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Purpose. Detecting brain regions characterizing mild traumatic brain injury (mTBI) by combining Tract-Based Spatial Statistics
(TBSS) andGraphical-model-basedMultivariateAnalysis (GAMMA).Materials andMethods.This study included 39mTBI patients
and 28 normal controls. Local research ethics committee approved this prospective study. Diffusion-tensor imaging was performed
inmTBI patients within 7 days of injury. Skeletonized fractional anisotropy (FA)maps were generated by using TBSS. Brain regions
characterizing mTBI were detected by GAMMA. Results. Two clusters of lower frontal white matter FA were present in mTBI
patients. We constructed classifiers based on FA values in these two clusters to differentiate mTBI and controls.Themean accuracy,
sensitivity, and specificity, across five different classifiers, were 0.80, 0.94, and 0.61, respectively. Conclusions. Combining TBSS and
GAMMA can detect neuroimaging biomarkers characterizing mTBI.

1. Introduction

More than 1.125 million people experience a mild traumatic
brain injury (mTBI) each year in the United States [1]. 7-8%
of mTBI patients suffer from chronic symptoms [2]. In a one-
year follow-up study, Van der Naalt et al. found that 84% still
displayed mTBI symptoms including headaches, irritability,
memory problems, poor concentration, and fatigue [3].

Computed tomography (CT) and conventional mag-
netic resonance (MR) imaging results of mTBI are typi-
cally normal. Diffusion-tensor imaging (DTI) examines the
molecular diffusion of water and can measure white matter
microstructural integrity noninvasively. Water diffuses more
readily along the direction of axonal fibers. The diffusion
profile in each voxel can be measured by DTI. One of
the most commonly used DTI-based feature maps is the
Fractional Anisotropy (FA) map, which describes the degree
of directionality of diffusion. In mTBI, DTI has been used to

identify microstructural changes that cannot be detected by
CT or conventional MR [4].

Tract-Based Spatial Statistics (TBSS) is an automated
whole-brain analysis method which aims to address two
problems in voxel-based analysis of DTI data, the alignment
and smoothing issue. TBSS projects a subject’s FA map to a
common space, creates the mean FA image and its skeleton,
and projects each subject’s FA onto the skeleton. This results
in a skeletonized FA image for each subject. TBSS achieves
alignment between the FA skeleton and a subject’s FA map
without requiring perfect nonlinear registration and does
not require smoothing. Therefore, TBSS could improve the
sensitivity, objectivity, and interpretability of the group-level
analysis of DTI data. Several studies used TBSS to examine
white matter changes in mTBI [5–7].

Graphical-model-based Multivariate Analysis (GAM-
MA) [8, 9] is a group-level analysis method to detect lin-
ear/nonlinear interactions among brain regions and a clinical
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variable. Let 𝐶 denote the clinical variable. 𝐶 could be a
group membership variable which represents presence or
absence of a disease, or a demographic variable. The input to
GAMMA is image-derived featuremaps which are defined in
the same stereotaxic space and contains potential biomarkers
of 𝐶. GAMMA detects a set of brain regions which are
jointly predictive of 𝐶. GAMMA is fully automatic and does
not rely on any assumption about the structure form of
such interactions. It has been used in brain morphometry
[10], functional MR data analysis [11, 12], and lesion-deficit
analysis [13].

Combining TBSS and GAMMA, we are able to detect
interactions among brain regions and the clinical variable in
the FA skeleton space. We propose a novel analytic method,
which combines TBSS and GAMMA, for the detection of
brain regions characterizing mTBI.

2. Methods

2.1. Subjects. Local research ethics committee approved this
prospective study. 39 mTBI patients and 28 normal controls
were recruited from the emergency department in Shanghai
Dongfang Hospital, Shanghai, China, between February 2013
and August 2013.

The diagnosis of mTBI was established by using the
criteria of the American Congress of Rehabilitative Medicine
for mild brain injury [14]. The exclusion criteria were
(1) history of significant ear surgery, (2) penetrating head
injury, (3) pregnancy, (4) history of dementia or mental
disorder, (5) uremia, liver cirrhosis, heart failure, pulmonary
edema, coagulopathy, and renal dysfunction, (6) ischemic
and hemorrhagic stroke, (7) in vivo magnetic implants
(such as iron, or with cochlear implants, vascular clips, etc.)
or with pacemaker, and (8) the patient being either dead
or having already received cardiopulmonary resuscitation
before arrival at hospital.

The control group included healthy subjects who had no
neurological or psychiatric illness and no prior TBI.

2.2. Data Acquisition and Imaging Parameters. All MR
images were acquired with a Philips Achieva 3.0T TX MRI
scanner (Royal Philips, Amsterdam,Netherlands). Diffusion-
tensor images were acquired with a single-shot echo-planar
sequence (TR/TE = 9,000ms/90ms, slice thickness = 2mm,
voxel size = 2mm ∗ 2mm, and field of view = 256∗ 256mm).
Diffusion gradients were set in 32 noncollinear directions by
using two 𝑏 values (𝑏 = 0 and 1,000 s/mm2). Diffusion-tensor
imaging was performed in mTBI patients within 7 days of
injury.

2.3. DTI Data Processing. The diffusion-weighted images
were preprocessed by using FMRIB Software Library [15].
The diffusion-weighted data were registered to the b0 image
using an affine registration algorithm in order to minimize
distortion due to motion and eddy currents. Brain Extraction
Tool [16] was used to remove nonbrain tissues in the T1- and
diffusion-weighted data. Skull-stripped images were visually

inspected and, if necessary, manually corrected for skull-
stripping error. FA images were generated by using the
Diffusion Toolbox [15].

The procedure to generate skeletonized FA images was
as follows. First, all FA maps were normalized to the widely
used FMRIB58 FA template using the nonlinear registration
algorithm in FSL [15]. Then the mean of all FA maps was
created by averaging normalized FAmaps.Themean FAmap
was the input to the tract skeleton generation step, which aims
to represent all tracts common to all subjects. The skeleton
of a tract is a single line (or surface) running down the
center of the tract. The FA skeleton was thresholded with
FA > 0.2 to exclude voxels which are primarily gray-matter
or cerebrospinal fluid. The last step was to project individual
subject’s FA onto the skeleton. At each point of a skeleton, the
maximum FA value in the perpendicular tract direction was
the value of this point.

2.4. Graphical-Model-Based Multivariate Analysis. GAMMA
is a machine learning method for biomarker detection. It
is based on two principles of brain functional organization:
functional segregation and integration. GAMMAmodels the
associations among a set of brain regions and a clinical
variable 𝐶 as a Bayesian network. In this study, the clinical
variable represents whether a participant has mTBI (𝐶 =
1) or is a normal control (𝐶 = 0). GAMMA is a voxel-
based method. There are two main tasks in GAMMA: voxel-
space partition andMarkov blanket detection. In voxel-space
partition, GAMMA groups voxels into functional equivalent
regions. A Markov blanket of 𝐶 is variables which are jointly
most predictive of𝐶. Given theMarkov blanket of𝐶, knowing
the states of other variables provides no additional informa-
tion about 𝐶. Therefore, variables in the Markov blanket of 𝐶
are biomarkers of𝐶. GAMMAuses a specific type of Bayesian
network called Bayesian network with inverse-tree structure.
The output of GAMMA is a label field which defines a set
of brain regions and a Bayesian network which describes
the associations among these brain regions and the clinical
variable. Each region of interest (ROI) in the label field can be
represented by a single variable which represents the regional
state. Then we can predict 𝐶 using these regional states.

The input to GAMMA is the skeletonized FAmaps.These
skeletonized FA maps are defined in the Montreal Neurolog-
ical Institute (MNI) space. For each skeletonized FA map, we
aimed to generate a binary effect map, in which voxels with
value 1 represent FA reduction, and voxels with value 0 repre-
sent no FA reduction. The procedures to generate the binary
effect map were as follows. First, we calculated voxelwise
40th percentile values, based on the skeletonized FA maps
of all subjects in the normal control group, and generated a
threshold map T. Second, we generated a binary effect map
for each subject. Let 𝑉

𝑖
(𝑗) and 𝑇

𝑖
denote the signal intensity

of voxel 𝑖 in the skeletonized FA map 𝑗 and the threshold
map, respectively. If 𝑉

𝑖
(𝑗) < 𝑇

𝑖
, the value of generated binary

map at voxel 𝑖 is 1; otherwise, it is 0. We used the GAMMA
suite v1.2 (http://www.nitrc.org/projects/gamma suite/) to
perform GAMMA analysis.

http://www.nitrc.org/projects/gamma_suite/
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Figure 1: Voxels characterizing mTBI are shown in blue (ROI 1) and green (ROI 2).The white matter skeleton generated by TBSS is shown in
yellow. ROIs are shown in the sagittal view and overlaid on theMNI152 template. (a)MNI coordinates𝑋 = 18; (b)MNI coordinates𝑋 = −16.

3. Results

This study included 67 subjects (39 mTBI and 28 normal
controls).Themean ages of the mTBI and control group were
31 (standard deviation (SD) 7.4) and 33 (SD 9.4), respectively.
There was no significant difference in the mean baseline age
(𝑃 value = 0.319 based on two-sample 𝑡-test). The number of
female participants ofmTBI participants was 11 (total number
of subjects in the group = 39) and that of normal controls was
13 (total number of subjects in the group = 28). There was no
significant difference in the proportion of female participants
(𝑃 value = 0.125).

GAMMA detected two ROIs characterizing mTBI. These
two ROIs are depicted in Figure 1. ROI 1 is centered on the
right frontal lobe, and ROI 2 is centered on the left frontal
lobe. Relative to normal controls, participants in the mTBI
group demonstrated reduced FA values in these two ROIs.

Each ROI had a set of voxels. We used the regional
state inference (RSI) algorithm in [17] to infer the regional
states of a ROI. RSI infers the regional state using a latent-
variable model, with an online Gibbs sampling algorithm.
The regional state of a ROI is a biomarker characterizing
mTBI.Thenwe constructed predictivemodels to differentiate
mTBI and controls based on two biomarkers, regional states
of ROI 1 and 2. We constructed different kinds of classifiers
[18] in order to avoid the bias associated with a specific type
of classifier. Classification performance was evaluated using
10-fold cross-validation. Table 1 lists accuracies, sensitivities,
and specificities of different kinds of classifiers.We found that
these two biomarkers can predict 𝐶 with mean accuracy =
0.80, sensitivity = 0.94, and specificity = 0.61.

4. Conclusion and Discussion

We found that biomarkers detected by combining GAMMA
and TBSS accurately differentiated mTBI patients and con-
trols. The mean accuracy, sensitivity, and specificity, across
five different classifiers, were 0.80, 0.94, and 0.61, respectively.

We found that mTBI participants have decreased FA
in two ROIs mainly in the frontal lobe than that in con-
trols. White matter injury in the frontal lobe is consistently
reported in TBI studies [19]. In a TBSS study of 51 mTBI
patients and 50 controls, Wada et al. reported that patients

Table 1: Accuracies, sensitivities, and specificities of different kinds
of classifiers.

Classifier Accuracy Sensitivity Specificity
Logistic model trees [21] 82 97 61
AdaBoost [22] 77 90 61
Bagging [23] 82 97 61
Näıve BN [24] 79 92 61
Support vector machine [25] 79 92 61
Mean 80 94 61

withmTBI in the chronic stage had decreased FA in the supe-
rior frontal gyrus, superior longitudinal fasciculus, insula,
and fornix [6]. In [20], Kraus et al. analyzed DTI data of 20
mTBI patients and 18 controls and found decreased FA in the
corticospinal tract, sagittal stratum, and superior longitudinal
fasciculus for themTBI group.Our finding also suggested that
DTI is sensitive to detect white matter injury in the frontal
lobe in mTBI patients.

Identifying neuroimaging biomarkers for diagnosis or
prognosis is of great importance. Such neuroimaging bio-
markers can be identified based on expert knowledge
or machine learning algorithms. The advantage of using
machine learning algorithms for biomarker detection is
that it can detect biomarkers in an automated, unbiased
manner. GAMMA is a Bayesian machine learning method
for biomarker detection. Our results suggested that GAMMA
can automatically detect biomarkers in the skeletonized FA
space.

One limitation of this preliminary study is the small
sample size. The generated predictive model was accurate
(accuracy = 0.80, sensitivity = 0.94, and specificity = 0.61).
The classification performance is evaluated using tenfold
cross-validation. However, we did not validate this model
using an independent test data set because this study had
a limited number of subjects. In future, we plan to evaluate
the predictive model generated in this study in a cohort with
larger sample size. We will split the data set into training and
testing data sets. This could provide more reliable estimation
of the generalizability of the predictive model. The predictive
model generated using data from a cohort with larger sample
size may have higher specificity than the current one.
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In conclusion, we found that combining TBSS and
GAMMA can detect neuroimaging biomarkers characteriz-
ing mTBI.
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