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Abstract: Elicitation through abiotic stress, including chemical elicitors like heavy metals, is a new
technique for drug discovery. In this research, the effect of heavy metals on actinobacteria Streptomyces
sp. SH-1312 for secondary metabolite production, with strong pharmacological activity, along with
pharmacokinetics profile, was firstly investigated. The optimum metal stress conditions consisted
of actinobacteria strain Streptomyces sp. SH-1312 with addition of mix metals (Co2+ + Zn2+) ions at
0.5 mM in Gause’s medium. Under these conditions, the stress metabolite anhydromevalonolactone
(MVL) was produced, which was absent in the normal culture of strain and other metals combinations.
Furthermore, the stress metabolite was also evaluated for its anti-oxidant and cytotoxic activities. The
compound exhibited remarkable anti-oxidant activities, recording the IC50 value of 19.65 ± 5.7 µg/mL
in DPPH, IC50 of 15.49 ± 4.8 against NO free radicals, the IC50 value of 19.65 ± 5.22 µg/mL against
scavenging ability, and IC50 value of 19.38 ± 7.11 µg/mL for iron chelation capacity and the cytotoxic
activities against PC3 cell lines were recorded with IC50 values of 35.81 ± 4.2 µg/mL after 24 h,
23.29 ± 3.8 µg/mL at 48 h, and 16.25 ± 6.5 µg/mL after 72 h. Further mechanistic studies have
revealed that the compound MVL has shown its pharmacological efficacy by upregulation of P53
and BAX while downregulation of BCL-2 expression, indicating that MVL is following apoptosis
in varying degrees. To better understand the pharmacological properties of MVL, in this work,
the absorption, distribution, metabolism, excretion, and toxicity (ADMET) were also evaluated.
During ADMET predictions, MVL has displayed a safer profile in case of hepatotoxicity, cytochrome
inhibition and also displayed as non-cardiotoxic. The compound MVL showed good binding energy
in the molecular docking studies, and the results revealed that MVL bind in the active region of the
target protein of P53 and BAX. This work triumphantly announced a prodigious effect of heavy metals
on actinobacteria with fringe benefits as a key tool of MVL production with a strong pharmacological
and pharmacokinetic profile.

Keywords: natural products; stress-technique; actinobacteria; ADMET; anti-oxidant; anti-cancer

1. Introduction

Microorganisms quickly adapt and retort to the variations in the availability and
concentrations of metals within their harsh and dynamic habitat [1,2]. Microorganisms that
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live in a stressed environment attract much attention as potential new caves of therapeuti-
cally active compounds [3,4]. Contrary to insight, metals hamper secondary metabolite
production; recent research has found that metals can stimulate or improve the action of
potentially potent medically and nutraceutically relevant metabolites [1,5,6]. Thanks to
the improvement of molecular biology and chemical biology techniques that imply that
abiotic factors such as heavy metals may switch the production of natural compounds by
modifying the attitude of secondary metabolism. The secondary metabolites produced by
modern techniques like genome sequencing [7], abiotic or biotic stress [8], co-culture [9]
and biosynthetic engineering proved to have enhanced pharmacological profiles compared
to the compounds produced by the normal lab culture. Natural products have played an
essential role in pharmacological and nutraceutical development [10–12]

Latterly, the usage of drugs derived from natural origin has increased dramatically be-
cause of their high safety profile and potency compared to synthetic pharmaceuticals [13,14].
Even though microbes’ potential to originate novel scaffolds appears boundless, a few
significant hurdles impede the biotransformation of molecules into drugs. One stumbling
block in identifying secondary metabolites of these essential medicinal drugs is genes
clusters or non-activated biosynthetic pathways. These gene clusters in this state are
referred to as“sleeping gene clusters” [15,16]. The processes behind the metal-induced
metabolite phenomena could be explained by the activation of sleeping genes or the pro-
duction of molecules with a stereochemical affinity that enables metal complexation and
transportation in biological systems [6,17].

Currently, a lot of researchers have been driven towards abiotic stress-discovery of
natural products by using metals triggering plants [18,19], and microorganisms [20], as
it is the fast, rapid and facile method for filtering out the novel compounds. Different
researchers are focusing on multiple ways of research as some are focusing on increasing
the secondary metabolites pattern [16], while some are untapping the microorganisms
for their novel carbon scaffolds [6]. Our previous work produced an antibiotic by metal
stress technique from microorganisms and enhanced its productivity by response surface
methodology [5].

In this study, we used a metal-stress approach to explore the ability of the terres-
trial actinobacteria Streptomyces sp. SH-1312 strain to elicit secondary metabolites in the
presence of metal ions in the culture medium. Furthermore, the metal-elicited produced
compound was evaluated for its anti-oxidant and cytotoxic activities, including Absorption,
distribution, metabolism, excretion, and toxicity (ADMET).

2. Results
2.1. HPLC Evaluation of Secondary Metabolites of Metal Treated and Untreated Extracts

The impacts of elution mode, mobile phase, detection wavelength, and column temper-
ature were conducted to determine the ideal HPLC setting for purification of the stressed
metabolite of actinobacteria. Two different kinds of metals Co2+, Zn2+, and mix metals
(Co2+ + Zn2+) were chosen as initial elicitors premised on their previous ability to pro-
duce secondary metabolites in microbes. The cultivation experiment of strain SH1312
was carried out in Gause’s medium having Co2+, Zn2+, and (Co2+ + Zn2+) ions with four
different initial concentrations in a rotatory shaker at 180 rpm for 10 days at 28 ◦C. The two
metals Zn2+ and Co2+ did not elicit any compound at any concertation, but a new peak was
elicited in (Co2+ + Zn2+) (Figure 1). The alterations in the metabolic profile after subjecting
metal ions were validated by establishing one medium without metal ions as a blank, three
mediums without strain as a metal control, and four groups of media with distinct ionic
concentrations (0.5 mM to 4 mM). A gauze filter separated mycelium and culture broth, and
then the culture broth was extracted with EtOAc (2 × 200 mL). The HPLC chromatogram
demonstrated that one specific stress-induced metabolite in the actinobacteria Streptomyces
sp. (23.2 min for anhydromevalonolactone MVL) was detected in metal treated culture but
was nearly undetectable in non-metal culture (Figure 1). The 0.5 mM concentration was
shown to be the most effective among the various metal ion concentrations. Under normal
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cultivation conditions, the blank strain SH-1312 did not produce any metabolites (Figure 1).
There was no peak at 23.2 min when actinobacteria strain SH-1312 was cultured alone in
standard fermentation broth (Figure 1). A new peak appeared in the mix metals (Co2+ +
Zn2+) stressed broth, triumphantly announcing that a stress metabolite was triggered by
mix metals stress.

Figure 1. HPLC profile of metal treated and untreated SH-1312 strain with several mixed metals (Co2+ + Zn2+) ions. The
red circle indicates the new peak in the HPLC chromatogram.

2.2. Identification and Structure Determination of Metal-Induced Secondary Metabolite

Stress metabolite 1 was isolated as a white powder from the actinobacteria Streptomyces
sp. SH-1312 with molecular formula C6 H8 O2. 1H NMR (CD3OD-d4, 500MHz) the proton
NMR showed a total number of 4 signals δ2.04 (3H, s, H-6), δ2.46 (2H, t, J = 6.3, H-4),
δ4.40 (2H, t, J = 6.3, H-5), δ5.80 (1H, d, J = 1.3, H-2) (Figure S1). 13C NMR (CD3OD-d4,
125MHz) the 13C NMR spectrum showed the presence of 6 signals, including 1 carboxyl
group at δ166.1 (C-1), 1 quaternary carbon at δ160.6 (C-3) (Figure S2). DEPT135 shows a
total no of 4 signals including one methyl (CH3) group at δ21.5 (C-6), one methane (CH)
group at δ115.1 (C-2), and two methylene (CH2) groups at δ28.5 (C-4) and δ66.1 (C-5)
(Figure S3). From the NMR data, stress metabolite was identified as a known compound
anhydromevalonolactone (MVL) (Figure 2) [21]. This is the first example in which MVL
was induced by metal elicitation.

Figure 2. Chemical structure of anhydromevalonolactone.

2.3. Anti-Oxidant Assay

To assess the antioxidant potential of MVL, multimode antioxidant assays were per-
formed. In the DPPH assay, MVL showed promising results with 78.18 ± 4.2% inhibition
of free radical at 100 µg/mL concentration compared to ascorbic acid (84.23 ± 2.9%) used
as standard. IC50 for MVL in DPPH was recorded as 19.65 ± 5.7***µg/mL while for
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ascorbic acid 6.52 ± 4.92 µg/mL was recorded. MVL showed 80.05 ± 3.88% inhibition of
NO free radicals in comparison to ascorbic acid (81.69 ± 2.69% inhibition) with IC50 of
15.49 ± 4.8**** for MVL and 8.44 ± 4.17 µg/mL for ascorbic acid. Similarly, MVL has shown
significant scavenging ability against OH• radicals and inhibited 72.69 ± 4.93% radicals at
100 µg/mL concentration compared to gallic acid (83.15 ± 3.67%) used as standard. IC50
for MVL and gallic acid was recorded as 19.65 ± 5.22*** and 6.26 ± 6.39 µg/mL, respec-
tively. To gauge the chelation power of compounds to scavenge radicals, the iron chelation
capacity of the compounds was evaluated. MVL was found to chelate 70.96 ± 5.79% (IC50
19.38 ± 7.11***µg/mL) iron radicals in comparison to EDTA with 81.52 ± 4.67% chelation
capacity and IC50 of 10.20 ± 6.54 µg/mL. All the observations are exhibited in (Figure 3)
(Table 1).

Table 1. Assessment of in vitro antioxidant potential (IC50: µg/mL) of MVL.

Sample
IC50 (µg/mL)

DPPH Scavenging NO Inhibition OH• Inhibition Iron Chelation

MVL 19.65 ± 5.7 *** 15.49 ± 4.8 **** 19.65 ± 5.22 *** 19.38 ± 7.11 ***

Ascorbic acid 6.52 ± 4.92 8.44 ± 4.17 – –

Gallic acid – – 6.26 ± 6.39 –

EDTA – – – 10.20 ± 6.54

1% DMSO – – – –

Note: Values are presented as mean ± SD of triplicate analysis, where ***: p < 0.001 and ****: p < 0.0001.

Figure 3. In vitro antioxidant activities of MVL. (A) DPPH radical scavenging activity, (B) NO scavenging activity, (C) OH•
scavenging activity, and (D) iron-chelating % inhibition. Each value represents, Mean ± SD (n = 3).

2.4. Cytotoxicity Assessment

To assess the cytotoxic potential of MVL against prostate cancer cell line (PC3), the MTT
method was followed. Prostate cancer cells (PC3) were treated with multiple concentrations
of MVL for 24 h, 48 h, and 72 h duration. Cabazitaxel was used as a standard drug. A
significant decrease in cell viability has been examined on 24 h, 48 h, and 72 h exposure
with MVL. MVL showed significant time-dependent inhibition in PC3 cell line with IC50 of
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35.81 ± 4.2***µg/mL after 24 h, 23.29 ± 3.8****µg/mL at 48 h and 16.25 ± 6.5****µg/mL
after 72 h treatment (Figure 4). While Cabazitaxel used as a standard drug exhibited an IC50
value of 21.16 ± 5.1 µg/mL after 24 h, 15.09 ± 5.7 µg/mL at 48 h and 9.25 ± 3.4 µg/mL
after 72 h treatment (Figure 4, Table 2).

Table 2. Cytotoxicity assessment of MVL against prostate cancer cells (PC3).

Compound
IC50 (µg/mL)

24 h 48 h 72 h

MVL 35.81 ± 4.2 *** 23.29 ± 3.8 **** 16.25 ± 6.5 ****

Cabazitaxel 21.16 ± 5.1 15.09 ± 5.7 9.25 ± 3.4

Note: Values are presented as mean ± SD deviation of triplicate analysis, where ***: p < 0.001 and ****: p < 0.0001.

Figure 4. Effect of MVL on the viability of prostate cancer cells. MTT assay was used to determine
the viability of cancer cells after 24, 48, and 72 h treatment of PC3 cells. Data is mean ± SEM of % cell
viability (n = 3) at ***: p < 0.001 and ****: p < 0.0001.

2.5. Cell Migration Assay

Stress compound MVL was tested for cell migration of PC3 using an established
in vitro scratch test for 24 h. MVL (10 µg/mL) appeared to induce a significant reduction in
cell migration at 12 and 24 h treatment of PC3. This was estimated by comparing the scratch
area at every observation time as a percentage of control at 0 h. The area of scratch at 24 h
treatment with MVL was recorded as 61.10 ± 5.2% compared to control (16.62 ± 4.4%)
(Figure 5).
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Figure 5. In vitro scratch assay on MVL treated prostate cancer cells. PC3 cells were plated in 6-well
plates and scratched at the full confluence. Migration of cells to heal the area of the scratch was
observed at 0 h, 12 h, and 24 h after treatment. Reduction in the area of the scratch was Photographed
using Olympus CKX41 microscope and measured using ImageJ software. Data is mean ± SEM
percent area of scratch in triplicate at ***: p < 0.001 and ****: p < 0.0001.

2.6. Molecular Expression Assessment

To unveil the possible mechanistic reason behind the anti-proliferation of cancer cell
colonies in MTT assays, expression analysis of apoptotic proteins P53, BCL-2 and BAX
were assessed via western blot technique (Figure 6). GAPDH served as a loading control.
Prostate cancer cells (PC3) were treated with compound MVL at three concentrations (0,
5, and 10 µg/mL) for 48 h. Protein (40–60 µg) from protein lysate was segregated and
probed with specified monoclonal antibodies. The upregulation of P53 and BAX while
downregulation of BCL-2 expression indicates that MVL is following apoptosis in varying
degrees. Fold change in protein expression after 48 h treatment is given in Figure 6.
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Figure 6. Western blot analysis of proteins associated with MVL induced apoptosis. Prostate cancer
cells, PC3 were treated with MVL at a concentration of 0, 5, and 10 µg/mL for 48 h. Data shows
increased expression of pro-apoptotic P53 and BAX while decreased expression of anti-apoptotic
BCL2. GAPDH was used as a loading control. Fold change in P-53, BAX, and BCL-2 expression
after treating for 48 h with different concentrations of MVL. Means with different superscripts (a–c)
indicate significant (p < 0.001) difference in fold change between groups.

2.7. Toxicity Assessment (Safety Profiling)

To evaluate toxicity, blood lymphocytes were treated with 10 and 20 µg/mL MVL
samples, 20 µg/mL EMS (positive), 1% DMSO in PBS (negative control), and comet assay
was performed. The slides were envisioned under a fluorescent microscope, and the
extent of DNA damage was evaluated by analyzing the photomicrographs via CASP
1.2.3.b image analysis. Analysis of 50–100 cells from each sample was performed to assess
comet length, head length, tail length, tail moment, DNA content in the head, and tail of
lymphocytes. MVL (10 and 20 µg/mL) showed no significant damage to nuclear material
compared to EMS used as standard genotoxic control. The tail length (18.5 ± 1.4 µm) of
EMS-treated DNA clearly indicates the production of nicks in nuclear content, representing
a greater extent of genotoxicity. While the stressed compound MVL showed no significant
toxicity to DNA having the least tail content compared to control. All the fluorescent
photomicrographs of the treated lymphocytes and their comet parameters are presented in
Figure 7 and Table 3.
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Figure 7. Genotoxicity evaluation of MVL on blood lymphocytes. “H” represents Head and “T”
represents Tail. (A) Vehicle control (1% DMSO) (B) Ethyl methane sulfonate (20 µg/mL) (C) MVL
(10 µg/mL) (D) MVL (20 µg/mL).

Table 3. Genotoxicity assessment of MVL on blood lymphocytes by comet parameters.

Sample Comet Length
(µm)

Head Length
(µm)

Tail Length
(µm)

% DNA
in Head

% DNA
in Tail

Tail Moment
(µm)

Control 40.4 ± 4.2 35.9 ± 1.8 4.5 ± 0.5 88.8 ± 2.1 11.2 ± 1.3 β 0.11 ± 0.04 β

EMS (20 µg/mL) 42.6 ± 3.6 24.1 ± 2.7 18.5 ± 1.4 56.6 ± 3.5 43.4 ± 1.8 ¥ 1.37 ± 0.11 ¥

MVL (10 µg/mL) 42.6 ± 3.1 36.7 ± 2.5 5.9 ± 0.3 86.1 ± 2.8 13.9 ± 1.8 β 0.11 ± 0.03 β

MVL (20 µg/mL) 41.4 ± 2.4 31.7 ± 1.8 8.5 ± 1.3 80.6 ± 1.8 19.4 ± 2.6 β, ¥ 0.24 ± 0.03 β, ¥

Values are expressed as Mean ± SD (n = 3). Means with symbol “β” indicates non significant difference from control. “¥” from EMS group
according to Kruskal-Wallis test at p < 0.05.

2.8. Pharmacokinetic and Toxicological Properties

Absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction
studies were conducted for the stress compound MVL.

2.8.1. Pharmacokinetic Properties

The physicochemical properties of the compounds are mentioned in (Table 4). Ac-
cording to Table 4, the MVL physicochemical properties were analyzed and divided into
6 major groups with their suitable ranges for oral bioavailability (Figure 8a) encompass-
ing lipophilicity (LIPO) 0.7 < (Log Po/w) XLOGP3 < +5.0, size (SIZE) 150 g/mol < MV <
500 g/mol, polarity (POLAR) 20Å2 < TPSA < 130 Å2, Insolubility (INSOLU) 0 < Log S
(ESOL) < 6, Insaturation (INSATU) 0.25 < Fraction Csp3 < 1 and flexibility (FLEX) 0 < No.
of rotatable bonds < 9. The Topological polar surface area (TPSA) scores of MVL were in
the range of 20Å2 to 130Å2, suggesting MVL provides good transport properties in vivo.
Figure 8a displays the oral bioavailability graph of the MVL based on the six factors dis-
cussed in physicochemical properties. The compound MVL has shown the results within
these limits, displaying that MVL has a good physiochemical profile, one of the necessary
parameters followed in pharmaceuticals or clinical trials.
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Table 4. Predicted physicochemical parameters and lipophilicity properties of MVL.

Properties Parameters MVL

Physicochemical properties

MW a (g/mol) 112.13

Rotatable bonds 0

HBA b 2

HBD c 0

Fraction Csp3 0.50

TPSA d 26.30

Lipophilicity Log Po/w

iLOGP 1.54

XLOGP3 0.60

MLOGP 0.88

Consensus 1.07
a Molecular weight, b H-bond acceptor, c H-bond donor, d Topological polar surface area.

Figure 8. (A). Bioavailability radar chart for MVL. The pink zone represents the physicochemical space for oral bioavailability,
and the red line represents the oral bioavailability properties. (B) Predicted BOILED-Egg plot from swiss ADME online web
tool for MVL.

HIA and CNS absorption are important parameters checked for every biomolecule
before its entry for drug formulation in the pharmaceutical or clinical trials field [22]. The
Blood-brain barrier penetration is essential as if the compounds that act on the central ner-
vous system (CNS) must cross through the blood–brain barrier and the inactive compounds
on the CNS should not intersect to avoid adverse effects on the CNS [23]. As mentioned in
(Table 4) the stress compound MVL has displayed a high gastrointestinal absorption (HIA)
with less BBB permeability.

Figure 8B displays the BOILED-EGG graph [24], which predicts the GI absorption
(HIA) and BBB penetration of MVL. The white region is for GI (HIA) absorption zone
and the yellow area (yolk) is for the BBB penetration zone. If any compound exists in the
grey zone, it indicates that the compound is not absorbed nor BBB penetrant. The stress
compound MVL displayed that it is not a P-gp (P-glycoprotein) substrate; therefore, MVL is
not susceptible to the efflux mechanism of P-gp; many cancer cell lines utilize that as a drug
resistance mechanism. Moreover, the compound MVL has shown less skin permeation Log
Kp (Table 5), the more negative the Kp, the less skin permeant the molecule is [25].
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Furthermore, this tool also predicts five major cytochromes (CYP) isoforms. These
enzymes play a crucial role in drug excretion, and these isoforms are metabolizing almost
75% of market available drugs. Inhibition of any of these isoforms results in causing
some significant pharmacokinetics-based drug-drug interactions [25,26]. As mentioned in
(Table 5) The stress compound MVL did not inhibit any cytochrome isoform and is quickly
metabolized, which means that it cannot create any drug-drug interactions with these
selected cytochromes. In the incidence of excretion, drug clearance is calculated as the sum
of hepatic and renal clearances, and it is crucial for establishing dosing rates to reach steady-
state concentrations. The clearance value of the MVL was inadequate. Organic Cation
Transporter 2 (OCT2) substrates may impact adverse interactions with OCT2 inhibitors in
combination. The compound MVL has been predicted as a non-substrate of OCT2.

Table 5. Predicted ADME parameters of MVL.

Properties Parameters MVL

Absorption

Water Solubility −0.509
GI a 100

Log Kp (Skin permeation) cm/s −6.56
P-gp substrate No

Distribution
BBB b −0.031

CNS permeation (Log PS) −2.633
VD

c (human) −0.037

Metabolism

CYP1A2 inhibitor No
CYP2C19 inhibitor No
CYP2C9 inhibitor No
CYP2D6 inhibitor No
CYP3A4 inhibitor No

Excretion
Total Clearance (log mL/min/kg) 0.814

Renal OCT2 substrate No
a Gastrointestinal, b Blood–brain barrier, c Volume of distribution.

2.8.2. Toxicity Assessment

Before any drug enters the clinical trials phase or pharmaceutical industry manu-
facturing phase, it is imperative to consider the drug’s toxicology profile [22]. The stress
compound MVL has been evaluated for its different kinds of toxicities, including human,
oral rat, and environmental (Table 6). The Ames test is used to determine a compound’s
mutagenic ability. According to the findings, MVL was categorized as non-Ames haz-
ardous, indicating that they are unlikely to be carcinogens. Inhibition of the hERG-encoded
potassium channels can result in catastrophic ventricular arrhythmia. According to the
results, MVL suppresses both hERG I and hERG II. The compound MVL was also predicted
as non-hepatotoxic, which indicates that it would not cause drug-induced liver injury.

In silico predictive model of median lethal dose (LD50) values for rats with oral
administration was conducted by the General Unregulated Structure-Activity Relationships
(GUSAR) programme (http://www.way2drug.com/gusar/acutoxpredict.htmL, accessed
on 1 October 2021). Furthermore, for the prediction of lethal dose (LD50), the compound
MVL had a score of more than 300 mg/kg and was classified as class 4; therefore, it
is considered “harmful if swallowed” (300 < LD50 ≤ 2000) (Table 6). In addition to
considering environmental toxicity, the online web server GUSAR was used. The online
web server predicted the environmental toxicity, where 96-h fathead minnow 50% lethal
concentration, 48-h Daphnia magna 50% lethal concentration, Tetrahymena pyriformis 50%
growth inhibition concentration, and bioconcentration factors were evaluated. The results
are depicted in Table 4. In the case of environmental toxicity prediction by GUSAR, MVL
falls in the applicability domain of models in all cases. The toxicity profile shows that the
stress compound MVL has a high safety profile, especially in hepatotoxicity.

http://www.way2drug.com/gusar/acutoxpredict.htmL
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Table 6. Predicted Human, Oral rat, and Environmental toxicity profile of MVL.

Toxicity Parameters MVL

Human

Ames toxicity No

hERG I inhibitor No

hERG II inhibitor No

Hepatotoxicity No

Max. tolerated dose (human) (log mg/kg/day) 1.01

Oral Rat
Oral Toxicity (LD50) (mg/kg) 1890

Oral Toxicity classification * IV

Environmental

Daphnia magna LC50 -Log10 (mol/L) 3.347

Bioaccumulation factor Log10 (BCF) 0.487

Tetrahymena pyriformis IGC50 -Log10 (mol/L) −0.867

Fathead Minnow LC50 Log10 (mmol/L) 0.452

* Class I: fatal if swallowed (LD50 ≤ 5); Class II: fatal if swallowed (5 < LD50 ≤ 50); Class III: toxic if swallowed (50 < LD50 ≤ 300); Class
IV: harmful if swallowed (300 < LD50 ≤ 2000); Class V: may be harmful if swallowed (2000 < LD50 ≤ 5000) and Class VI: non-toxic
(LD50 > 5000).

2.8.3. Cardiac Toxicity

The blockage of the hERG K+ channels has been linked to fatal cardiac arrhythmias
and before any biomolecule is elected as a drug candidate, it is mandatory by the FDA
to check its hERG safety. The probability map of MVL derived after predicting cardiac
toxicity by pred-hERG is given in Figure 9. Atoms or fragments’ positive and negative
contributions to the hERG blockage have been found. The intense pink color means a
negative contribution of an atom or fragment to the hERG blockage. According to the
pred-hERG predictions, the stress compound MVL was predicted as non-cardiotoxic with a
70% confidence value. The results have demonstrated that MVL is safer for cardiac toxicity.

Figure 9. Map of Cardiac toxicity of MVL obtained from pred-hERG.

2.9. Molecular Docking
2.9.1. Molecular Docking and Binding Energy Analysis

The docked complexes of MVL against BAX and P53 are formed and evaluated based
on minimum energy values and ligand interactions patterns. Results showed that MVL
showed good binding energy, value bind in the active region of the target protein (Table 7).

Table 7. The binding energy of stressed compound MVL.

Docking
Complexes

Binding Energy
(Kcal/mol)

P53_Ligand −5.6
BAX_Ligand −6.7
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2.9.2. Binding Analyses of MVL against BAX and P53

The generated docking complexes showed that MVL was confined in the active
binding pocket of BAX, as mentioned in Figure 10. The results showed that a single
hydrogen bond was observed in the screening process. The oxygen atom of the compound
forms a hydrogen bond against Gly23 with a bond length of 2.53 Å. Prior data showed that
BAX showed different binding pocket residues such as Tyr21, Ser24, His20, Asp29, Leu23,
and Ile19 are more important for activating downstream signaling pathways. Our docking
results showed that ligand binds within the target protein’s active site, which may involve
the cascade of regulatory signaling proteins [27].

Figure 10. Binding analysis of MVL with BAX.

In P53 docking, MVL is confined in the active binding pocket of the target protein, as
mentioned in Figure 11. The generated docking results showed that a couple of hydrogen
bonds were observed at different residues positions. An oxygen atom of the compound
formed hydrogen bonds with Leu194 and His214 with bond distances 1.78 Å and 2.32 Å,
respectively. Leu194 and His214 are binding pocket residues that may involve in the
downstream signaling pathways. Our docking results showed that MVL is directly bound
with active site residues. Prior docking studies also showed a good correlation with our
predicted docking results [28].

Figure 11. Binding analysis of P53 with MVL.

3. Discussion

This research focused on isolating a natural product MVL as a stressed compound
from actinobacteria by abiotic stress technique. Furthermore, evaluating the in vitro phar-
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macological profile of MVL as an anti-oxidant and anti-cancer agent, including In-silico
studies of ADMET and molecular docking, strengthened its profile.

The metal-stress technique opens the road towards the most promising directions
and increases the chances for novel secondary metabolite production. As proved from the
previous findings, stress-elicited compounds are generally absent in normal culture method
but after inducing abiotic stress the new compound with its unique carbon skeletons
appeared in stressed culture [1,5,17]. The microorganisms sometimes show resistance
towards the metals and therefore need to either increase the concentration of metals or to
use the combination of two or more metals to trigger the sleeping genes [1]. Our research
shows that the actinobacteria strain initially didn’t respond to any metal in its single entity.
However, after combining two metals the actinobacteria responded to the metals ions in its
environment and elicited a new peak as MVL.

Nowadays, many natural products researchers have driven their research towards
untapping the secondary metabolites with promising anti-oxidant and anti-cancer prop-
erties [11,13,29,30]. As mentioned in Table 1 the MVL has shown promising antioxidant
properties with recording the IC50 value of 19.65 ± 5.7 µg/mL in DPPH, IC50 of 15.49 ± 4.8
against NO free radicals, the IC50 value of 19.65 ± 5.22 against scavenging ability, and
IC50 value of 19.38 ± 7.11µg/mL for iron chelation capacity. These results clearly indicate
that MVL has a robust anti-oxidant profile. Furthermore for the cytotoxic activities as
mentioned in Table 2. The compound MVL has shown promising results against PC3
cell lines with IC50 values of 35.81 ± 4.2 µg/mL after 24 h, 23.29 ± 3.8 µg/mL at 48 h,
and 16.25 ± 6.5 µg/mL after 72 h. To achieve the mechanistic studies for the compounds’
pharmacologic profile it was observed that MVL has shown its cytotoxic response by
upregulation of P53 and BAX while downregulation of BCL-2 expression, indicating that
MVL is following apoptosis in varying degrees.

ADMET is a crucial stage for every kind of biomolecule before its biotransformation
into a drug [22]. According to the ADMET profile of MVL, its absorption and distribution
were moderate; MVL is highly soluble in GIT with less BBB permeability which can
show that MVL cannot create any serious adverse effects related to CNS. As the inactive
compounds on the CNS should not intersect to avoid adverse effects on the CNS [23].
Furthermore, MVL has revealed that it is not a P-gp (P-glycoprotein) substrate; therefore,
MVL is not susceptible to the efflux mechanism of P-gp, many cancer cell lines utilize that
as a drug resistance mechanism. CYP enzymes play a crucial role in drug excretion, and
these isoforms are metabolizing almost 75% of market available drugs. Inhibition of any
of these isoforms results in causing some significant pharmacokinetics-based drug-drug
interactions [25,26]. MVL has not inhibited any CYP enzymes, which means MVL cannot
create drug-drug interactions for those CYP enzyme-targeted drugs. One of the significant
drawbacks of many drugs is to create hepatotoxicity [31] and cardiotoxicity [32]. MVL
has not shown any hepatotoxicity proved to be non-cardiotoxic with a 70% confidence
value. The hERG K+ channel blockade can contribute to QT prolongation and possibly
life-threatening arrhythmia [33]. Therefore, MVL was expected to be a non-inhibitor of
hERG and will not cause any cardiac side effects. Finally, as derived from pkCSM, the
toxicity profile was optimal. Acute toxicity is described as the adverse effects of a single
reaction to a drug during a predefined timeframe [34]. In general, mice and rats are used to
measure acute toxicity. MVL was expected to be non-toxic and classified in class four with
harmful indications if swallowed, suggesting a safer application. Environmental toxicity
assessment is more applicable to pesticides or similar compounds. MVL did not exhibit
any environmental toxicity violations.

As evident from our study, MVL has shown encouraging results in terms of p53
and BAX inhibition in the sense of molecular docking. Therefore, in these ways, special
attention should be placed on investigating this process’s therapeutic importance.

Thus, the current study revealed the potential advantages of Stress driven compound
MVL and may be useful against different diseases. The research relied on in vitro and
computational tools that documented pharmacological properties and bioactivities pre-
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dictions. Moreover, clinical studies are necessary to confirm the findings of the present
work. Nonetheless, the results of this work will provide future guidance for the design and
development of new lead compounds as anti-oxidant and anti-cancer agents.

4. Materials and Methods
4.1. General

High-performance liquid chromatography (HPLC) system was used with a set of
Waters 996 Photodiode Array Detector and a Waters 717 plus Autosampler (Waters, Shina-
gawaku, Tokyo, Japan). On a Bruker AVANCE DMX 500 NMR spectrometer with TMS as
an internal standard, 1H NMR (500 MHz) and 13C NMR (125 MHz) spectra were measured
at 25 ◦C.

4.2. Soil Sample Collection

Soil sediment samples were obtained from the lower Orakzai Agency, Pakistan, at
300 feet in the bushy mountains. The sediments were collected in unpolluted areas near
the lower Orakzai Agency in Pakistan. The samples were then taken to the lab and kept at
4 ◦C in the refrigerator.

4.3. Isolation and Storage of SH-1312 Strain

To obtain a 10−1 dilution, the fresh soil sample of about 1–2 g was immediately
subjected to the pre-sterilized glass vials and diluted with simulated seawater. The mixture
was sonicated for 1 min to liberate microorganisms tied to the soil particles, then shaken
for 15 min at room temperature. The serial dilutions of up to10−2, 10−3, and 10−4 were
then prepared. To prevent fungal contamination, nystatin (0.05 g/L) was added to the
pre-prepared isolation media (Gause’s synthetic agar). Following the preparation of the
dilutions, 100 µL aliquots of each dilution were inoculated on each media and disseminated
with the pre-sterilized spreader. For 15–20 days, the plates were incubated at 28 ◦C.

Purified colonies of actinobacteria were collected and kept on agar media and stored at
4 ◦C. The actinobacteria were identified by their morphology, most commonly their colors.
Based on the ITS 16S segment, the SH-1312 strain was recognized as a Streptomyces sp.

4.4. Metal Stress and Normal Cultivation

The metal stress and normal cultures of strain SH-1312 were conducted simultaneously
in 500 mL flasks containing 200 mL liquid Gause’s medium for ten days at 28 ◦C in a
rotatory shaker at 180 rpm. As a control, a standard broth culture of strain SH-1312 was
conducted in two flasks. Additional 0.5 mM, 1 mM, 2 mM, and 4 mM/L CoCl2, ZnSO4,
and (CoCl2 + ZnSO4) were added to the stressed culture media for SH-1312. The mycelium
was withdrawn, and the culture broth was extracted twice with EtOAc in an equal volume.

4.5. HPLC Analysis and Purification of Stress Metabolite

The analysis of isolated compounds was done through a reversed-phase HPLC-UV
equipped with a C18 column. The isolation procedure was set on an HPLC with an
H2O/MeOH gradient from 20–100% for 0–30 min, 100% MeOH from 30–50 min with a
constant flow rate of 0.8 mL/min using 210 wavelengths. The stress-induced metabolite
was purified on preparative HPLC by setting a constant mobile phase of 70% MeOH for
28 min with a 9 mL/min flow rate.

4.6. Extraction and Isolation

EtOAc (2 × 200 mL) was used to extract the 13 L of fermented broth. After the
solvent had evaporated, the crude residue was dissolved in methanol and centrifuged at
120,000 rpm for ten minutes before being exposed to analytical HPLC. After subjecting to
the HPLC the initial screening was conducted by setting an H2O/MeOH gradient from
20%–100% for 0–30 min. As mentioned in Figure 1 the new peak was observed at 23.2 min.
After that, the compound was purified on Preparative HPLC by a constant mobile phase
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of 70% MeOH, “MeOH: H2O (70:30)”. The purified compound was then subjected to its
1D NMR (1H NMR, 13C NMR, and DEPT135). The structure of the stressed compound
Anhydromevalonolactone (MVL) (7.9 mg, tR = 17 min) was identified by 1D NMR.

4.7. Anti-Oxidant Evaluation

To evaluate the antioxidant potential of the stress compound, a multifaceted antioxi-
dant evaluation of a stress compound was performed via DPPH scavenging assay, OH•
radical scavenging assay, NO scavenging assay, and Iron chelating assay by following
pre-described protocols [35].

4.8. Cytotoxicity Analysis against Human Prostate PC3 Cell Line

MTT assay was used to assess cytotoxicity against the human prostate PC3 cell line [30].
Non-adherent PC3 cells were cultured in a humidified CO2 incubator at 37 ◦C in complete
growth medium RPMI 1640 enriched with 2.2 g/L NaHCO3, 100 g/mL streptomycin
sulfate, 10% v/v heat-inactivated fetal bovine serum (HIFBS), 0.25 g/mL amphotericin
B, and 100 IU/mL penicillin G sodium. 20 µL of a compound in 1% DMSO in PBS and
180 µL of PC3 cancer cells were combined in a 96-well plate to reach a final concentration
of 20 µg/mL for evaluating the cytotoxicity on PC3 cancer cells. The cells were loaded at
an assay density of 1 × 104 cells/mL. The plate was incubated in humidified 5% CO2 at
37 ◦C for 24 h, 48 h, and 72 h. Cabazitaxel was utilized as a positive control, and 1 percent
DMSO in PBS was employed as a negative control. Cabazitaxel was procured from Enzo
life sciences, Fisher Scientific (Thermo Fisher Scientific, California, USA) CAS-183133-96-2
(ENZCHM2170010). A stock solution (4 mg/mL) of Cabazitaxel was prepared in DMSO
and diluted in 1× PBS to make it 1% DMSO. Then serial dilutions of the standard compound
were prepared in such a way that wells received 50, 25, 12.5, 6.25, and 3.12 µg/mL of
Cabazitaxel with ≤1% DMSO. After that, 20 µL of pre-filter sterilized MTT solution was
added to plates and incubated at 37 ◦C for 4 h in a CO2 incubator. Colored formazan
crystals were detached by deliberately removing the supernatant and dissolved in 100 µL of
DMSO with absorbance measured at 540 nm using Elx 800 microplate reader. Cytotoxicity
was calculated using the following formula:

% cytotoxicity = [100−(As/Ac × 100)] (1)

where As and Ac show the absorbance of sample and negative control, respectively. Cyto-
toxicity was calculated with GraphPad Prism 5 software.

4.9. In Vitro Wound Assay

In vitro wounds were induced by a modified protocol described [36], and the scratch
assay was performed on cells to study the effect of stress compound on cell migration [15].
In the growth medium of 24-well plates, Human fibroblast cells were injected at a density
of 5 × 104 cells/well. After achieving about 100% proliferation, the cells were shifted to
the basal media for 24 h. The cells were scraped with a sterile micro pipetting tip after
they had grown into a monolayer. A glass slide was slotted across the top of the dish to
help keep the tip stationary when scratching and allow for a straight scratch. The tip was
firmly dragged across the dish’s diameter. PBS was used to wash the cells to remove the
loose debris. For each dose, a set of four wells were filled with different concentrations
(1–40 g/mL) of a stressed compound. As a control, the cells were granted an equal amount
of DMSO. For the migration assay, cultures were rinsed twice with PBS, preserved with
absolute methanol, stained with Giemsa, and inspected at a magnification of 40× using
a light microscope with a calibrated ocular. Images were recorded instantly after being
wounded and then again portrayed at 0, 12, and 24 h time points. Using Image J software,
cell migration rates were quantified by measuring the wound area change (pixels).
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4.10. Western Blotting

PC3 cells were cultured in a T75 flask (1 × 106/flask). After 48 h, cells were treated
with NA (20 µM and 40 µM) for 12 and 24 h. Following treatment, media was aspirated and
cells were washed with cold PBS whose pH was maintained at 7.4 trypsinized and pelleted
in 15 mL falcon tubes, and cold lysis buffer was added to the pellet. Protein extraction and
western blot analysis were done by following the protocol described previously [30].

4.11. Comet Assay

DNA mutilation was evaluated by following the protocol as described by Peter
et al. [37]. To remove dust and machine oil, the slides were soaked in methanol and
then burned over a blue flame. Approximately three-quarters of the sterilized slides were
dipped in a 1% solution of normal melting point agarose (NMPA) and allowed to place at
room temperature. In 1 mL cold lysing solution, a puny segment of liver tissue was sliced
into minuscule pieces. The diced tissue was mixed with 85 µL of low melting temperature
agarose solution before coating on the pre-decorated slides. The slide was delicately cov-
ered with a coverslip and placed on ice packs for 10–12 min. By removing the coverslip, the
second layer of low melting agarose was poured on the slide. After that, it was allowed to
solidify on ice packs. After the third time coating the slide with low melting agarose, it was
immersed in a lysing solution for 10 min before being placed in the freezer for roughly 2 h.
After electrophoresis, the samples were stained with ethidium bromide (1%) and observed
under a fluorescence microscope. For image analysis, CASP 1.2.3.b software was used to
assess the extent of DNA damage. Nearly 50–100 cells were analyzed in each sample for
head length, comet length, tail moment, tail length, and the amount of DNA in the nuclei
of liver cells.

4.12. ADMET Analysis

ADMET (Absorption, distribution, metabolism, excretion, and toxicity) are the es-
sential measurement tools for any compound before being elected as a drug candidate.
The online web tool swiss ADME (http://www.swissadme.ch/index.php, accessed on 1
October 2021) was used to obtain ADMET properties of the stress compound [25], and
Online web tool pkCSM (http://biosig.unimelb.edu.au/pkcsm/prediction, accessed on 1
October 2021) was used to predict the pharmacokinetic scores.

4.13. Prediction of Cardiac Toxicity

Blockage of the hERG K+ channels has been linked to fatal cardiac arrhythmias. To
predict cardiac toxicity, a free accessible online service pred-hERG 4.2 (http://predherg.
labmol.com.br, accessed on 1 October 2021) was used for its early detection of potential
hERG blockers and non-blockers [38].

4.14. Molecular Docking

Repossession of BAX and P53 from PDB
The crystal structure of BAX and P53 was retrieved from the Protein Data Bank (PDB)

having PDBIDs 2LR1 and 4MZI, (www.rcsb.org, accessed on 1 October 2021), respectively.
Energy minimization of target structures were carried out by using conjugate gradient
algorithm and amber force field in UCSF Chimera 1.10.1 [22].

Designing of Ligand and Molecular Docking Simulation Using Autodock

The ligand was sketched in drawing ACD/ChemSketch, converted into PDB using the
PyMOL tool, and minimized by visualizing software UCSF Chimera 1.10.1. PyRx docking
tool was used to perform a molecular docking experiment for the ligands against the
protein (BAX and P53). The grid box center values of (center_ X = 2.5557, −18.1355, center_
Y= 0.1669, −5.8255, and center_ Z = 2.35430, 20.40572) and size values were adjusted
as (X = 20.2138, 26.6372, Y = 24.8519, 23.72620, and Z = 20.7404, 21.5794) for BAX and
P53, respectively for better conformational position in the active region of target proteins.

http://www.swissadme.ch/index.php
http://biosig.unimelb.edu.au/pkcsm/prediction
http://predherg.labmol.com.br
http://predherg.labmol.com.br
www.rcsb.org
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The ligand was docked separately against BAX and P53 with a default exhaustiveness
value = 8. The predicted docked complexes were evaluated based on the lowest binding
energy (Kcal/mol) values and structure-activity relationship (SAR) analyses. The three-
dimensional (3D) graphical depictions of all the docked complexes were accomplished by
Discovery Studio (2.1.0) and UCSF Chimera 1.10.1 [22].

5. Conclusions

The secondary metabolite patterns of an actinobacterial strain can alter under the
presence of heavy metals supplemented to the fermentation medium, as proven by two
chemical and pharmacological screening approaches. This work created a simple, quick,
and easy approach for screening such kinds of secondary metabolites that were totally
absent at the normal culture under optimal conditions. Strains isolated by the metal stress
technique with enhanced pharmacological spectrum open a new road for the researchers to
re-screen existing microbial strain libraries for unique secondary metabolites that emerged
under the effects of heavy metals. The findings of this study triumphantly revealed
that stress-driven discovery of potent biomolecule from the actinobacteria is an efficient
technique for uncovering the microorganisms’ undiscovered pool of small molecules.
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.3390/ijms222111432/s1.
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