for the minimum acrylic acid
price (AAprice = 121.233 USD/kmol). In this pessimistic
scenario, the acrylic acid price is lower than the nominal value,
which reduces considerably the economic profitability of the
process and it can make it unprofitable. From Figure 10, we
can observe higher economic profitability reached by the
multilayer stochastic approach, with second place occupied by
the single-layer stochastic approach, third place occupied by
the deterministic approach, and the last place by the simple PI
control loop structure. The strategy implemented by the
stochastic multilayer approach consisted of obtaining an
optimal air/propylene molar flow rate ratio to increase acrylic
acid production. The reduction in propylene and steam molar
flow rates was another strategy used by the stochastic
multilayer approach to decrease the cost of raw materials
and therefore improve the process profitability. The strategy
used by the deterministic approach corresponds to the nominal
operation, which leads the process toward a conservative
solution. The simple PI control loop structure does not
consider process profitability, and therefore, results in the
worst economic operation. Good control performance and
constraint fulfillments are observed in Figure 10 for all of the
analyzed structures.
Figures 11 and 12 show the results for the maximum acrylic

acid price (AAprice = 225.147 USD/kmol). In this optimistic
scenario, the acrylic acid price is higher than the nominal value,
and the economic profitability increases for all of the analyzed
control structures. The stochastic multilayer scheme reaches
the best economic profitability, followed by the stochastic
single-layer structure; the third place is occupied by the
deterministic approach and the last place by the simple PI
control loop structure. An increase in the air molar flow rate
and a reduction in propylene and steam molar flow rates to
improve acrylic acid production and reduce the cost of raw
materials is the strategy employed by the stochastic multilayer
approach to maximize process profitability. Good control
performance and fulfillment of constraints for all control
structures are observed in Figure 12. The above allows one to
conclude that, unlike internal uncertainties (model mis-
matches), external uncertainties do not greatly affect the
control performance of the stochastic single layer, simple PI,
and deterministic approaches.
Table 7 shows the cumulative profitability for uncertain

market conditions. The stochastic multilayer scheme reaches
the best economic profitability, followed by the stochastic
single-layer structure. The deterministic and simple PI control
loop structures do not react to adverse price scenarios of
acrylic acid, and therefore, they are not recommended for
handling cost marketing uncertainties.
Table 8 shows the total simulation time for market

uncertainty evaluation. A higher computing time was obtained
for the stochastic multilayer approach since it evaluates
different values of uncertainty market conditions and solves
two optimization problems in both layers.
Figures 13 and 14 present results for single and multilayer

stochastic approaches, when there is an unknown process
uncertainty. Changes in the air temperature during the control
experiment according to its PDF have been implemented for
comparison of both structures. Higher economic profitability
and best control performance are obtained by the multilayer

stochastic approach. These results show the robustness of the
stochastic multilayer approach to reject unknown process
disturbances, driving the process to a viable operation from an
economical and control point of view. A higher simulation time
is obtained by the stochastic multilayer approach (see Table 9)
since the presence of a multistage NMPC in the regulatory
layer implies a higher mathematical complexity of the problem.
Figures 15 and 16 present the results for single and

multilayer stochastic approaches, with Monte Carlo simu-
lations in internal and external uncertainties. Random
behaviors of the activation energy and acrylic acid cost acting
at the same time have been implemented for the comparison of
both structures. Three scenarios are evaluated randomly from
PDF of internal uncertainties and market conditions: scenario
1 = {16781.50; 145.6141}, scenario 2 = {14868; 124.0237},
and scenario 3 = {15564.56; 207.3130}. Higher economic
profitability and best control performance are obtained by the
multilayer stochastic approach. Figure 16 shows the inability of
the stochastic single-layer structure for tracking optimal state
trajectories given by the optimization layer. For these reasons,
the stochastic multilayer approach is preferred.
Finally, a Student’s t-test was performed to obtain economic

profitability values (objective function) for stochastic,
deterministic, and simple PI approaches for internal
uncertainty.
Comparing the stochastic multilayer and deterministic

DyOP approaches, the p-value obtained was 6.79732 × 10−5,
which indicates that the difference between these objective
functions is significant, thus showing a considerable improve-
ment in terms of profitability when the stochastic multilayer
strategy is implemented. Similar results were obtained when
the stochastic multilayer approach was compared against the
simple PI control. In this case, the p-value obtained was
9.20997 × 10−9.

4. CONCLUSIONS

The proposal of a multilayer stochastic optimization approach
for handling different sources of uncertainties (model
mismatches, market conditions, and unknown process
disturbances) was presented. The potential of the proposed
approach was proved by simulation in a CSTR reactor for
acrylic acid production. The performance of the proposed
approach to deal with different sources of uncertainties is
compared with a simple PI control loop structure, a
deterministic DyOP approach, and a stochastic single-layer
structure. Simulation results show that the multilayer stochastic
optimization approach improves economic profitability, with a
good performance of the control system for tracking state
trajectories and satisfactory safety constraints for all of the
scenarios considered. The stochastic single-layer approach
occupied second place in terms of economic profitability;
however, as its objective is purely economic it does not track
the optimal state trajectories. The deterministic DyOP
approach occupied third place in economic profitability and
does not show good control performance and satisfactory
safety constraints for internal uncertainties. The simple PI
control loop structure showed the worst values for the
economic profitability in the presence of uncertainties
The main drawback of the proposed multilayer stochastic

optimization approach is the increased computing time. The
presence of many uncertain variables in the plant or
considering a scenario tree with many stages could be a
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limitation for this structure since the DRTO problem could be
intractable.
Future work includes formulating a parallelized decom-

position version of the multilayer stochastic optimization
approach for parallel computing implementation for the sake of
reducing computing time and implementation costs. The
extension of the proposed approach for handling uncertainties
and solving the stochastic DyOP for a complete process plant
is another subject for future work. The development of
strategies for plantwide optimizing control (PWOC) in the
presence of uncertainties is mandatory for large-scale industrial
purposes.

■ A. PROCESS MODEL
For handling uncertainties from a dynamic optimization point
of view, a rigorous nonlinear dynamic model of the process is
necessary. This model is essential to predict future process
operations and evaluate uncertainty evolution. For modeling
acrylic acid reactor, mass and energy conservation equations
are applied in a transient state. The total mass balance in the
reactor is given by eqs A1−A3
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where Ḟin are the inlet molar flow rates of air, propylene, and
steam, Ḟout is the total molar flow rate coming out the reactor,
Ṙgen is the total reaction rate, and n, R, V, P, and T are the total
moles, universal gas constant, volume, pressure, and reactor
temperature, respectively. Molar balances by components are
given by eqs A4−A6
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where Cj are the molar species concentration in the reactor (j =
AA, O2, ACE, C3H6, H2O, CO2, N2), qinCjin is the total molar
flow rate of species j entering the reactor, qoutCj is the total
molar flow rate of species j leaving the reactor, vij are
stoichiometric coefficients for species j at reaction i, ri is the
specific reaction rate for reaction i, and ns is the number of
reactions in the model. Energy balances inside the reactor and
for the utility fluid in the jacket are given by eqs A7 and A8
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where m is the total mass in the reactor, cv is the average
specific heat of the mixture inside the reactor, Ḟjin is the total
molar flow rate of species j at the reactor inlet, Ḟout is the total
molar flow rate of species j at the reactor outlet, hjin and hout are
molar enthalpies of feed and outlet streams, respectively, ΔHRi
is the heat of each reaction i. ρJ, CvJ, ṁJ, CpJ are the density,
specific heat at constant volume, mass flowrate, and specific
heat at constant pressure for the utility fluid (cooling water)
respectively. VJ, At, and U are the volume of the jacket, heat
transfer area, and global coefficient of heat transfer,
respectively. Finally, T andTJ are the reactor and utility fluid
temperatures. Figure 3 is a schematic representation of the
reactor.
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